An Efficient Algorithm for Computing High-Quality Paths amid Polygonal Obstacles

Pankaj K. Agarwal
Duke University

Kyle Fox
Duke University

Oren Salzman
Tel-Aviv University
Motion Planning

- Robot needs to go from s to t
Motion Planning

• Robot needs to go from s to t

• What’s the best route?
Many Options

- Shortest path
Many Options

- Shortest path
- Minimum number of links [Mitchell et al. ’92]
Many Options

• Shortest path

• Minimum number of links [Mitchell et al. ’92]

• Maximize the minimum clearance [Dúnlaing and Yap ’85]
• Shortest or fewest links?
• Shortest or fewest links?
• Seems dangerous…
• Maximize the minimum clearance?
• Maximize the minimum clearance?

• Seems exhausting…
• Can we optimize for clearance and length?
• Can we optimize for clearance and length?

• Nothing known theoretically
• Some notation…
Some notation…

\(\mathcal{O} \): set of polygonal obstacles in \(\mathbb{R}^2 \) with \(n \) vertices total
• Some notation…

\(\mathcal{O} \): set of polygonal obstacles in \(\mathbb{R}^2 \) with \(n \) vertices total

\(\gamma \): a path through \(\mathbb{R}^2 \setminus \mathcal{O} \)
• Some notation…

\(\mathcal{O}\): set of polygonal obstacles in \(\mathbb{R}^2\) with \(n\) vertices total

\(\gamma\): a path through \(\mathbb{R}^2 \setminus \mathcal{O}\)

\(\gamma[p,q]\): subpath of \(\gamma\) from \(p\) to \(q\)
• Some notation…

\(\mathcal{O} \): set of polygonal obstacles in \(\mathbb{R}^2 \) with \(n \) vertices total

\(\gamma \): a path through \(\mathbb{R}^2 \setminus \mathcal{O} \)

\(\gamma[p,q] \): subpath of \(\gamma \) from \(p \) to \(q \)

\(||p,q|| \): the Euclidean distance between \(p,q \in \mathbb{R}^2 \)
Some notation…

\(\mathcal{O} \): set of polygonal obstacles in \(\mathbb{R}^2 \) with \(n \) vertices total

\(\gamma \): a path through \(\mathbb{R}^2 \setminus \mathcal{O} \)

\(\gamma[p, q] \): subpath of \(\gamma \) from \(p \) to \(q \)

\(\|p, q\| \): the Euclidean distance between \(p, q \in \mathbb{R}^2 \)

\(\text{cl}(p) \): the clearance of a point; \(\text{cl}(p) = \min_{o \in \mathcal{O}} \|p, o\| \)
Our Goal

• Minimize the cost $\mu(\gamma)$ of an s,t-path γ where

$$
\mu(\gamma) = \int_{\gamma} \frac{1}{\text{cl}(\gamma(\tau))} d\tau
$$

[Wein, van den Berg, Halperin ’08]
\(\mu(p, q) \): cost of cheapest path from \(p \) to \(q \)
\(\mu(p,q) \): cost of cheapest path from \(p \) to \(q \)

- Want an \textit{approximately} cheapest \(s,t \)-path \(y \) such that \(\mu(y) \leq (1+\varepsilon) \mu(s,t) \) for any \(\varepsilon > 0 \) (a \((1+\varepsilon) \)-approximation or \textit{approximation scheme})
\(\mu(p,q) \): cost of cheapest path from \(p \) to \(q \)

- Want an *approximately* cheapest \(s,t \)-path \(\gamma \) such that \(\mu(\gamma) \leq (1+\varepsilon) \mu(s,t) \) for any \(\varepsilon > 0 \) (a \((1+\varepsilon) \)-approximation or *approximation scheme*)

- Most interested in *combinatorial complexity*
• Wein et al. ['08] gave a ε-additive approximation algorithm with running time polynomial in n, $1/\varepsilon$, and Λ.
Wein et al. ['08] gave a ε-additive approximation algorithm with running time polynomial in $n, 1/\varepsilon,$ and Λ

Λ: essentially the total cost of edges in \mathcal{O}’s Voronoi diagram (not a polynomial in input size)
Wein et al. [’08] gave a \(\varepsilon\)-additive approximation algorithm with running time polynomial in \(n, 1/\varepsilon\), and \(\Lambda\).

\(\Lambda\): essentially the total cost of edges in \(\mathcal{O}\)’s Voronoi diagram (not a polynomial in input size)

Can we find a provably efficient multiplicative approximation?
Our Contribution

- First polynomial time approximation scheme
Our Contribution

• First polynomial time approximation scheme

• Returns a path of cost at most \((1+\varepsilon) \mu(s,t)\) in time

\[O\left(\frac{n^2}{\varepsilon^2 \log \frac{n}{\varepsilon}}\right) \]
Short Sited

- Clearance defined entirely on the *closest* obstacle
Short Sited

• Clearance defined entirely on the closest obstacle

\(\mathcal{V} \): Voronoi diagram of \(\mathcal{O} \); subdivides \(\mathbb{R}^2 \setminus \mathcal{O} \) into cells of points sharing a closest obstacle feature
Short Sited

- Clearance defined entirely on the closest obstacle

\[\mathcal{V} : \text{Voronoi diagram of } \mathcal{O}; \text{ subdivides } \mathbb{R}^2 \setminus \mathcal{O} \text{ into cells of points sharing a closest obstacle feature} \]

- \(O(n) \) complexity, computable in \(O(n \log n) \) time
• Wein et al. sample several points along edges of \mathcal{V}
- Wein et al. sample several points along edges of \mathcal{V}
- Some near-optimal path enters cells at sample points
• Wein et al. sample several points along edges of \mathcal{V}

• Some near-optimal path enters cells at sample points

• Build a graph whose edges are cheapest paths between sample points sharing a cell
Main Difficulty

• Need to reduce number of sample points and understand where they should go
Main Difficulty

• Need to reduce number of sample points and understand where they should go

• Start by simplifying Voronoi cells
$	ilde{\mathcal{V}}$: Voronoi diagram *refined* by adding several new edges *perpendicular* to obstacle features
\(\tilde{\mathcal{V}} \): Voronoi diagram \textit{refined} by adding several new edges \textit{perpendicular} to obstacle features
\(\tilde{\mathcal{V}}\): Voronoi diagram *refined* by adding several new edges *perpendicular* to obstacle features

- \(\tilde{\mathcal{V}}\) still has complexity \(O(n)\)
\(\tilde{\mathcal{V}} \): Voronoi diagram refined by adding several new edges perpendicular to obstacle features

- \(\tilde{\mathcal{V}} \) still has complexity \(O(n) \)

- And individual cells are less complex
• Each cell $T \in \mathcal{Y}$ is incident to one obstacle feature and has three additional edges:
Each cell $T \in \tilde{\mathcal{V}}$ is incident to one obstacle feature and has three additional edges:

- One *external edge* κ_T which is a monotone clearance parabolic arc
• Each cell $T \in \mathcal{Y}$ is incident to one obstacle feature and has three additional edges:

 ◦ One *external edge* κ_T which is a monotone clearance parabolic arc

 ◦ Two *internal edges* α_T (shorter) and β_T (longer) which are perpendicular to obstacle feature
• Now the cells have less complexity
• Now the cells have less complexity
• But we still need to pick our sample vertices
• Now the cells have less complexity

• But we still need to pick our sample vertices

• Conceptually, enough to understand where cheapest path crosses β_T, and how it passes through cell interior
• We take advantage of two main ideas:
• We take advantage of two main ideas:

 ○ Progressively better approximations of $\mu(s, t)$ to help narrow down where cheapest paths can enter cells
• We take advantage of two main ideas:

 ◦ Progressively better approximations of $\mu(s,t)$ to help narrow down where cheapest paths can enter cells

 ◦ Our new technical tools, *well behaved paths* and *anchor points* to understand paths through cell interior
Well-behaved Paths

• A p,q-path γ through cell T is well-behaved if
Well-behaved Paths

- A p,q-path γ through cell T is well-behaved if
 1. $\lambda = \gamma \cap \text{int}(T)$ is a connected subpath
Well-behaved Paths

• A \(p, q \)-path \(\gamma \) through cell \(T \) is well-behaved if

 i. \(\lambda = \gamma \cap \text{int}(T) \) is a connected subpath

 ii. if it exists, then \(\lambda \) has constant clearance
Lemma: Let p and q be two points on the edges of cell T. There exists a well-behaved path p,q-path γ where $\mu(\gamma) \leq 7\mu(p,q)$.
• Proof picks lambda based on maximum clearance of cheapest p, q-path γ^*
• Proof picks lambda based on maximum clearance of cheapest p,q-path γ^*

• Meaning we need to know the clearance along γ^*...
Anchor Points

Lemma: Let T be a cell of \tilde{V}. There exist constant-time computable anchor points w_{α}^* and w_{κ}^* on long internal edge β_T such that...
For any $p \in \beta_T$ and $q \notin \beta_T$, there exists a well-behaved path p,q-path γ where $\mu(\gamma) \leq 7\mu(p,q)$ and $\lambda \cap \beta_T \in \{w_\alpha^*, w_\kappa^*, p\}$.
Algorithms

- Compute progressively better approximations
Algorithms

• Compute progressively better approximations
 1. $O(n \log n)$ time $O(n)$-approximation $=>$
Algorithms

• Compute progressively better approximations
 1. $O(n \log n)$ time $O(n)$-approximation =>
 2. $O(n^2 \log n)$ time $O(1)$-approximation =>
Algorithms

• Compute progressively better approximations
 1. $O(n \log n)$ time $O(n)$-approximation =>
 2. $O(n^2 \log n)$ time $O(1)$-approximation =>
 3. $O(n^2 / \epsilon^2 \log (n / \epsilon))$ time $(1+\epsilon)$-approximation
Will focus on the $O(n)$-approximation for this talk
• Will focus on the $O(n)$-approximation for this talk
• Let y^* be the cheapest s,t-path
• Will focus on the $O(n)$-approximation for this talk
• Let y^* be the cheapest s,t-path
• Let $d^* = \mu(y^*) = \mu(s,t)$
O(n)-approximation

- Build a geometric graph G_1 by adding $O(n)$ edges to $\tilde{\mathcal{V}}$.
O(n)-approximation

• Build a geometric graph G_1 by adding $O(n)$ edges to \tilde{V}

• Edges have a cost equal to the cost of their paths through the plane
O(n)-approximation

- Build a geometric graph \(G_1 \) by adding \(O(n) \) edges to \(\tilde{V} \)

- Edges have a cost equal to the cost of their paths through the plane

- Compute cheapest path between \(s \) and \(t \) in \(G_1 \) in \(O(n \log n) \) time
• For each cell T of $\tilde{\mathcal{V}}$:

![Diagram with annotations]
• For each cell T of $\tilde{\mathcal{V}}$:
 ◦ Add vertex at point $w_s \in \beta_T$ where $\text{cl}(w_s) = \text{cl}(s)$
• For each cell T of $\tilde{\mathcal{V}}$:
 - Add vertex at point $w_s \in \beta_T$ where $\text{cl}(w_s) = \text{cl}(s)$
 - Add vertices for anchor points w_{α^*} and w_{κ^*}
• For each cell T of $\tilde{\mathcal{Y}}$:
 ◦ Add vertex at point $w_s \in \beta_T$ where $\text{cl}(w_s) = \text{cl}(s)$
 ◦ Add vertices for anchor points w_α^* and w_κ^*
 ◦ Add constant clearance edges from w_s, w_α^*, and w_κ^*
Lemma: G_1 contains an s,t-path of cost $O(n) \cdot d^*$
Lemma: G_1 contains an s, t-path of cost $O(n) \cdot d^*$

- Proof replaces subpaths of y^* through each cell T with well-behaved paths through G_1
Lemma: G_1 contains an s, t-path of cost $O(n) \cdot d^*$

Proof replaces subpaths of y^* through each cell T with well-behaved paths through G_1
Lemma: G_1 contains an s, t-path of cost $O(n) \cdot d^*$

- Proof replaces subpaths of y^* through each cell T with well-behaved paths through G_1
Lemma: G_1 contains an s,t-path of cost $O(n) \cdot d^*$

- Proof replaces subpaths of y^* through each cell T with well-behaved paths through G_1
Lemma: G_1 contains an s,t-path of cost $O(n) \cdot d^*$

- Proof replaces subpaths of γ^* through each cell T with well-behaved paths through G_1
Lemma: G_1 contains an s, t-path of cost $O(n) \cdot d^*$

- Proof replaces subpaths of γ^* through each cell T with well-behaved paths through G_1
- Each well-behaved path has cost $O(d^*)$
Lemma: G_1 contains an s,t-path of cost $O(n) \cdot d^*$

- Proof replaces subpaths of y^* through each cell T with well-behaved paths through G_1
- Each well-behaved path has cost $O(d^*)$
- Total cost of replacement paths is $O(n) \cdot O(d^*)$
O(1)-approximation

• Guess an estimate d of d^*
O(1)-approximation

- Guess an estimate d of d^*
- Build *planar* graph G_2 by adding $O(n^2)$ edges to $\tilde{\mathcal{V}}$
O(1)-approximation

- Guess an estimate d of d^*
- Build *planar* graph G_2 by adding $O(n^2)$ edges to $\tilde{\mathcal{V}}$
- Compute cheapest path between s and t in G_2
O(1)-approximation

- Guess an estimate d of d^*
- Build *planar* graph G_2 by adding $O(n^2)$ edges to $\tilde{\mathcal{V}}$
- Compute cheapest path between s and t in G_2
- Algorithm tries $O(\log n)$ different choice for d based on result of $O(n)$-approximation
• For each cell T of $\tilde{\mathcal{V}}$:
• For each cell T of $\tilde{\mathcal{V}}$:

 - Place $O(n)$ new vertices in a region $\hat{\beta}_T \subseteq \beta_T$ based on d
• For each cell T of $\tilde{\mathcal{V}}$:

 ✷ Place $O(n)$ new vertices in a region $\hat{\beta}_T \subseteq \beta_T$ based on d

 ✷ The *cost* between consecutive vertices is d / n
• For each cell T of $\tilde{\mathcal{V}}$:
 - Place $O(n)$ new vertices in a region $\hat{\beta}_T \subseteq \beta_T$ based on d
 - The cost between consecutive vertices is d/n
 - Add constant clearance edges from each new vertex
Approximation Scheme

• Compute \(\hat{d} \) such that \(d^* \leq \hat{d} \leq O(1) \cdot d^* \)
Approximation Scheme

• Compute \hat{d} such that $d^* \leq \hat{d} \leq O(1) \cdot d^*$

• Build graph G_3 by adding $O(n^2 / \epsilon)$ vertices and $O(n^2 / \epsilon^2 \log(n / \epsilon))$ edges to \tilde{V}
Approximation Scheme

• Compute \(\hat{d} \) such that \(d^* \leq \hat{d} \leq O(1) \cdot d^* \)

• Build graph \(G_3 \) by adding \(O(n^2 / \epsilon) \) vertices and \(O(n^2 / \epsilon^2 \log(n / \epsilon)) \) edges to \(\tilde{\mathcal{V}} \)

• Compute cheapest path between \(s \) and \(t \) in \(G_3 \)
• Sample densely on all edges of each cell
• Sample densely on all edges of each cell

• New edges no longer have constant clearance
• Sample densely on all edges of each cell
• New edges no longer have constant clearance
• Use anchor points to guide a sparse selection of edges
• Sample densely on all edges of each cell
• New edges no longer have constant clearance
• Use anchor points to guide a sparse selection of edges
• See the proceedings for details!
Summary and Open Problems

• Found $O(n^2 / \epsilon^2 \log (n / \epsilon))$ time $(1+\epsilon)$-approximation for high quality paths
Summary and Open Problems

• Found $O(n^2 / \epsilon^2 \log (n / \epsilon))$ time $(1+\epsilon)$-approximation for high quality paths

• Near-linear time?
Summary and Open Problems

• Found $O(n^2 / \epsilon^2 \log (n / \epsilon))$ time $(1+\epsilon)$-approximation for high quality paths

• Near-linear time?

• Problem complexity?
Summary and Open Problems

- Found $O(n^2 / \varepsilon^2 \log (n / \varepsilon))$ time $(1+\varepsilon)$-approximation for high quality paths
- Near-linear time?
- Problem complexity?
 - Algebraic complexity
Summary and Open Problems

• Found $O(n^2 / \epsilon^2 \log (n / \epsilon))$ time $(1+\epsilon)$-approximation for high quality paths

• Near-linear time?

• Problem complexity?
 • Algebraic complexity
 • Combinatorial complexity (NP-hard?)
Summary and Open Problems

- Found $O(n^2 / \varepsilon^2 \log (n / \varepsilon))$ time $(1+\varepsilon)$-approximation for high quality paths

- Near-linear time?

- Problem complexity?
 - Algebraic complexity
 - Combinatorial complexity (NP-hard?)

- Higher dimensions?
Thank you!
Thank you!