Main topics for the lecture include maximum flow and minimum cut, Ford-Fulkerson, Edmonds-Karp, and Dinits.

Prelude

- Homework 9 due Wednesday, November 8th.

Maxflow-Mincut Review

- An (s, t)-flow is a function \(f : E \rightarrow \mathbb{R} \geq 0 \) that satisfies the conservation constraint at every vertex \(v \) except maybe \(s \) and \(t \):
 \[
 \sum_{u} f(u \rightarrow v) = \sum_{w} f(v \rightarrow w)
 \]
- \(|f| \) is the value of the flow \(f \). It is the net flow out of vertex \(s \):
 \[
 |f| := \sum_{w} f(s \rightarrow w) - \sum_{u} f(u \rightarrow s)
 \]
- We'll use a capacity function \(c : E \rightarrow \mathbb{R} \geq 0 \) where \(c(e) \) is a non-negative capacity for an edge.
- Flow \(f \) is feasible with respect to \(c \) if \(f(e) \leq c(e) \) for every edge \(e \).
- \(f \) saturates edge \(e \) if \(f(e) = c(e) \) and avoids \(e \) if \(f(e) = 0 \).
- The maximum flow problem is to compute a maximum value (s, t)-flow that is feasible with respect to \(c \).

- An (s, t)-cut is a partition of the vertices into disjoint subsets \(S \) and \(T \), meaning \(S \cup T = V \) and \(S \cap T = \emptyset \), where \(s \) in \(S \) and \(t \) in \(T \).
- The capacity of a cut \((S, T)\) is \(||S, T|| := \sum_{v \in S} \sum_{w \in T} c(v \rightarrow w) \)
- The minimum cut problem is to compute an (s, t)-cut with minimum capacity.

- The Maxflow Mincut Theorem (Ford-Fulkerson): In any flow network with source \(s \) and target \(t \), the value of the maximum (s, t)-flow is equal to the capacity of the minimum (s, t)-cut.
- To make life easier, we'll assume the capacity function is reduced. For every pair of vertices \(u \) and \(v \), either \(c(u \rightarrow v) = 0 \) or \(c(v \rightarrow u) = 0 \). Of if you prefer, the graph contains at most one of those two edges.
- Let \(f \) be any feasible flow. The residual capacity function \(c_f : V \times V \rightarrow \mathbb{R} \) is based on the current flow \(f \).
 \[
 c_f(u \rightarrow v) =
 \begin{cases}
 c(u \rightarrow v) - f(u \rightarrow v) & \text{if } u \rightarrow v \text{ in } E \text{ (or } c(u \rightarrow v) > 0) \\
 f(v \rightarrow u) & \text{if } v \rightarrow u \text{ in } E \text{ (or } c(v \rightarrow u) > 0) \\
 0 & \text{otherwise}
 \end{cases}
 \]
The residual graph \(G_f = (V, E_f) \) contains exactly the edges with positive residual capacity.

So let's look at an example. The original graph with some flow \(f \) is on the left. The residual graph \(G_f \) is on the right.

Again, the residual graph may not be reduced.

Suppose there is no path from source \(s \) to target \(t \) in the residual graph \(G_f \).

Then let \(S \) be the vertices reachable from \(s \) in \(G_f \), and let \(T = V \setminus S \). We saw last week that \((S, T)\) is a minimum \((s, t)\)-cut where \(|f| = ||S, T|| \). So they are a maximum flow and a minimum cut.

But now suppose there is an augmenting path \(s = v_0 \rightarrow v_1 \rightarrow \ldots \rightarrow v_r = t \) in \(G_f \).

Let \(F = \min_i c_f(v_i \rightarrow v_{i+1}) \) be the maximum amount of flow we can “push” through the augmenting path in \(G_f \).

By push, I mean we define a new flow \(f' : E \rightarrow R \) where

\[
\begin{align*}
 f'(u \rightarrow v) &= f(u \rightarrow v) + F & \text{if } u \rightarrow v \text{ is in the augmenting path} \\
 f'(u \rightarrow v) &= f(u \rightarrow v) - F & \text{if } v \rightarrow u \text{ is in the augmenting path} \\
 f'(u \rightarrow v) &= f(u \rightarrow v) & \text{otherwise}
\end{align*}
\]

We saw \(f' \) is a feasible \((s, t)\)-flow and \(|f'| = |f| + F \).

In short. Either there is not path from \(s \) to \(t \) in the residual graph and \(f \) is a maximum flow with value equal to the capacity of the minimum cut, or...

there is an augmenting path from \(s \) to \(t \) in the residual graph. We can strictly increase the value of \(f \) by pushing along that path, meaning \(f \) was not a maximum flow to begin with.

OK, so how to we actually compute a maximum \((s, t)\)-flow and minimum \((s, t)\)-cut?

Ford-Fulkerson

Start with every edge holding 0 flow. Repeatedly augment the flow along any \((s, t)\)-path in the residual graph until there is no such path.

Let's assume capacities are integers for now.
• If that’s the case, then every edge will carry an integer amount of flow at the end of every iteration.
 • True before we do anything, since 0 is an integer.
 • If all flow values and capacities are (inductively) integers, then residual capacities are integers.
 • Which means we add an integer amount of flow along the next augmenting path.
• So: if all capacities are integers, there is a maximum flow where the flow through every edge is an integer.
• Each augmenting path pushes at least one unit of flow.
• So if the maximum flow is f^*, we can only do $|f^*|$ iterations.
• In each iteration, we can build the residual graph and do a whatever-first-search to find a residual path in $O(E)$ time. The total running time assuming integer capacities is $O(E |f^*|)$.
• When $|f^*|$ is small or even in many practical settings where it isn’t, this algorithm is plenty fast, but that’s not always the case.
• Let X be some large integer.

This graph has a maximum flow of $2X$, but Ford-Fulkerson might send one unit of flow through that middle edge forward or backward in every iteration. So $\Theta(X)$ time total.
• We can encode this graph using only $O(\log X)$ bits. So the running time may be exponential in the problem size!
• And this whole time, we’ve been assuming capacities are integers. If they are arbitrary real numbers, you can set up an example where this algorithm will never terminate. And the flows computed may not even converge to the real maximum flow.

Edmonds-Karp 1: Fat Pipes

• But the reason Ford-Fulkerson may be slow is that we never said which paths to augment along. If we choose more carefully, maybe we can find the maximum flow more quickly.
• Both algorithms I’ll discuss were discovered by Edmonds and Karp in the 1970s.
• Edmonds-Karp: Choose the augmenting path with the largest bottleneck (so you can send as much flow as possible right now).
• You can find this path using a variant of Jarník’s minimum spanning tree algorithm: Build a spanning tree from s in the residual graph, repeatedly adding edges of largest residual capacity that leave the tree.
• So $O(E \log V)$ time per iteration.
• So how many iterations are there?
Let f be the current flow and f' be the maximum flow in the current residual graph G_f.

Let e be the bottleneck edge in the current iteration, so we’re about to push $c_f(e)$ units of flow.

S: vertices reachable with higher residual capacity than $c_f(e)$ edges; $T = V \setminus S$.

So (S, T) is an (s, t)-cut and every edge spanning it has capacity at most $c_f(e)$.

$||S, T|| \leq |E| \cdot c_f(e)$. But $|f'| \leq ||S, T||$, so $c_f(e) \geq |f'| / |E|$.

So pushing down the maximum-bottleneck path multiplies the residual maximum flow value by $(1 - 1 / |E|)$ or less.

After $|E| \cdot \ln |f^*|$ iterations, the residual value of the maximum flow is at most $|f^*| \cdot (1 - 1 / |E|)^{|E| \cdot \ln |f^*|} < |f^*| \cdot \exp(-\ln |f^*|) = 1$.

In other words, we can’t do another augmentation after $|E| \cdot \ln |f^*|$ iterations if the capacities are integers, because there won’t be an integral amount of flow left to push.

The total running time assuming integer capacities is $O(E^2 \log V \log |f^*|)$.

This running time is polynomial in the problem size.

Edmonds-Karp 2 (and Dinits): Short Pipes

* Edmonds-Karp (again): Choose an augmenting path with the fewest number of edges.
 * Can be found in $O(E)$ time by running a breadth-first search in the residual graph.
 * Now to bound the number of iterations.
 * Let f_i be the flow after i iterations, and $G_i = G_{f_i}$. We have f_0 is zero everywhere and $G_0 = G$.
 * Let $level_i(v)$ be the unweighted shortest path distance from s to v in G_i.
 * Lemma: $level_{i+1}(v) \geq level_i(v)$ for all vertices v and non-negative integers i.
 * We’ll do induction on the shortest path distance from s in G_{i+1}.
 * $level_i(s) = 0$ for all i. Check.
 * Let $s \rightarrow \ldots \rightarrow u \rightarrow v$ be a shortest path to v in G_{i+1}.
 * If $u \rightarrow v$ is in G_i, then $level_i(v) \leq level_i(u) + 1$.
 * If $u \rightarrow v$ is not in G_i, then we must have pushed along $v \rightarrow u$ to create it for $u \rightarrow v$.
 Meaning $v \rightarrow u$ was on the shortest s to t path. So $level_i(v) = level_i(u) - 1 \leq level_i(u) + 1$.
 * Either way, $level_{i+1}(v) = level_i(v) + 1$ because $u \rightarrow v$ is on the shortest path
 * $\geq level_i(u) + 1$ by the inductive hypothesis
 * $\geq level_i(v)$ from above cases
 * Lemma: Any edge $u \rightarrow v$ disappears from the residual graph at most $V / 2$ times.
 * Suppose $u \rightarrow v$ is in G_i and G_{i+1} but not in G_{i+1}, …, G_j for some $i < j$.
 * $u \rightarrow v$ must be in the ith augmenting path, so $level_i(v) = level_i(u) + 1$.
 * and $v \rightarrow u$ must be in the jth augmenting path, so $level_j(v) = level_j(u) - 1$.

• So, $\text{level}_j(u) = \text{level}_j(v) + 1 \geq \text{level}_i(v) + 1 = \text{level}_i(u) + 2$.
• So the distance from s to u increased by 2 between the disappearance and reappearance of $u \rightarrow v$. Every level is less than V or infinite (if there is no path to u), so an edge can disappear at most $V / 2$ times.
• There are E edges so $E V / 2$ disappearances total. Each augmentation makes its bottleneck edge disappear, so there are at most $E V / 2$ iterations.
• The total running time is $O(V E^2)$.
• And this running time is correct even for arbitrary non-negative real number capacities.