Main topics are \#single_source_shortest_paths and \#all_pairs_shortest_paths.

Prelude

- Homework 4 will be released soon and is due Tuesday April 9.

Single Source Shortest Paths

- Let's finish shortest paths today. You're given a directed graph \(G = (V, E, w) \) where \(w : E \rightarrow \mathbb{R} \) is a weight function that may be negative in places. We want to compute the shortest path tree from \(s \) and the distances from \(s \) to every other vertex.
- \(\text{dist}(v) \) is the length of a tentative shortest \(s \) to \(v \) path, or infinity if we haven't found one yet.
- \(\text{pred}(v) \) is the predecessor of \(v \) in the tentative shortest \(s \) to \(v \) path, or Null if we haven't found one yet.

\[
\begin{align*}
\text{INITSSP}(s): \\
& \quad \text{dist}(s) \leftarrow 0 \\
& \quad \text{pred}(s) \leftarrow \text{Null} \\
& \quad \text{for all vertices } v \neq s \\
& \quad \quad \text{dist}(v) \leftarrow \infty \\
& \quad \quad \text{pred}(v) \leftarrow \text{Null}
\end{align*}
\]

- Call an edge \(u \rightarrow v \) tense if \(\text{dist}(u) + w(u \rightarrow v) < \text{dist}(v) \).

\[
\begin{align*}
\text{RELAX}(u \rightarrow v): \\
& \quad \text{dist}(v) \leftarrow \text{dist}(u) + w(u \rightarrow v) \\
& \quad \text{pred}(v) \leftarrow u
\end{align*}
\]

- The only SSSP algorithm repeatedly finds some tense edge and relaxes it.

\[
\begin{align*}
\text{FORDSSP}(s): \\
& \quad \text{INITSSP}(s) \\
& \quad \text{while there is at least one tense edge} \\
& \quad \quad \text{RELAX any tense edge}
\end{align*}
\]

- The order you relax edges determines which algorithm you're using. We'll finish up Dijkstra's algorithm and then do another. We'll only worry about proving we have the correct distances today.
- Lemma: If \(\text{dist}(v) \neq \infty \), then it is the length of some walk from \(s \) to \(v \).
- In particular, \(\text{dist}(v) \) is always at least the shortest path distance from \(s \) to \(v \).

No (or few) Negative Edges: Dijkstra's Algorithm
Lemma: For all $i < j$, we have $d_i \leq d_j$. (Vertices are extracted in non-decreasing order of distance.)

Lemma: Each vertex is extracted from the priority queue at most once.

Lemma: When Dijkstra ends, $dist(v)$ is the length of the shortest path from s to v for every vertex v.

For any vertex v, consider some shortest path $v_0 \rightarrow v_1 \rightarrow \ldots \rightarrow v_{\ell}$ where $v_0 = s$ and $v_{\ell} = v$. Let L_j be the length of the subpath $v_0 \rightarrow \ldots \rightarrow v_j$. We’ll prove by induction on j that $dist(v_j) \leq L_j$.

$dist(v_0) = dist(s) = 0 = L_0$.

Consider $j > 0$. By induction, we set $dist(v_{j-1})$ and at some point Extract v_{j-1} from the queue. At that moment either $dist(v_j) \leq dist_{v_{j-1})} + w(v_{j-1} + v_j)$ already or we set $dist(v_j) = dist_{v_{j-1})} + w(v_{j-1} + v_j)$ by the end of the iteration. Either way

$dist(v_j) \leq L_{j-1} + w(v_{j-1} + v_j) = L_j$.

In particular, $dist(v) \leq L_{\ell} = \text{the length of the whole path}$.

Again, $dist(v)$ is at least the shortest path distance and therefore equal to it.

Just like Prim-Jarník, we have V Insert and ExtractMin operations and E DecreaseKey operations. With a min-heap that all takes $O(E \log V)$ time. With a Fibonacci heap, it’s only $O(E + V \log V)$ time.

Again, this algorithm, as I wrote it, works just fine if you have negative edge lengths but no negative cycles. In fact, it’s likely to be faster than the next algorithm I present if you only have a few negative length edges, even though it may extract some vertices multiple times.

You could also write a version that never puts a vertex back in the priority queue as CLRS does, but then it’s incorrect if there’s some negative length edges.

If All Else Fails: Bellman-Ford

OK, so what if you have some negative weights and you don’t have a DAG and you want to prove a good performance guarantee?
• Again, this algorithm was proposed by many people, but everybody calls it Bellman-Ford now.
• We just relax all tense edges and then recurse.

```
BELLMANFORD(s)
    INITSSSP(s)
    while there is at least one tense edge
        for every edge u→v
            if u→v is tense
                RELAX(u→v)
```

• This algorithm is somehow more straightforward to analyze, at least in hindsight.
• Let dist_≤i(v) denote the length of the shortest walk in G from s to v with at most i edges. So dist_≤0(s) = 0 and dist_≤0(v) = infinity for all v ≠ s.
• Lemma: For every vertex v and non-negative integer i, after i iterations we have dist(v) ≤ dist_≤i(v).
• Proof:
 • If i = 0, the lemma is trivially true.
 • Let W be a shortest walk from s to v with at most i edges. By definition, W has length dist_≤i(v).
 • If W has no edges, it goes from s to s, meaning v = s and dist_≤i(v) = 0. dist(s) ← 0 in InitSSSP and dist(s) never increases, so dist(s) ≤ 0.
 • Otherwise, let u v be the last edge of W. After i - 1 iterations, dist(u) ≤ dist_≤i-1(u).
 • In the ith iteration, we consider edge u v. Either dist(v) ≤ dist(u) + w(u v) already or we set dist(v) ← dist(u) + w(u v). Either way, dist(v) ≤ dist_≤i-1(u) + w(u v) = dist_≤i(v). Again, dist(v) does not increase after that, although it may decrease further by the time the loop ends.
• This lemma is true even if there are negative length cycles!
• Again, dist(v) is always at least the shortest path distance.
• If there are no negative cycles, the shortest walk from s to any v has at most V - 1 edges, so dist(v) must be the true shortest path distance by the end of V - 1 iterations.
• Each iteration takes O(E) time, so the algorithm takes O(VE) time if there are no negative length cycles.
• That said, maybe there are negative length cycles and your distances are not shortest path distances. You can do yet another proof by induction to show there will always be a tense edge if there are any dist values that are too high.
• So there will be a tense edge after those V - 1 iterations, and we can modify the algorithm slightly to detect negative cycles.
This version runs in $O(VE)$ time even if there are negative cycles.

All-Pairs Shortest Paths

- So that’s single source shortest paths. But what if you want to know the shortest paths from every vertex.
- This is the all-pairs shortest path problem. We want to compute $dist(u, v)$, the length of the shortest path from u to v for all u and v.
- So, there’s an obvious algorithm for this problem. Compute single source shortest paths from every vertex!

But with Bellman-Ford, that takes $Theta(V^2 E) = O(V^4)$ time. Dijkstra’s with non-negative edge lengths would take $O(VE + V^2 \log V) = O(V^3)$. Can we get that $O(V^3)$ with negative length edges?
- I’ll show you one way to do it based on dynamic programming.
- One “obvious” recursive definition of $dist(u, v)$ is the following:

$$dist(u, v) = \begin{cases} 0 & \text{if } u = v \\ \min_{x \rightarrow v} \left(dist(u, x) + w(x \rightarrow v) \right) & \text{otherwise} \end{cases}$$

- The shortest path ends with some edge $x \rightarrow v$, and we need a shortest path to x.
- But to compute $dist(u, x)$, we may need to know $dist(u, v) + w(x, v)$. We’re stuck in an infinite loop!
- We need something that gets smaller in each recursive call so we know the recursion bottoms out.
- Earlier, we analyzed Bellman-Ford by considering shortest paths with at most i edges. Let’s take inspiration from this analysis by putting the number of edges into our recursively defined function.
- Let $dist(u, v, ell)$ denote the length of the shortest path from u to v that uses at most ell edges.
Now we have the following recursive function:

\[
\text{dist}(u, v, \ell) = \begin{cases}
0 & \text{if } \ell = 0 \text{ and } u = v \\
\infty & \text{if } \ell = 0 \text{ and } u \neq v \\
\min \left\{ \text{dist}(u, v, \ell - 1) \right\} & \text{otherwise} \\
\min_{x \to v} \left(\text{dist}(u, x, \ell - 1) + w(x \to v) \right) & \text{otherwise}
\end{cases}
\]

- If there are no negative length cycles, then every shortest path uses at most V - 1 edges, so \(\text{dist}(u, v) = \text{dist}(u, v, V - 1)\).
- Each edge \(x \to v\) is considered once for computing each of \(V \times V - 1\) different values \(\text{dist}(u, v, \ell)\) where \(\ell \leq V - 1\), so it would take \(\Theta(V^2 E) = O(V^4)\) time to fill a table based on this recurrence.
- But if you look at the recursive definition, the variable \(u\) doesn’t change. We’ll really just computing shortest paths from each vertex \(u\) to all vertices \(v\) separately. In fact, computing the shortest paths using at most \(\ell\) edges from \(u\) is essentially just Bellman-Ford again. Can we do better?

Floyd-Warshall

- There’s a different dynamic programming formulation discovered (in some form) by many people independently as usual.
- We still use a third parameter, but now we won’t track how many edges appear in a path, but instead track which vertices are allowed to appear in the path.
- Number the vertices arbitrarily from 1 to \(V\).
- \(\pi(u, v, r) := \text{the shortest path from } u \text{ to } v \text{ where every intermediate vertex (that is, every vertex except } u \text{ and } v\) is numbered at most \(r\)
- If \(r = 0\), we can’t have any intermediate vertices. So either \(\pi(u, v, 0) = u \to v\) or it’s not defined.
- Now, either \(\pi(u, v, r)\) uses intermediate vertex \(r\) or it doesn’t.

If it does, it contains a subpath from \(u\) to \(r\) and a subpath from \(r\) to \(v\) so \(\pi(u, v, r) = \pi(u, r, r - 1) \cdot \pi(r, v, r - 1)\).

If it doesn’t, then \(\pi(u, v, r) = \pi(u, v, r - 1)\).

So now, let \(\text{dist}(u, v, r)\) be the length of \(\pi(u, v, r)\).
The shortest path from u to v may use any vertex, so $\text{dist}(u, v) = \text{dist}(u, v, |V|)$.

We need to compute $V \times V \times V = \Theta(V^3)$ values, but it takes only constant time for each. So the algorithm will take $\Theta(V^3)$ time.

Jeff calls this algorithm Kleene (clay knee), because Kleene discovered this recursive pattern while studying finite automata.

Earlier I said that first dynamic programming solution was essentially just Bellman-Ford run for each source u. But with Bellman-Ford, we don’t explicitly keep track of how many edges tentative shortest paths use.

We can play a similar trick here. We just need to maintain the shortest paths from each u to v we’ve found so far, not which specific vertices they were allowed to go through.

We also don’t need to keep track of the specific vertex numbers as long a we loop through all the vertices.

This is the cleaned up version of that dynamic programming algorithm. It’s usually referred to as Floyd-Warshall. A formal proof of correctness involves a similar induction proof to the one we used for Bellman-Ford, so I’ll spare you the details. Or maybe I’ll let you figure them out as a homework exercise.