SPECTRAL COMPUTATION OF LOW PROBABILITY TAILS FOR THE
 HOMOGENEOUS BOLTZMANN EQUATION

JOHN ZWECK ${ }^{(1)}$, YANPING CHEN ${ }^{(1)}$, MATTHEW GOECKNER ${ }^{(1)}$, AND YANNAN SHEN ${ }^{(2)}$
${ }^{(1)}$ The University of Texas at Dallas, ${ }^{(2)}$ The University of Kansas; email: ZWECK@utdallas.edu

Problem Setting

- Motivation: Accurate simulation of lowprobability, high-energy processes in nonequilibrium plasmas
- Reaction rates depend on overlap between electron velocity pdf and electron-ion impact cross sections.
- Goal: Accurate computation of low-probability tails of electron velocity pdf, $f=f(t, \boldsymbol{v})$:

$$
\frac{\partial f}{\partial t}=Q(f, f), \quad \text { Boltzmann equation }
$$

for Boltzmann collision operator
$Q(\boldsymbol{v})=\int_{\mathbb{R}^{3}} \int_{S^{2}}\left[f\left(\boldsymbol{v}^{\prime}\right) f\left(\boldsymbol{w}^{\prime}\right)-f(\boldsymbol{v}) f(\boldsymbol{v}+\boldsymbol{g})\right] g^{\lambda} d \Theta d \boldsymbol{g}$,

- $\lambda=0$: Isotropic Maxwell collisions
$-\lambda=1$: Isotropic hard-sphere collisions

Gamba's Spectral Method [1]

Truncated Collision Operator
$Q^{\operatorname{tr}}(\boldsymbol{v})=\int_{|\boldsymbol{g}| \leq g_{\mathrm{tr}}} \int_{S^{2}}\left[f\left(\boldsymbol{v}^{\prime}\right) f\left(\boldsymbol{w}^{\prime}\right)-f(\boldsymbol{v}) f(\boldsymbol{v}+\boldsymbol{g})\right] g^{\lambda} d \Theta d \boldsymbol{g}$

- Ignores collisions for which $g=|\mathbf{v}-\mathbf{w}|>g_{\mathrm{tr}}$

$$
\begin{aligned}
\widehat{Q}^{\operatorname{tr}}(\boldsymbol{\zeta}) & =\int_{\mathbb{R}^{3}} \widehat{f}(\boldsymbol{\zeta}-\boldsymbol{\xi}) \widehat{f}(\boldsymbol{\xi}) \widehat{G}^{\operatorname{tr}}(\boldsymbol{\xi}, \boldsymbol{\zeta}) d \boldsymbol{\xi} . \\
\widehat{G}^{\mathrm{tr}}(\boldsymbol{\xi}, \boldsymbol{\zeta}) & =\int_{|\boldsymbol{g}| \leq g_{\mathrm{tr}}} G(\boldsymbol{g}, \boldsymbol{\zeta}) e^{-i \boldsymbol{\xi} \cdot \boldsymbol{g}} d \boldsymbol{g} . \\
G(\boldsymbol{g}, \boldsymbol{\zeta}) & =g^{\lambda}\left[e^{\frac{i}{2} \boldsymbol{\zeta} \cdot \boldsymbol{g}} \operatorname{sinc}(g \zeta / 2)-1\right],
\end{aligned}
$$

- Computational cost $\leq \mathcal{O}\left(N^{6}\right)$.
- If $\operatorname{supp}(f) \subseteq[-L, L]^{3}$, then $Q=Q^{\mathrm{tr}}$ if $g_{\mathrm{tr}} \geq 2 \sqrt{3} L$.
- Error: $\mathcal{E}_{\text {tot }} \leq\left|Q-Q^{\mathrm{tr}}\right|+\left|Q^{\mathrm{tr}}-Q^{\mathrm{NC}}\right|$, where Q^{NC} is numerical approximation of $Q^{\text {tr }}$ with N points.
- How to choose $g_{\text {tr }}$?

1. As $g_{\text {tr }} \searrow 0:\left|Q-Q^{\operatorname{tr}}\right| \uparrow$
2. As $g_{\mathrm{tr}} \nearrow \infty: \quad\left|Q^{\operatorname{tr}}-Q^{\mathrm{NC}}\right| \uparrow$ as $\widehat{G}^{\mathrm{tr}}$ oscillates.

ERROR ESTIMATE FOR $Q^{\text {tr }}$ [2]

Theorem. Suppose that $f(\boldsymbol{v}) \leq c e^{-k v^{2}}$, where $v=|\boldsymbol{v}|$ Then, the truncation error, $\mathcal{E}_{\operatorname{tr}}=\left|Q-Q^{t r}\right|$, satisfies

$$
\mathcal{E}_{\mathrm{tr}}(\mathbf{v}) \leq \mathcal{E}_{\mathrm{tr}}^{\mathrm{UB}}\left(g_{\mathrm{tr}}, v\right):=c \exp \left(-k v^{2}\right) \mathcal{E}_{\mathrm{rel}}\left(g_{\mathrm{tr}}, v\right)
$$

where
$\mathcal{E}_{\text {rel }}\left(g_{\mathrm{tr}}, v\right)=\frac{\pi c}{k v} \int_{g_{\mathrm{tr}}}^{\infty} e^{-k(v-g)^{2}}\left(1-e^{-4 k v g}\right) g^{1+\lambda} d g$.
Corollary. If $\lambda \in[0,1]$ and if k and g_{tr} are both large enough, $\mathcal{E}_{\mathrm{rel}}\left(g_{\mathrm{tr}}, v\right) \approx \begin{cases}c\left(\frac{\pi}{k}\right)^{3 / 2} v^{\lambda} & \text { if } g_{\mathrm{tr}}<v, \\ \frac{\pi c}{2 c^{2}}\left[(\pi k)^{1 / 2}+(1+\lambda) g_{\mathrm{tr}}^{-1}\right] g_{\mathrm{tr}}^{\lambda} & \text { if } g_{\mathrm{tr}}=v, \\ \frac{\pi c}{2 k^{2}} \frac{e^{-k\left(g_{\mathrm{tr}}-v\right)^{2}}}{g_{\mathrm{tr}}-v} \frac{g_{\mathrm{tr}}^{1+\lambda}}{v} & \text { if } g_{\mathrm{tr}}>v .\end{cases}$

In particular,

- For $g_{\mathrm{tr}}>v, \mathcal{E}_{\mathrm{rel}}\left(g_{\mathrm{tr}}, v\right) \rightarrow 0$ exponentially as $g_{\mathrm{tr}} \rightarrow \infty$
- For $\lambda=0$ and $g_{\mathrm{tr}} \gtrsim v \gg 0$,

$$
\mathcal{E}_{\mathrm{rel}}\left(g_{\mathrm{tr}}, v\right) \approx \frac{\pi c}{2 k^{2}} \frac{e^{-k\left(g_{\mathrm{tr}}-v\right)^{2}}}{g_{\mathrm{tr}}-v}
$$

Strategy for choosing g_{tr}
To ensure $Q^{\text {tr }} \approx Q$ at \mathbf{v}, choose g_{tr} slightly larger than v.

Numerical Method

- Method I for g_{tr} : Choose $c: f_{0}(\boldsymbol{v}) \leq c e^{-\left(3 / 2 E_{0}\right) v^{2}}$, so width agrees with that of limiting Maxwellian.
- Method II for g_{tr} : Tightest Maxwell ${ }^{\mathrm{n}}$ bound for f_{0}.
- Ensure $f^{\text {tr }}$ is accurate on $\left[0, v_{*}\right]$ by choosing $g_{\text {tr }}$ so that $\mathcal{E}_{\text {rel }}\left(g_{\text {tr }}, v\right)<10^{-1}$ for all $v \leq v_{*}$
- Discretize \mathbb{R}^{3} using N^{3} points on $[-L, L]^{3}$.
- Compute integral for $Q^{\text {tr }}$ via spectrally accurate trapezoid rule with N sufficiently large, as in [1].
- Solve ODE system using multistep 4th-order Adams-Bashforth method.
- Enforce conservation of moments using a Lagrangian projection of [1].

Results for BKW pdF

Smaller $\Delta \xi$ better captures the oscillations of $\widehat{G}^{\text {tr }}$

Maxwellian upper bounds and contour plot of $\mathcal{E}_{\text {re }}$

Verification of Asymptotic Formula in Corollary

Validation of Method for Choosing g_{t}

Results for Mixs of Maxwellians

$$
f_{\text {mix }}(\boldsymbol{v})=(1-\omega) f\left(\boldsymbol{v}-\boldsymbol{v}_{1}, T_{1}\right)+\omega f\left(\boldsymbol{v}-\boldsymbol{v}_{2}, T_{2}\right),
$$

$$
\text { where } f(\boldsymbol{v}, T)=(2 \pi T)^{-3 / 2} \exp \left(-v^{2} / 2 T\right)
$$

(A) $\omega=0.5, \boldsymbol{v}_{1}=(2,0,0), \boldsymbol{v}_{2}=-\boldsymbol{v}_{1}$, and $T_{1}=T_{2}=0.25$

Chose $g_{\text {tr }}=10$ to ensure $\mathcal{E}_{\text {rel }}\left(g_{\text {tr }}, v\right)<10^{-1}$ for $v \leq 6$. (B) $\omega=10^{-4}, \boldsymbol{v}_{2}=(7.38,0,0), T_{1}=4$ and $T_{2}=0.0625$

Bound based on dominant Maxwellian gives $g_{\text {tr }}=10$.

CONCLUSIONS

1. $1^{\text {st }}$ explicit study of accuracy of deterministic com putation of low-probability tails for Boltzmann eq.
2. $g_{\text {tr }}$ plays important role in computational accuracy
3. \exists trade off between errors in truncation of Q and numerical computation of $Q^{\text {tr }}$
4. Error estimate applies to related methods.

References

[1] I. M. Gamba and S. H. Tharkabhushanam. Spectral Lagrangian methods for collisional models of non equilibrium statistical states. Journal of Computational Physics, 228:2012-2036, 2009
[2] J. Zweck, Y. Chen, M.J. Goeckner, and Y. Shen. Spectral computation of low probability tails for the homogeneous Boltz mann equation. Applied Numerical Mathematics, 162(4):301317, 2021

