An Efficient Algorithm for Computing High-Quality Paths amid Polygonal Obstacles

Pankaj K. Agarwal
Duke University

Kyle Fox
Duke University

Oren Salzman
Tel-Aviv University
An Efficient Algorithm for Computing High-Quality Paths amid Polygonal Obstacles

Pankaj K. Agarwal
Duke University

Kyle Fox
Duke University

Oren Salzman
Tel-Aviv University
Motion Planning

• Robot needs to go from s to t
Motion Planning

• Robot needs to go from \(s \) to \(t \)

• What’s the best route?
• Take a shortest path?
• Take a shortest path?
• That seems dangerous…
• Maximize the minimum clearance?
• Maximize the minimum clearance?

• That seems exhausting…
• How about both?
• How about both?

• Optimize a metric that balances path length with clearance
• First, some notation
• First, some notation

\(\mathcal{O} \): set of polygonal obstacles in \(\mathbb{R}^2 \) with \(n \) vertices total
• First, some notation

\(\mathcal{O} \): set of polygonal obstacles in \(\mathbb{R}^2 \) with \(n \) vertices total

\(\gamma \): a path; formally \(\gamma : [0,1] \rightarrow \mathbb{R}^2 \)
First, some notation

\(\mathcal{O} \): set of polygonal obstacles in \(\mathbb{R}^2 \) with \(n \) vertices total

\(\gamma \): a path; formally \(\gamma : [0,1] \rightarrow \mathbb{R}^2 \)

\(\gamma[p,q] \): subpath of \(\gamma \) from \(p \) to \(q \)
First, some notation

\(\mathcal{O} \): set of polygonal obstacles in \(\mathbb{R}^2 \) with \(n \) vertices total

\(\gamma \): a path; formally \(\gamma : [0,1] \to \mathbb{R}^2 \)

\(\gamma[p,q] \): subpath of \(\gamma \) from \(p \) to \(q \)

\(\|p,q\| \): the Euclidean distance between \(p, q \in \mathbb{R}^2 \)
• First, some notation

\(\mathcal{O} \): set of polygonal obstacles in \(\mathbb{R}^2 \) with \(n \) vertices total

\(\gamma \): a path; formally \(\gamma : [0,1] \rightarrow \mathbb{R}^2 \)

\(\gamma[p,q] \): subpath of \(\gamma \) from \(p \) to \(q \)

\(||p,q|| \): the Euclidean distance between \(p,q \in \mathbb{R}^2 \)

\(\text{cl}(p) \): the clearance of a point; \(\text{cl}(p) = \min_{o \in \mathcal{O}} ||p,o|| \)
Our Goal

• Minimize the cost $\mu(\gamma)$ of an s,t-path γ where

$$\mu(\gamma) = \int_\gamma \frac{1}{\text{cl}(\gamma(\tau))} \, d\tau$$

[Wein, van den Berg, Halperin ’08]
Our Goal

- Minimize the cost $\mu(\gamma)$ of an s,t-path γ where

$$\mu(\gamma) = \int_{\gamma} \frac{1}{\text{cl}(\gamma(\tau))} \, d\tau$$

[Wein, van den Berg, Halperin '08]
\(\mu(p, q) \): cost of cheapest path from \(p \) to \(q \)
$\mu(p,q)$: cost of cheapest path from p to q

- Want an *approximately* cheapest s,t-path y such that $\mu(y) \leq (1+\varepsilon) \mu(s,t)$ for any $\varepsilon > 0$ (a $(1+\varepsilon)$-approximation or *approximation scheme*)
\(\mu(p, q) \): cost of cheapest path from \(p \) to \(q \)

• Want an \textit{approximately} cheapest \(s, t \)-path \(y \) such that \(\mu(y) \leq (1+\varepsilon) \mu(s,t) \) for any \(\varepsilon > 0 \) (a \((1+\varepsilon) \)-approximation or \textit{approximation scheme})

• Wein \textit{et al.} ['08] gave an approximation algorithm with running time polynomial in \(n, 1/\varepsilon \), and \(\Lambda \)
\(\mu(p, q) \): cost of cheapest path from \(p \) to \(q \)

- Want an *approximately* cheapest \(s, t \)-path \(y \) such that \(\mu(y) \leq (1+\varepsilon) \mu(s, t) \) for any \(\varepsilon > 0 \) (a \((1+\varepsilon)\)-approximation or *approximation scheme*)

- *Wein et al.* ['08] gave an approximation algorithm with running time polynomial in \(n, 1/\varepsilon \), and \(\Lambda \)

\(\Lambda \): essentially the total cost of edges in \(\mathcal{G}'s \) *Voronoi diagram* (not a polynomial in input size)
\(\mu(p,q) \): cost of cheapest path from \(p \) to \(q \)

- Want an *approximately* cheapest \(s,t \)-path \(y \) such that \(\mu(y) \leq (1+\varepsilon) \mu(s,t) \) for any \(\varepsilon > 0 \) (a \((1+\varepsilon) \)-approximation or *approximation scheme*)

- Wein *et al.* [’08] gave an approximation algorithm with running time polynomial in \(n, 1/\varepsilon \), and \(\Lambda \)

\(\Lambda \): essentially the total cost of edges in \(\mathcal{G} \)'s *Voronoi diagram* (not a polynomial in input size)

- Error is actually *additive*
Our Contribution

• First polynomial time approximation scheme
Our Contribution

• First polynomial time approximation scheme

• Returns a path of cost at most \((1+\varepsilon) \mu(s,t)\) in time

\[
O\left(\frac{n^2}{\varepsilon^2 \log \frac{n}{\varepsilon}}\right)
\]
This Talk’s Path

• Describe Wein et al.’s approach and observations
This Talk’s Path

• Describe Wein et al.’s approach and observations

• Explain our new key tools, well behaved paths and anchor points
This Talk’s Path

• Describe Wein et al.’s approach and observations

• Explain our new key tools, **well behaved paths** and **anchor points**

• Describe our algorithm!
This Talk’s Path

• Describe Wein et al.’s approach and observations

• Explain our new key tools, well behaved paths and anchor points

• Describe our algorithm!

 1. An $O(n \log n)$ time $O(n)$-approximation =>
This Talk’s Path

• Describe Wein et al.’s approach and observations

• Explain our new key tools, well behaved paths and anchor points

• Describe our algorithm!
 1. An $O(n \log n)$ time $O(n)$-approximation =>
 2. An $O(n^2 \log n)$ time $O(1)$-approximation =>
This Talk’s Path

• Describe Wein et al.’s approach and observations

• Explain our new key tools, well behaved paths and anchor points

• Describe our algorithm!
 1. An $O(n \log n)$ time $O(n)$-approximation =>
 2. An $O(n^2 \log n)$ time $O(1)$-approximation =>
 3. The approximation scheme (time permitting)
Short Sited

- Clearance defined entirely on the closest obstacle
Short Sited

- Clearance defined entirely on the \textit{closest} obstacle

\(\mathcal{V} \): \textit{Voronoi diagram} of \(\mathcal{O} \); subdivides \(\mathbb{R}^2 \setminus \mathcal{O} \) into \textit{cells} of points sharing a closest obstacle feature
Short Sited

• Clearance defined entirely on the closest obstacle

\(\mathcal{V} \): Voronoi diagram of \(\mathcal{O} \); subdivides \(\mathbb{R}^2 \setminus \mathcal{O} \) into cells of points sharing a closest obstacle feature

\(O(n) \) complexity, computable in \(O(n \log n) \) time
• Wein et al. sample several points along edges of \mathcal{V}
• Wein et al. sample several points along edges of \mathcal{V}

• Near-optimal path enters cells at sample points
• Wein et al. sample several points along edges of \mathcal{V}

• Near-optimal path enters cells at sample points

• Build a graph over cheapest paths between sample points sharing a cell
• Let \(s = r_s \exp(i\theta_s) \), \(t = r_t \exp(i\theta_t) \)

• Let \(o \) be a solo point obstacle at the origin
• Let \(s = r_s \exp(i \theta_s) \), \(t = r_t \exp(i \theta_t) \)

• Let \(o \) be a solo point obstacle at the origin

• Optimal path is a \textit{logarithmic spiral} centered on \(o \) with cost

\[
\mu(s, t) = \sqrt{(\theta_t - \theta_s)^2 + (\ln r_t - \ln r_s)^2}
\]
• Let \(s = r_s \exp(i\theta_s), \ t = r_t \exp(i\theta_t) \)

• Let \(o \) be a solo point obstacle at the origin

• Optimal path is a \textit{logarithmic spiral} centered on \(o \) with cost

\[
\mu(s, t) = \sqrt{(\theta_t - \theta_s)^2 + (\ln r_t - \ln r_s)^2}
\]
• Let $s = r_s \exp(i\theta_s)$, $t = r_t \exp(i\theta_t)$

• Let o be a horizontal line obstacle through origin
• Let \(s = r_s \exp(i \theta_s) \), \(t = r_t \exp(i \theta_t) \).

• Let \(o \) be a horizontal line obstacle through origin.

• Optimal path is a \textit{circular arc} centered on \(o \) with cost

\[
\mu(s, t) = \ln \tan \frac{\theta_t}{2} - \ln \tan \frac{\theta_s}{2}
\]
• Let $s = r_s \exp(i\theta_s)$, $t = r_t \exp(i\theta_t)$

• Let o be a horizontal line obstacle through origin

• Optimal path is a \textit{circular arc} centered on o with cost

$$\mu(s, t) = \ln \tan \frac{\theta_t}{2} - \ln \tan \frac{\theta_s}{2}$$

![Diagram showing the optimal path as a circular arc centered on a horizontal line obstacle through the origin.](image)
• Let $s = r_s \exp(i\theta_s)$, $t = r_t \exp(i\theta_t)$

• Let o be a horizontal line obstacle through origin with line through s and t perpendicular to o
• Let $s = r_s \exp(i\theta_s)$, $t = r_t \exp(i\theta_t)$

• Let o be a horizontal line obstacle through origin with line through s and t perpendicular to o

• Optimal path is a *line segment* with cost

$$
\mu(s, t) = \ln c_l(t) - \ln c_l(s)
$$
• Let \(s = r_s \exp(i \theta_s) \), \(t = r_t \exp(i \theta_t) \)

• Let \(o \) be a horizontal line obstacle through origin with line through \(s \) and \(t \) perpendicular to \(o \)

• Optimal path is a line segment with cost

\[
\mu(s, t) = \ln \text{cl}(t) - \ln \text{cl}(s)
\]

Cheapest way to change clearance in all cases
• Let s and t lie on a Voronoi edge e
• Let s and t lie on a Voronoi edge e

• Optimal path between s and t follows the edge (and we can compute its cost)
• Let \(s \) and \(t \) lie on a Voronoi edge \(e \)

• Optimal path between \(s \) and \(t \) follows the edge (and we can compute its cost)

• So in general, optimal paths are a sequence of \textit{logarithmic spirals, circular arcs, line segments,} and \textit{walks along Voronoi edges}
Difficulties

• How do we reduce the number of sample points?
Difficulties

• How do we reduce the number of sample points?
• Where do we place them?
Difficulties

• How do we reduce the number of sample points?
• Where do we place them?
• Can we keep the graph sparse?
$\tilde{\mathcal{V}}$: Voronoi diagram *refined* by adding:
\(\tilde{\mathcal{V}} \) : Voronoi diagram refined by adding:

- Shortest paths from obstacle features to Voronoi vertices
\(\tilde{\mathcal{V}} \): Voronoi diagram *refined* by adding:

- Shortest paths from obstacle features to Voronoi vertices
- Shortest paths from obstacle features to Voronoi edges
\(\tilde{V} \): Voronoi diagram *refined* by adding:

- Shortest paths from obstacle features to Voronoi vertices
- Shortest paths from obstacle features to Voronoi edges
- Extensions of shortest paths from obstacle features through \(s \) and \(t \)
\(\tilde{V}\): Voronoi diagram *refined* by adding:

- Shortest paths from obstacle features to Voronoi vertices
- Shortest paths from obstacle features to Voronoi edges
- Extensions of shortest paths from obstacle features through \(s\) and \(t\)
- Each new edge is *perpendicular* to its feature
• Refined Voronoi diagram $\tilde{\mathcal{V}}$ has complexity $O(n)$
• Each cell $T \in \mathcal{Y}$ is incident to one obstacle feature and has three additional edges:
• Each cell $T \in \tilde{\mathcal{Y}}$ is incident to one obstacle feature and has three additional edges:

 - One external edge K_T which is a monotone clearance parabolic arc (possibly degenerate)
• Each cell $T \in \tilde{\mathcal{V}}$ is incident to one obstacle feature and has three additional edges:

 ◦ One *external edge* K_T which is a monotone clearance parabolic arc (possibly degenerate)

 ◦ Two *internal edges* α_T (shorter) and β_T (longer) which are perpendicular to obstacle feature
Well-behaved Paths

• A p,q-path γ through cell T is well-behaved if
Well-behaved Paths

- A p,q-path γ through cell T is well-behaved if

 i. $\lambda = \gamma \cap \text{int}(T)$ is a connected subpath
Well-behaved Paths

- A p, q-path γ through cell T is well-behaved if
 i. $\lambda = \gamma \cap \text{int}(T)$ is a connected subpath
 ii. if it exists, then λ has constant clearance
Lemma: Let p and q be two points on the edges of cell T. There exists a well-behaved path p,q-path γ where $\mu(\gamma) \leq 7 \mu(p,q)$.
Proof:

Let $\text{cl}_{\text{max}}(p, q)$ be the maximum clearance achieved by the cheapest p, q-path γ^*.
Proof:

- Let $\text{cl}_{\max}(p,q)$ be the *maximum clearance* achieved by the cheapest p,q-path γ^*

- Let T' be the subset of T containing points of clearance at most $\text{cl}_{\max}(p,q)$
Proof:

- Let $\text{cl}_{\text{max}}(p, q)$ be the *maximum clearance* achieved by the cheapest p, q-path γ^*
- Let T' be the subset of T containing points of clearance at most $\text{cl}_{\text{max}}(p, q)$
- Path γ walks along the boundary of T'
• As a warmup, suppose $p \in \alpha_T$, $q \in \kappa_T$.
• As a warmup, suppose \(p \in \alpha_T, \ q \in K_T \):

○ Let \(u_T \) be the intersection of \(\alpha_T \) and \(K_T \)
• As a warmup, suppose $p \in \alpha_T$, $q \in \kappa_T$:
 - Let u_T be the intersection of α_T and κ_T:
 - $\mu(y[p, u_T]) \leq \mu(p, q)$
• As a warmup, suppose $p \in \alpha_T$, $q \in K_T$.

 Let u_T be the intersection of α_T and K_T

 $\mu(\gamma[p, u_T]) \leq \mu(p, q)$

 $\mu(\gamma[u_T, q]) \leq 2\mu(p, q)$
• As a warmup, suppose $p \in \alpha_T$, $q \in K_T$.

 ◦ Let u_T be the intersection of α_T and K_T

 ◦ $\mu(y[p, u_T]) \leq \mu(p, q)$

 ◦ $\mu(y[u_T, q]) \leq 2\mu(p, q)$

 ◦ $\mu(y) \leq 3\mu(p, q)$
• Now, suppose \(p \in \beta_T, \ q \in K_T \).
• Now, suppose $p \in \beta_T$, $q \in \kappa_T$.

 Let w, w' be the intersection of λ and β_T, κ_T
• Now, suppose $p \in \beta_T$, $q \in \kappa_T$.
 - Let w, w' be the intersection of λ and β_T, κ_T.
 - As w' moves up κ_T, we see $||w', \beta_T||$ decrease.
• Now, suppose $p \in \beta_T$, $q \in \kappa_T$:

 - Let w, w' be the intersection of λ and β_T, κ_T
 - As w' moves up κ_T, we see $||w', \beta_T||$ decrease
 - λ is the *shortest* low-clearance path from β_T to κ_T
• Now, suppose $p \in \beta_T$, $q \in K_T$.

 ⊡ Let w, w' be the intersection of λ and β_T, K_T

 ⊡ As w' moves up K_T, we see $||w', \beta_T||$ decrease

 ⊡ λ is the shortest low-clearance path from β_T to K_T

 ⊡ λ has clearance $\text{cl}_{\text{max}}(p, q)$ across its entire length
• Now, suppose $p \in \beta_T$, $q \in \kappa_T$.

○ $\mu(\lambda) \leq \mu(p, q)$
• Now, suppose $p \in \beta_T$, $q \in K_T$:
 - $\mu(\lambda) \leq \mu(p, q)$
 - $\mu(\gamma[p, w]) \leq \mu(p, q)$
• Now, suppose $p \in \beta_T$, $q \in K_T$:

 - $\mu(\lambda) \leq \mu(p, q)$
 - $\mu(\nu[p, w]) \leq \mu(p, q)$
 - $\mu(\nu[w', q]) \leq 3\mu(p, q)$
Now, suppose \(p \in \beta_T, \ q \in K_T. \)

\[
\begin{align*}
\mu(\lambda) & \leq \mu(p, q) \\
\mu(\gamma[p, w]) & \leq \mu(p, q) \\
\mu(\gamma[w', q]) & \leq 3\mu(p, q) \\
\mu(\gamma) & \leq 5\mu(p, q)
\end{align*}
\]
• Suppose $p \in \beta_T$, $q \in \alpha_T$, and $w' \in K_T$.
• Suppose $p \in \beta_T$, $q \in \alpha_T$, and $w' \in K_T$:

 - $\mu(\gamma[p, w]) \leq \mu(p, q)$, $\mu(\lambda) \leq \mu(p, q)$
• Suppose $p \in \beta_T$, $q \in \alpha_T$, and $w' \in \kappa_T$:
 - $\mu(\gamma[p, w]) \leq \mu(p, q)$, $\mu(\lambda) \leq \mu(p, q)$
 - $\mu(\gamma[u_T, q]) \leq \mu(p, q)$
Suppose $p \in \beta_T$, $q \in \alpha_T$, and $w' \in K_T$:

- $\mu(\gamma[p, w]) \leq \mu(p, q)$, $\mu(\lambda) \leq \mu(p, q)$
- $\mu(\gamma[u_T, q]) \leq \mu(p, q)$
- $\mu(\gamma[w', u_T]) \leq 4\mu(p, q)$, so $\mu(\gamma) \leq 7\mu(p, q)$
• Suppose $p \in \beta_T$, $q \in \alpha_T$, and $w' \in K_T$:
 - $\mu(\gamma[p, w]) \leq \mu(p, q)$, $\mu(\lambda) \leq \mu(p, q)$
 - $\mu(\gamma[u_T, q]) \leq \mu(p, q)$
 - $\mu(\gamma[w', u_T]) \leq 4 \mu(p, q)$, so $\mu(\gamma) \leq 7 \mu(p, q)$
 - Case with $w' \in \alpha_T$ is same as last slide
• Proof required knowing $c_{\text{max}}(p,q)$ to pick λ
• Proof required knowing $cl_{\text{max}}(p,q)$ to pick λ

• Can we find a cheap well-behaved path without knowing $cl_{\text{max}}(p,q)$?
Anchor Points

Lemma: Let T be a cell of $\tilde{\mathcal{V}}$. There exist constant-time computable *anchor points* w_α^* and w_κ^* on long internal edge β_T such that:
Anchor Points

Lemma: Let T be a cell of $\tilde{\mathcal{V}}$. There exist constant-time computable *anchor points* w_{α}^* and w_{κ}^* on long internal edge β_T such that:

- For any p and q on the edges of T, there exists a well-behaved path p,q-path γ where $\mu(\gamma) \leq 7 \mu(p,q)$. Moreover...
Anchor Points

Lemma: Let T be a cell of $\tilde{\mathcal{Y}}$. There exist constant-time computable anchor points w_{α^*} and w_{K^*} on long internal edge β_T such that:

- For any p and q on the edges of T, there exists a well-behaved path p,q-path γ where $\mu(\gamma) \leq 7\mu(p,q)$. Moreover...

- If neither p nor q lie on β_T, then γ stays on α_T and K_T.
Anchor Points

Lemma: Let T be a cell of $\tilde{\mathcal{V}}$. There exist constant-time computable anchor points w_α^* and w_K^* on long internal edge β_T such that:

- For any p and q on the edges of T, there exists a well-behaved path p,q-path γ where $\mu(\gamma) \leq 7\mu(p,q)$. Moreover…
- If neither p nor q lie on β_T, then γ stays on α_T and K_T.
- Otherwise, $\lambda \cap \beta_T \in \{w_\alpha^*, w_K^*, p, q\}$
Proof sketch:

- Assume p is on β_T
Proof sketch:

- Assume p is on β_T
- Pick $w \in \beta_T$ that minimizes $\mu(p, w) + \mu(\lambda)$
Proof sketch:

- Assume p is on β_T
- Pick $w \in \beta_T$ that minimizes $\mu(p, w) + \mu(\lambda)$
- Use proof from earlier that best $\mu(p, w) + \mu(\lambda) \leq 2\mu(p, q)$ along with triangle inequality
When $\text{cl}(w) \geq \text{cl}(\rho)$, expression $\mu(\rho, w) + \mu(\lambda)$ is equal to $\ln \text{cl}(w) - \ln \text{cl}(\rho) + \mu(\lambda)$.
- When $\text{cl}(w) \geq \text{cl}(\rho)$, expression $\mu(\rho, w) + \mu(\lambda)$ is equal to $\ln \text{cl}(w) - \ln \text{cl}(\rho) + \mu(\lambda)$.

- Expression has one minimum w^* over $w \in \beta_T$ which is independent of ρ; dependent on T and edge holding q.
- When $\text{cl}(w) \geq \text{cl}(p)$, expression $\mu(p, w) + \mu(\lambda)$ is equal to $\ln \text{cl}(w) - \ln \text{cl}(p) + \mu(\lambda)$

- Expression has one minimum w^* over $w \in \beta_T$ which is independent of p; dependent on T and edge holding λ

- When $\text{cl}(w) \leq \text{cl}(p)$, the best w is p itself
When \(\text{cl}(w) \geq \text{cl}(p) \), expression \(\mu(p, w) + \mu(\lambda) \) is equal to \(\ln \text{cl}(w) - \ln \text{cl}(p) + \mu(\lambda) \)

Expression has one minimum \(w^* \) over \(w \in \beta_T \) which is independent of \(p \); dependent on \(T \) and edge holding \(q \)

When \(\text{cl}(w) \leq \text{cl}(p) \), the best \(w \) is \(p \) itself

Have \(\lambda \) intersect higher clearance point of \(\{w^*, p\} \)
Algorithms!

- Compute progressively better approximations
Algorithms!

• Compute progressively better approximations

 1. $O(n \log n)$ time $O(n)$-approximation =>
Algorithms!

- Compute progressively better approximations
 1. $O(n \log n)$ time $O(n)$-approximation \Rightarrow
 2. $O(n^2 \log n)$ time $O(1)$-approximation \Rightarrow
Algorithms!

• Compute progressively better approximations
 1. $O(n \log n)$ time $O(n)$-approximation =>
 2. $O(n^2 \log n)$ time $O(1)$-approximation =>
 3. $O(n^2 / \epsilon^2 \log (n / \epsilon))$ time $(1+\epsilon)$-approximation
Algorithms!

- Compute progressively better approximations
 1. $O(n \log n)$ time $O(n)$-approximation \Rightarrow
 2. $O(n^2 \log n)$ time $O(1)$-approximation \Rightarrow
 3. $O(n^2 / \epsilon^2 \log (n / \epsilon))$ time $(1+\epsilon)$-approximation
- Assume $cl(s) \leq cl(t)$
Algorithms!

• Compute progressively better approximations
 1. $O(n \log n)$ time $O(n)$-approximation \Rightarrow
 2. $O(n^2 \log n)$ time $O(1)$-approximation \Rightarrow
 3. $O(n^2 / \varepsilon^2 \log (n / \varepsilon))$ time $(1+\varepsilon)$-approximation
• Assume $\text{cl}(s) \leq \text{cl}(t)$
• Let y^* be the cheapest s,t-path
Algorithms!

• Compute progressively better approximations
 1. $O(n \log n)$ time $O(n)$-approximation \Rightarrow
 2. $O(n^2 \log n)$ time $O(1)$-approximation \Rightarrow
 3. $O(n^2 / \epsilon^2 \log (n / \epsilon))$ time $(1+\epsilon)$-approximation

• Assume $cl(s) \leq cl(t)$

• Let y^* be the cheapest s,t-path

• Let $d^* = \mu(y^*) = \mu(s,t)$
O(n)-approximation

• Build a geometric graph G_1 by adding $O(n)$ edges to \tilde{V}
O(n)-approximation

- Build a geometric graph G_1 by adding $O(n)$ edges to \tilde{V}

- Edges have a cost equal to the cost of their paths through the plane
O(n)-approximation

• Build a geometric graph G_1 by adding $O(n)$ edges to $\tilde{\mathcal{V}}$

• Edges have a cost equal to the cost of their paths through the plane

• Compute cheapest path between s and t in G_1 in $O(n \log n)$ time
• For each cell T of $\tilde{\mathcal{Y}}$:
• For each cell T of \mathcal{V}:
 - Add vertex at point $w_s \in \beta_T$ where $\text{cl}(w_s) = \text{cl}(s)$
• For each cell T of $\tilde{\mathcal{V}}$:

 - Add vertex at point $w_s \in \beta_T$ where $\text{cl}(w_s) = \text{cl}(s)$
 - Add vertices for anchor points w_{α^*} and w_{K^*}
For each cell T of $\tilde{\mathcal{V}}$:

- Add vertex at point $w_s \in \beta_T$ where $\text{cl}(w_s) = \text{cl}(s)$
- Add vertices for anchor points w_α^* and w_K^*
- Add constant clearance edges from w_s, w_α^*, and w_K^*

[Diagram of a cell T with vertices and edges labeled α_T, β_T, α_T^*, β_T^*, w_s, w_α^*, w_K^*, λ_s, λ_{α_T}, λ_{κ_T}, κ_T, and ν_T. The diagram shows the relationships between these points and the cell boundaries.]
Lemma: G_1 contains an s,t-path of cost $O(n) \cdot d^*$
Lemma: G_1 contains an s,t-path of cost $O(n) \cdot d^*$

Proof:
- Suppose y^* is disjoint from G_1 in cell T
Lemma: G_1 contains an s,t-path of cost $O(n) \cdot d^*$

Proof:

- Suppose γ^* is disjoint from G_1 in cell T
- Let p and q be first and last intersection of γ^* with T
Lemma: G_1 contains an s,t-path of cost $O(n) \cdot d^*$

Proof:

- Suppose γ^* is disjoint from G_1 in cell T
- Let p and q be first and last intersection of γ^* with T
- Will show there exists a p,q-walk γ through $G_1 \cap T$ with cost $O(d^*)$
Lemma: G_1 contains an s,t-path of cost $O(n) \cdot d^*$

Proof:

- Suppose γ^* is disjoint from G_1 in cell T
- Let p and q be first and last intersection of γ^* with T
- Will show there exists a p,q-walk γ through $G_1 \cap T$ with cost $O(d^*)$
- Replace $\gamma^*[p,q]$ with γ
Lemma: G_1 contains an s,t-path of cost $O(n) \cdot d^*$

Proof:

- Suppose γ^* is disjoint from G_1 in cell T
- Let p and q be first and last intersection of γ^* with T
- Will show there exists a p,q-walk γ through $G_1 \cap T$ with cost $O(d^*)$
- Replace $\gamma^*[p,q]$ with γ
- Total cost of replacement paths is $O(n) \cdot O(d^*)$
• Will show there exists a p, q-walk γ through $G_1 \cap T$ with cost $O(d^*)$
• Will show there exists a \(p, q \)-walk \(y \) through \(G_1 \cap T \) with cost \(O(d^*) \)

○ Assume \(p \) is on \(\beta_T \)
Will show there exists a \(p, q \)-walk \(\gamma \) through \(G_1 \cap T \) with cost \(O(d^*) \)

- Assume \(p \) is on \(\beta_T \)
- \(\gamma \) walks from \(p \) to \(w_s \) (costs at most \(d^* \))
Will show there exists a p,q-walk γ through $G_1 \cap T$ with cost $O(d^*)$

- Assume p is on β_T
- γ walks from p to w_s (costs at most d^*)
- Walk along well-behaved path from w_s to q (costs at most $7(\mu(p,q) + d^*) \leq 14(d^*)$)
• Will show there exists a p,q-walk y through $G_1 \cap T$ with cost $O(d^*)$

- Assume p is on β_T
- y walks from p to w_s (costs at most d^*)
- Walk along well-behaved path from w_s to q (costs at most $7(\mu(p,q) + d^*) \leq 14(d^*)$)
• Will show there exists a p,q-walk γ through $G_1 \cap T$ with cost $O(d^*)$

- Assume p is on β_T
- γ walks from p to w_s (costs at most d^*)
- Walk along well-behaved path from w_s to q (costs at most $7(\mu(p,q) + d^*) \leq 14(d^*)$)
O(1)-approximation

- Guess an estimate d of d^*
O(1)-approximation

• Guess an estimate d of d^*
• Build *planar* graph G_2 by adding $O(n^2)$ edges to $\tilde{\mathcal{V}}$
O(1)-approximation

- Guess an estimate d of d^*
- Build planar graph G_2 by adding $O(n^2)$ edges to $\tilde{\mathcal{V}}$
- Compute cheapest path between s and t in G_2
• For each cell T of $\tilde{\mathcal{V}}$:

$$w_{\max}^{T} \leq u^{T} \leq w_{\min}^{T}$$
• For each cell T of $\tilde{\mathcal{V}}$:

- Let $\hat{\beta}_T$ be the region of points on β_T with clearance between $\text{cl}(t) / \exp(d)$ and $\text{cl}(s) \cdot \exp(d)$.
• For each cell T of $\tilde{\mathcal{Y}}$:

 ⊘ Let $\hat{\beta}_T$ be the region of points on β_T with clearance between $\text{cl}(t) / \exp(d)$ and $\text{cl}(s) \cdot \exp(d)$

 ⊘ Place vertices along $\hat{\beta}_T$
• For each cell T of \tilde{V}:
 ✷ Let $\hat{\beta}_T$ be the region of points on β_T with clearance between $\text{cl}(t) / \exp(d)$ and $\text{cl}(s) \cdot \exp(d)$
 ✷ Place vertices along $\hat{\beta}_T$
 ✷ The cost between consecutive vertices is d / n
• For each cell T of $\tilde{\mathcal{V}}$:
 - Add vertices for w_{α^*} and w_{κ^*} also.

\[u_T \quad \kappa_T \quad \beta_T \]

\[v_T \quad w_{\max} \quad w_{\min} \]

\[\alpha_T \quad T \quad \beta_T \]
• For each cell T of $\tilde{\mathcal{V}}$:

 – Add vertices for w_{α^*} and w_{K^*} also

 – Add constant clearance edges from each new vertex
Lemma: If $d \geq d^*$, then points on y^* have clearance at least $cl(t) / \exp(d)$ and at most $cl(s) \cdot \exp(d)$
Lemma: If \(d \geq d^* \), then points on \(y^* \) have clearance at least \(\frac{cl(t)}{\exp(d)} \) and at most \(cl(s) \cdot \exp(d) \)

Proof:

- Costs more than \(\ln cl(t) - \ln(\frac{cl(t)}{\exp(d)}) = d \) to go from point of clearance less than \(\frac{cl(t)}{\exp(d)} \) to \(t \)
Lemma: If $d \geq d^*$, then points on γ^* have clearance at least $\text{cl}(t) / \exp(d)$ and at most $\text{cl}(s) \cdot \exp(d)$

Proof:

- Costs more than $\ln \text{cl}(t) - \ln(\text{cl}(t) / \exp(d)) = d$ to go from point of clearance less than $\text{cl}(t) / \exp(d)$ to t

- Costs more than $\ln(\text{cl}(s) \cdot \exp(d)) - \ln(s) = d$ to go from s to point of clearance more than $\text{cl}(s) \cdot \exp(d)$
Lemma: If $d \geq d^*$, G_2 contains an s,t-path of cost $O(d)$
Lemma: If $d \geq d^*$, G_2 contains an s,t-path of cost $O(d)$

Proof:

- Let p and q be first and last intersection of γ^* with T
Lemma: If \(d \geq d^* \), \(G_2 \) contains an \(s,t \)-path of cost \(O(d) \)

Proof:

- Let \(p \) and \(q \) be first and last intersection of \(\gamma^* \) with \(T \)
- Will show there exists a \(p,q \)-walk \(\gamma \) through \(G_2 \cap T \) with cost \(O(\mu(p,q)) + O(d/n) \)
Lemma: If \(d \geq d^* \), \(G_2 \) contains an \(s,t \)-path of cost \(O(d) \)

Proof:

- Let \(p \) and \(q \) be first and last intersection of \(\gamma^* \) with \(T \)
- Will show there exists a \(p,q \)-walk \(\gamma \) through \(G_2 \cap T \) with cost \(O(\mu(p,q)) + O(d/n) \)
- Replace \(\gamma^*[p,q] \) with \(\gamma \)
Lemma: If \(d \geq d^* \), \(G_2 \) contains an \(s,t \)-path of cost \(O(d) \)

Proof:

- Let \(p \) and \(q \) be first and last intersection of \(y^* \) with \(T \)
- Will show there exists a \(p,q \)-walk \(y \) through \(G_2 \cap T \) with cost \(O(\mu(p,q)) + O(d/n) \)
- Replace \(y^*[p,q] \) with \(y \)
- Total cost of replacement paths is \(O(d^*) + O(n) \cdot O(d/n) = O(d) \)
• Will show there exists a p,q-walk y through $G_2 \cap T$ with cost $O(\mu(p,q)) + O(d/n)$
• Will show there exists a \(p, q \)-walk \(y \) through \(G_2 \cap T \) with cost \(O(\mu(p, q)) + O(d / n) \)

Porno: Assume \(p \) is on \(\beta_T \)
Will show there exists a p, q-walk y through $G_2 \cap T$ with cost $O(\mu(p,q)) + O(d / n)$

- Assume p is on β_T
- Point p must lie on $\hat{\beta}_T$
• Will show there exists a p, q-walk y through $G_2 \cap T$ with cost $O(\mu(p, q)) + O(d / n)$

๏ Assume p is on β_T

๏ Point p must lie on $\hat{\beta}_T$

๏ Walk from p to nearest vertex p' on $\hat{\beta}_T$ (costs less than d / n)
• Will show there exists a p,q-walk γ through $G_2 \cap T$ with cost $O(\mu(p,q)) + O(d/n)$

- Assume p is on β_T
- Point p must lie on $\hat{\beta}_T$
- Walk from p to nearest vertex p' on $\hat{\beta}_T$ (costs less than d/n)
- Walk along well-behaved path from p' to q (costs at most $7(\mu(p,q) + d/n)$)
Lemma: \(O(n)\) vertices are placed on \(\hat{\beta}_T\)
Lemma: \(O(n) \) vertices are placed on \(\hat{\beta}_T \)

Proof:

- The cost between consecutive vertices is \(d/n \)
Lemma: $O(n)$ vertices are placed on $\hat{\beta}_T$

Proof:

- The cost between consecutive vertices is d/n
- The total cost of walking along $\hat{\beta}_T$ is $\ln{(\text{cl}(s) \cdot \exp(d))} - \ln{(\text{cl}(t) / \exp(d))} \leq 2d$
• Added $O(n^2)$ vertices total to make G_2
• Graph G_2 remains planar
• Cheapest path in $O(n^2)$ time [Henzinger et al. ’97]
• If $d \geq d^*$, then cost of path in G_2 is $O(d)$
• If $d \geq d^*$, then cost of path in G_2 is $O(d)$
• $O(n)$-approximation yields \tilde{d} with $d^* \leq \tilde{d} \leq O(n) \cdot d^*$
• If \(d \geq d^* \), then cost of path in \(G_2 \) is \(O(d) \)

• \(O(n) \)-approximation yields \(\tilde{d} \) with \(d^* \leq \tilde{d} \leq O(n) \cdot d^* \)

• Run graph search using \(O(\log n) \) values of \(d \) starting with \(\tilde{d} \)
• If $d \geq d^*$, then cost of path in G_2 is $O(d)$
• $O(n)$-approximation yields \tilde{d} with $d^* \leq \tilde{d} \leq O(n) \cdot d^*$
• Run graph search using $O(\log n)$ values of d starting with \tilde{d}
• Finds a good approximation when $d^* \leq d \leq 2d^*$
Approximation Scheme

• Compute \hat{d} such that $d^* \leq \hat{d} \leq O(1) \cdot d^*$
Approximation Scheme

• Compute \(\hat{d} \) such that \(d^* \leq \hat{d} \leq O(1) \cdot d^* \)

• Build graph \(G_3 \) by adding \(O\left(\frac{n^2}{\epsilon}\right) \) vertices and \(O\left(\frac{n^2}{\epsilon^2 \log(n/\epsilon)}\right) \) edges to \(\tilde{\mathcal{V}}\).
Approximation Scheme

• Compute \hat{d} such that $d^* \leq \hat{d} \leq O(1) \cdot d^*$

• Build graph G_3 by adding $O(n^2 / \epsilon)$ vertices and $O(n^2 / \epsilon^2 \log(n / \epsilon))$ edges to \tilde{V}

• Compute cheapest path between s and t in G_3
• For each cell T of \tilde{V}:
• For each cell T of $\tilde{\mathcal{V}}$:

- Let $\hat{\beta}_T$, $\hat{\alpha}_T$ be the regions of points on β_T, α_T with clearance between $\text{cl}(t) / \exp(\hat{d})$ and $\text{cl}(s) \cdot \exp(\hat{d})$.
• For each cell T of $\tilde{\mathcal{V}}$:

 - Let $\hat{\beta}_T, \hat{\alpha}_T$ be the regions of points on β_T, α_T with clearance between $\text{cl}(t) / \exp(\hat{d})$ and $\text{cl}(s) \cdot \exp(\hat{d})$

 - Region $\hat{\kappa}_T$ contains points of cost at most $2\hat{d}$ from u_T and points of cost at most $4\hat{d}$ from point v' with clearance $\text{cl}(s) \cdot \exp(\hat{d})$
• Vertices are placed within each region so cost between adjacent vertices is \(\epsilon \hat{d} / n \) and there are \(O(n / \epsilon) \) vertices per cell.
• Vertices are placed within each region so cost between adjacent vertices is $\epsilon \hat{d} / n$ and there are $O(n / \epsilon)$ vertices per cell

• Edges can be added as cheapest paths between all pairs of vertices on T, as done by Wein et al. ['08]
• Vertices are placed within each region so cost between adjacent vertices is $\epsilon \hat{d}/n$ and there are $O(n/\epsilon)$ vertices per cell

• Edges can be added as cheapest paths between all pairs of vertices on T, as done by Wein et al. [’08]

• But then we’d have $O(n^2/\epsilon^2)$ edges per cell, for $O(n^3/\epsilon^2)$ edges total G_3
• Instead, for each vertex p on β_T, add edges to $O(1 / \epsilon \log(n / \epsilon))$ vertices on κ_T and α_T
• Instead, for each vertex p on β_T, add edges to $O(1 / \epsilon \log(n / \epsilon))$ vertices on κ_T and α_T

• Consecutive neighbors of p along κ_T and α_T are spaced geometrically apart starting from locations with same clearance as anchor points and p
• Let p and q be first and last intersection of γ^* with T
• Let \(p \) and \(q \) be first and last intersection of \(\gamma^* \) with \(T \)

• Use well-behaved paths to show existence of a \(p,q \)-walk \(\gamma \) through \(G_3 \cap T \) with cost \((1+O(\epsilon))\mu(p,q) + O(\epsilon \hat{d} / n) \)
• Let p and q be first and last intersection of γ^* with T

• Use well-behaved paths to show existence of a p,q-walk γ through $G_3 \cap T$ with cost $(1+O(\epsilon))\mu(p,q) + O(\epsilon \hat{d} / n)$

• As before, perform $O(n)$ replacements
• G_3 has $O(n^2 / \epsilon^2)$ vertices and $O(n^2 / \epsilon^2 \log(n / \epsilon))$ edges
• G_3 has $O(n^2 / \epsilon^2)$ vertices and $O(n^2 / \epsilon^2 \log(n / \epsilon))$ edges

• Use Dijkstra’s algorithm with Fibonacci heaps to compute cheapest path [Fredman, Tarjan ’87]
• G_3 has $O(n^2 / \epsilon^2)$ vertices and $O(n^2 / \epsilon^2 \log(n / \epsilon))$ edges

• Use Dijkstra’s algorithm with Fibonacci heaps to compute cheapest path [Fredman, Tarjan ’87]

• That’s it!
Summary and Open Problems

• Gave $O(n^2 / \epsilon^2 \log (n / \epsilon))$ time $(1+\epsilon)$-approximation for high quality paths
Summary and Open Problems

• Gave $O(n^2 / \epsilon^2 \log (n / \epsilon))$ time $(1+\epsilon)$-approximation for high quality paths

• Near-linear time?
Summary and Open Problems

- Gave $O(n^2 / \epsilon^2 \log (n / \epsilon))$ time $(1+\epsilon)$-approximation for high quality paths
- Near-linear time?
- Problem complexity?
Summary and Open Problems

• Gave $O(n^2 / \varepsilon^2 \log (n / \varepsilon))$ time $(1+\varepsilon)$-approximation for high quality paths

• Near-linear time?

• Problem complexity?
 ◦ Algebraic complexity
Summary and Open Problems

• Gave $O(n^2 / \epsilon^2 \log (n / \epsilon))$ time $(1+\epsilon)$-approximation for high quality paths

• Near-linear time?

• Problem complexity?
 • Algebraic complexity
 • Combinatorial complexity (NP-hard?)
Summary and Open Problems

• Gave $O(n^2 / \epsilon^2 \log (n / \epsilon))$ time $(1+\epsilon)$-approximation for high quality paths

• Near-linear time?

• Problem complexity?
 - Algebraic complexity
 - Combinatorial complexity (NP-hard?)

• Higher dimensions?
Thank you!