

SPECTRAL COMPUTATION OF LOW PROBABILITY TAILS FOR THE HOMOGENEOUS BOLTZMANN EQUATION

JOHN ZWECK⁽¹⁾, YANPING CHEN⁽¹⁾, MATTHEW GOECKNER⁽¹⁾, AND YANNAN SHEN⁽²⁾ ⁽¹⁾THE UNIVERSITY OF TEXAS AT DALLAS, ⁽²⁾THE UNIVERSITY OF KANSAS; EMAIL: ZWECK@UTDALLAS.EDU

PROBLEM SETTING

- Motivation: Accurate simulation of lowprobability, high-energy processes in nonequilibrium plasmas.
- Reaction rates depend on overlap between electron velocity pdf and electron-ion impact cross sections.
- Goal: Accurate computation of low-probability tails of electron velocity pdf, f = f(t, v):

$$\frac{\partial f}{\partial t} = Q(f, f),$$
 Boltzmann equation

for Boltzmann collision operator

$$Q(\boldsymbol{v}) = \int_{\mathbb{R}^3} \int_{S^2} \left[f(\boldsymbol{v}') f(\boldsymbol{w}') - f(\boldsymbol{v}) f(\boldsymbol{v} + \boldsymbol{g}) \right] g^{\lambda} d\Theta d\boldsymbol{g},$$

- $\lambda = 0$: Isotropic Maxwell collisions
- $\lambda = 1$: Isotropic hard-sphere collisions

GAMBA'S SPECTRAL METHOD [1]

Truncated Collision Operator

$$Q^{\text{tr}}(\boldsymbol{v}) = \int_{|\boldsymbol{g}| \leq g_{\text{tr}}} \int_{S^2} \left[f(\boldsymbol{v}') f(\boldsymbol{w}') - f(\boldsymbol{v}) f(\boldsymbol{v} + \boldsymbol{g}) \right] g^{\lambda} d\Theta d\boldsymbol{g}$$

• Ignores collisions for which $g = |\mathbf{v} - \mathbf{w}| > g_{\text{tr}}$.

$$\begin{split} \widehat{Q}^{\text{tr}}(\boldsymbol{\zeta}) &= \int_{\mathbb{R}^3} \widehat{f}(\boldsymbol{\zeta} - \boldsymbol{\xi}) \widehat{f}(\boldsymbol{\xi}) \widehat{G}^{\text{tr}}(\boldsymbol{\xi}, \boldsymbol{\zeta}) \, d\boldsymbol{\xi}. \\ \widehat{G}^{\text{tr}}(\boldsymbol{\xi}, \boldsymbol{\zeta}) &= \int_{|\boldsymbol{g}| \leq g_{\text{tr}}} G(\boldsymbol{g}, \boldsymbol{\zeta}) e^{-i\,\boldsymbol{\xi} \cdot \boldsymbol{g}} \, d\boldsymbol{g}. \\ G(\boldsymbol{g}, \boldsymbol{\zeta}) &= g^{\lambda} \left[e^{\frac{i}{2}\boldsymbol{\zeta} \cdot \boldsymbol{g}} \, \operatorname{sinc} \left(g \boldsymbol{\zeta} / 2 \right) - 1 \right], \end{split}$$

- Computational cost $\leq \mathcal{O}(N^6)$.
- If $\operatorname{supp}(f) \subseteq [-L, L]^3$, then $Q = Q^{\operatorname{tr}}$ if $g_{\operatorname{tr}} \ge 2\sqrt{3}L$.
- Error: $\mathcal{E}_{tot} \leq |Q Q^{tr}| + |Q^{tr} Q^{NC}|$, where Q^{NC} is numerical approximation of Q^{tr} with N points.
- How to choose *q*tr?
 - 1. As $g_{\rm tr} \searrow 0$: $|Q Q^{\rm tr}| \uparrow$ 2. As $g_{\text{tr}} \nearrow \infty$: $|Q^{\text{tr}} - Q^{\text{NC}}| \uparrow \text{as } \widehat{G}^{\text{tr}}$ oscillates.

ERROR ESTIMATE FOR Q^{tr} [2]

Theorem. Suppose that $f(v) \leq c e^{-kv^2}$, where v = |v|. Then, the truncation error, $\mathcal{E}_{tr} = |Q - Q^{tr}|$, satisfies

$$\mathcal{E}_{\mathrm{tr}}(\mathbf{v}) \leq \mathcal{E}_{\mathrm{tr}}^{\mathrm{UB}}(g_{tr}, v) := c \exp(-kv^2) \mathcal{E}_{\mathrm{rel}}(g_{\mathrm{tr}}, v)$$

where

$$\mathcal{E}_{\rm rel}(g_{\rm tr}, v) = \frac{\pi c}{kv} \int_{g_{\rm tr}}^{\infty} e^{-k(v-g)^2} \left(1 - e^{-4kvg}\right) g^{1+\lambda} \, dg.$$

Corollary. If
$$\lambda \in [0, 1]$$
 and if k and g_{tr} are both large enough,

$$\mathcal{L}_{\rm rel}(g_{\rm tr}, v) \approx \begin{cases} c(\frac{\pi}{k})^{3/2} v^{\lambda} & \text{if } g_{\rm tr} < v, \\ \frac{\pi c}{2k^2} [(\pi k)^{1/2} + (1+\lambda)g_{\rm tr}^{-1}]g_{\rm tr}^{\lambda} & \text{if } g_{\rm tr} = v, \\ \frac{\pi c}{2k^2} \frac{e^{-k(g_{\rm tr}-v)^2}}{g_{\rm tr}-v} \frac{g_{\rm tr}^{1+\lambda}}{v} & \text{if } g_{\rm tr} > v. \end{cases}$$

In particular,

- For $g_{tr} > v$, $\mathcal{E}_{rel}(g_{tr}, v) \to 0$ exponentially as $g_{tr} \to \infty$
- For $\lambda = 0$ and $g_{tr} \geq v \gg 0$,

$$\mathcal{E}_{\rm rel}(g_{\rm tr}, v) \approx \frac{\pi c}{2k^2} \frac{e^{-k(g_{\rm tr}-v)^2}}{g_{\rm tr}-v}$$

Strategy for choosing q_{tr} To ensure $Q^{tr} \approx Q$ at **v**, choose g_{tr} slightly larger than v.

NUMERICAL METHOD

- Method I for g_{tr} : Choose c: $f_0(\boldsymbol{v}) \leq c e^{-(3/2E_0)v^2}$ so width agrees with that of limiting Maxwellian.
- Method II for g_{tr} : Tightest Maxwellⁿ bound for f_0 .
- Ensure f^{tr} is accurate on $[0, v_*]$ by choosing g_{tr} so that $\mathcal{E}_{rel}(g_{tr}, v) < 10^{-1}$ for all $v \leq v_*$.
- Discretize \mathbb{R}^3 using N^3 points on $[-L, L]^3$.
- Compute integral for Q^{tr} via spectrally accurate trapezoid rule with N sufficiently large, as in [1].
- Solve ODE system using multistep 4th-order Adams-Bashforth method.
- Enforce conservation of moments using a Lagrangian projection of [1].

Validation of Method for Choosing g_{tr}

317, 2021.