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The Passivity Paradigm

Consider a dynamical system represented by the state model

ẋ = f(x, u)

y = h(x, u)

where f is locally Lipschitz, h is continuous, f(0, 0) = 0, h(0, 0) = 0 and the system has
the same number of inputs and outputs.

The system is said to be Passive if there exists a C1 positive semidefinite scalar function
S : Rn → R called the Storage Function such that

Ṡ ≤ yT u for all (x, u) ∈ Rn × Rp
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Passivity Based Control

U Y�
Such a passive system Σ is stabilizable by output feedback

u = −ky

since then we have

Ṡ ≤ −kyT y = −k||y||2 ≤ 0

Under some additional (detectability) conditions asymptotic stability follows.

• Parallel and feedback interconnections of passive systems are passive

• Generally the convergence is to a manifold (LaSalle’s Invariance Principle)
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Passive Walking and Passivity Based Control

Stable passive limit cycles for bipedal robots, when they exist, are typically ex-
tremely sensitive to changes in ground slope, have small basins of attraction, and
slow convergence. In this talk we will show:
• a fundamental connection between passive walking and passivity based control
• how to completely remove the sensitivity to ground slope
• How to increase the basin of attraction and speed of convergence to the limit

cycles
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Limit Cycle of the Compass Gait Biped

• Our results rely on some ideas of symmetry under group actions in Lagrangian
systems as well as passivity-based control of hybrid systems.

• Furthermore, our results hold for the most general case of an n-link biped in 3-D.
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Dynamics

Let Q represent the configuration space of the robot and let h(q) = 0 rep-
resent the constraint mapping (e.g. foot/ground contact under the usual
assumptions of perfectly inelastic impact, no slipping, and instantaneous
transfer of support).

Swing Leg

Stance Leg

The change in velocity at impact is given as a projection onto {v ∈

TqQ|dhi(q) · v = 0}

q̇(t+) = Pq(q̇(t−))
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Dynamics

The dynamics of a general biped can be therefore be written as a hybrid nonlinear
system

L(t, q, q̇) = u, for h(q(t−)) 6= 0

q(t+) = q(t−) for h(q(t−)) = 0
q̇(t+) = Pq(q̇(t−))

where the operator L(t, q, q̇) = d
dt

∂L
∂q̇

− ∂L
∂q

and L is the Lagrangian (Kinetic minus

Potential energy)
In local coordinates we may write the more familiar expression

M(q)q̈ + C(q, q̇)q̇ + g(q) = u, for h(q(t−)) 6= 0

q(t+) = q(t−) for h(q(t−)) = 0
q̇(t+) = Pq(q̇(t−))
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Slope Changing Action

A passive limit cycle results from a delicate balance among kinetic energy, potential
energy, and impacts.

The key observation to address the sensitivity of the limit cycle to the ground slope
is to recognize that the act of changing the ground slope at the stance leg can be
represented by a Group Action, Φ, of the rotation group SO(3) on the
configuration space of the robot. For A ∈ SO(3), ΦA : Q → Q.

Pictorially, the action is shown below

θ

X̃

Ỹ

X X

Y Y
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Invariance Under Group Actions

One can show (For details see Spong, Bullo, IEEE TAC 2004, under review)

1. the kinetic energy K : TQ → R is invariant under the slope changing action, that
is, for all A ∈ SO(3), K(q, q̇) = K(ΦA(q), TqΦA(q̇)).

2. the impact projection map P is equivariant with respect to SO(3), i.e.

TΦA (Pq(v)) = PΦA(q) (TΦA(v)) ,

for all v ∈ TqQ.

Remark: If the Potential Energy were invariant under this group action then flows (i.e.
solutions of the equations of motion would also be invariant) The implication is that a
passive limit cycle would exist on any slope if it existed on one particular slope!
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Controlled Symmetries

A Symmetry in a mechanical system arises when the Lagrangian is invariant under a
group action Φ, i.e.

L(q, q̇) = L(ΦA(q), TqΦA(q̇)) for all A ∈ G (a Lie Group)

Symmetries give rise to conserved quantities, for example, translational symmetry gives
rise to conservation of momentum, etc.

Definition Controlled Symmetry
We say that an Euler-Lagrange system has a Controlled Symmetry with respect to a
group action Φ if, for every A ∈ G, there exists an admissible control input uA(t) such
that

L(t, q, q̇) − uA(t) = L(t, ΦA(q), TqΦA(q̇))
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Passivity Based Control

Let E(q, q̇) = K+V be the total energy of the robot and Eref a reference energy (for
example, the energy along a limit cycle trajectory).

For A ∈ SO(3) define the Storage Function

S =
1

2
(E ◦ ΦA − Eref )2

Then

Ṡ = (E ◦ ΦA − Eref )q̇T

[

u −
∂

∂q

(

V(q) − V ◦ ΦA(q)
)

]

If we define the control input u as u = uA + ũ, where

uA =
∂

∂q

(

V(q) − V ◦ ΦA(q)
)
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Then

Ṡ = (E ◦ ΦA − Eref )q̇T ũ = yT ũ

where

y = q̇(E ◦ ΦA − Eref )

defines a passive output.

It can be shown (Spong, Bullo, 2004) that for ũ = 0, the control uA

defines a Controlled Symmetry and Eref is an invariant manifold.
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Main Result #1

Theorem: Suppose there exists a passive gait on one ground slope, repre-
sented by A0 ∈ SO(3), and let A ∈ SO(3) represent any other slope. Then
the control input uAT A0

generates a walking gait on slope A. Moreover the
basin of attraction of the passive gait is mapped to the basin of attraction of
the controlled gait.

This video shows a biped with a torso walking on level ground
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Passivity Based Control

• Having made the passive limit cycles slope invariant via potential energy shaping
we now investigate total energy shaping for robustness.

• Improving the rate of convergence to the limit cycle and increasing the basin of
attraction are needed for robustness to external disturbances, changes in ground
slope, etc.

• We now consider the design of the control input ũ in

u = uA + ū

• In other words we consider the system

L(t, ΦA(q), TqΦA(q̇)) = ū
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With the Storage Function S as before

S =
1

2
(E ◦ ΦA − Eref )2

We saw that

Ṡ = (E ◦ ΦA − Eref )q̇T ũ = yT ũ

if we choose the additional control ū according to

ū = −ky = −kq̇(E ◦ ΦA − Eref )

we obtain

Ṡ = −kyT y = −k||q̇||2S
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• Thus S(t) converges exponentially toward zero during each stepa

• At impacts, S will experience a jump discontinuity. If the value of S at impact k + 1

is less than it’s value at impact k it follows that E(t) converges to Eref .

•
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(b)

Illustration of increased basin of attraction (a) without total energy control (b) with total

energy control.
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Convergence to the limit cycle (a) without total energy control (b) with total energy
control.

• Simulation: Compass Gait Biped Walking on a Varying Slope
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