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OUTLINE

• Why is walking easy? Why is it difficult?

• What tools are available from control theory?

• What new tools must be developed?
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Why is Walking Easy?

• passive gaits can be found on shallow slopes
without control.

• rigorous analysis can be carried out at least in the
planar case.

• ‘Simple’ actuation can mimic these trajectories on
level ground.
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Limit Cycle of the Compass Gait Biped
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Why is Walking Difficult?

• Complex dynamics — impacts, friction,
underactuation

• The control problems are inherently hybrid and
nonlinear

• Most “success stories” have been limited to
1. planar walking
2. level terrain
3. few degrees-of-freedom
4. slow or low performance
5. heuristic methods

Dynamic Walking 2006 – p.3/20



What Tools Are Available?

• Hybrid and Switching Control
• Geometric Nonlinear Control

1. Feedback Linearization
2. Hybrid Zero Dynamics

• Lagrangian and Hamiltonian Methods
1. Symmetry
2. Reduction
3. Passivity-Based Control
4. Synchronization
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What Tools Must Be Developed?

• To develop a rigorous theory of hybrid systems
treating:
1. Impacts
2. Underactuation
3. 3-D Motion
4. Gait Transitions
5. Limited Control Effort
6. . . .
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Some Examples

An n-link biped can be modeled as a hybrid Euler-
Lagrangian system subject to unilateral (holonomic)
constraints due to impacts:

L(t, q, q̇) = u for h(q(t−)) 6= 0

q(t+) = q(t−) for h(q(t−)) = 0
q̇(t+) = Pq(q̇(t

−))

where the operator L(t, q, q̇) = d
dt

∂L
∂q̇

− ∂L
∂q

Dynamic Walking 2006 – p.6/20



Symmetry

Let Φ : G × Q → Q be a group action of a Lie Group
G on the configuration space Q of an n-link biped.

A Symmetry in a mechanical system arises when the
Lagrangian is invariant under such a group action,
i.e.

L(q, q̇) = L(ΦA(q), TqΦA(q̇)) for all A ∈ G

where L is the Lagrangian (Kinetic minus Potential
energy)
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Controlled Symmetry

Definition

We say that an Euler-Lagrange system has a Con-
trolled Symmetry with respect to a group action Φ if,
for every A ∈ G, there exists an admissible control
input uA(t) such that

L(t, q, q̇) − uA(t) = L(t, ΦA(q), TqΦA(q̇))

where the operator L(t, q, q̇) = d
dt

∂L
∂q̇

− ∂L
∂q
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Energy Shaping

Let V be the potential energy of the robot. For A ∈
SO(3) define the control input

uA =
∂

∂q

(

V(q) − V ◦ ΦA(q)
)

Theorem:

1. uA defines a Controlled Symmetry

2. Suppose there exists a passive gait on one
ground slope, represented by A0 ∈ SO(3), and
let A ∈ SO(3) represent any other slope. Then
the control input uAT A0

generates a walking gait
on slope A.

Dynamic Walking 2006 – p.9/20



[Ref: Spong, M.W., and Bullo, F., “Controlled Symmetries and Passive Walking,” IEEE

Transactions on Automatic Control, Vol. 50, No. 7, pp: 1025-1031, July, 2005]

This video shows a biped with a torso walking on
level ground using the above energy shaping control.
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Passivity Based Control

Definition: A system with input u and output y is Pas-
sive if there exists a nonnegative definition scalar
function S : X → R, called a Storage Function, from
the state space X to R such that

S(x(t)) − S(x(0) ≤

∫ t

0

uT (σ)y(σ)dσ

If S is differentiable, then

Ṡ(x(t)) ≤ uT (t)y(t)

Dynamic Walking 2006 – p.11/20



A passive system can be stabilized by output feed-
back

u = −ky

which yields

Ṡ(x(t)) ≤ −kyT (t)y(t) ≤ 0

Under a zero-state-detectability assumption, the sys-
tem is asymptotically stable. We can use this idea to
“robustify” passive limit cycles.
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Consider the system

L(t, ΦA(q), TqΦA(q̇)) = ū

resulting from the control input

u = uA + ū

The term uA renders a passive limit cycle slope invari-

ant and ū is an additional control to be designed using

the above notion of passivity.
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Let E = K + V be the Total Energy (Kinetic plus Po-
tential) of the biped and define a Storage Function

S =
1

2
(E ◦ ΦA − Eref )2

where Eref is a reference energy. One can show that

Ṡ = (E ◦ ΦA − Eref )q̇ū = yT ū

Then ū = −ky = −kq̇(E ◦ ΦA − Eref ) yields

Ṡ = −ky2 = −k||q̇||2S
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• Thus S(t) converges exponentially toward zero
during each step.

• If the value of S at impact k + 1 is less than it’s
value at impact k it follows that E(t) converges to
Eref . [Ref: G. Bhatia and M.W. Spong, IROS 2003]

•
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• Simulation: Walking on a Varying Slope
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Reduction

• Lagrangian systems with cyclic variables can be
“reduced” to lower dimensional systems.

• For example, 2-D walking can be exploited to
achieve 3-D walking by suitable “dividing out”
the lateral dynamics. The details are known as
Routhian reduction.

[Ref: Ames and Sastry, “Towards the Geometric Reduction of Controlled Three-

Dimensional Bipedal Robotic Walkers,” IFAC 3rd Workshop on Lagrangian and Hamil-

tonian Methods for Nonlinear Control, Nagoya, Japan, July, 2006.]

Dynamic Walking 2006 – p.16/20



Synchronization

Synchronization is a fascinating phenomenon arising
in many natural and man-made systems:

• Synchronously flashing fireflies
• Schooling of fish and flocking of birds
• Superconducting Josephson junction arrays
• Kuramoto Oscillators

Example: Synchronization of Metronomes
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Synchronization

Consider N coupled passive systems

ẋi = f1(xi) + g(xi)ui

yi = h(xi) ; i = 1, . . . , n

The coupling control inputs ui = K
∑

j∈Ni
(yj − yi) re-

sults in output synchronization of the entire system.

[Ref: N. Chopra and M.W. Spong, “Output Synchronization of Networked Passive

Systems, submitted, 2006]
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Synchronization
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Consider a compass-gait biped with only a hip torque
as a system of two-coupled pendula. Let the hip
torque control be given as

uH = K1 + K2(θ̇s − θ̇ns)

The result is that the legs synchronize to a stable
gait. This is provably correct via Poincaré analysis.

Dynamic Walking 2006 – p.19/20



Conclusions

“. . . le souci du beau nous conduit aux mêmes
choix que celui de l’utile.”— Henri Poincaré

• Heuristics can neither guarantee nor quantify
stability, robustness, and performance

• Advanced control can lead to provably correct,
computationally tractable algorithms
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