Main topics for lecture include induction, and asymptotic notation.

Followup

- Insertion-Sort(A):
 - for $j = 2$ to A.length
 - key = $A[j]$
 - $i = j - 1$
 - Insert key into sorted sequence $A[1..j-1]$. (comments are welcome to help make your algorithm more clear)
 - while $i > 0$ $A[i] > key$
 - $i = i - 1$
 - $A[i + 1] = key$
 - output A

- Last time, we discussed how to describe an algorithm, proofs of correctness using induction, and started in on asymptotic notation

- Before I continue, any questions on Monday's material or class administration?

- I want to follow up on some discussion we had last Monday on inductive proofs, and also offer another example of an inductive proof.

- Let's define a tree as a connected acyclic graph.

- And let's prove the following:

 Theorem: Let T be a tree with n vertices. T has $n - 1$ edges.

 - Here, we may be tempted to use the following inductive "proof".
 - "Proof":
 - Base case: A tree of one vertex has no edges.
 - Inductive hypothesis: A tree of k vertices has $k - 1$ edges for any $1 \leq k < n$.
 - Inductive step: Let T be a tree of $k = n - 1$ vertices. Create a new tree T' by adding new vertex and connecting it to T as a leaf. T' has n vertices and $n - 1$ edges.
 - Everything I said was fine, but I never actually proved the theorem. The problem is that I now need to argue that we can construct any tree by adding on a new leaf like we did. Yes, that is possible, but I don't think it is obvious.

 - Here is a better proof:
 - Inductive step: Let T be a tree of $n > 1$ vertices. Every pair of vertices is connected by a path since T is connected, so let uv be an arbitrary edge on one of these paths. Consider removing uv to make $T \setminus uv$. There is no path from u to v avoiding uv or T would have a cycle, so $T \setminus uv$ has at least two components. On the other hand, we only
need add uv back to connect $T \setminus uv$ so $T \setminus uv$ has at most two components. Each component has fewer than n vertices, say $k_1 < n$ and $k_2 < n$ where $k_1 + k_2 = n$. Also T is acyclic so both components are acyclic and therefore trees. By the inductive hypothesis, T has $k_1 - 1 + k_2 - 1 + 1 = n - 1$ edges.

- So again, aim down. This is also why it is good practice to use n and things less than n in inductive proofs instead of n and $n + 1$.

Asymptotic Analysis Continued

- So last time we defined Theta-notation.
- Given $g(n) : \mathbb{N} \rightarrow \mathbb{R}^+$, we defined $\Theta(g(n)) = \{f(n) : \text{there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \text{ for all } n \geq n_0\}$.
- If $f(n) \in \Theta(g(n))$ we can write $f(n) = \Theta(g(n))$.
- $g(n)$ is an asymptotically tight bound on $f(n)$.
- Sometimes we write $\Theta(1)$ to mean a constant or a constant function with respect to some variable. $f(n) = \Theta(1)$ means $f(n)$ lies sandwiched between two constants $c_1, c_2 > 0$ for all sufficiently large n.

- Now, sometimes we don’t want asymptotically tight bounds! Take Insertion-Sort for instance. $n^2 + bn + c = \Theta(n^2)$ was a good upper bound on its performance, but it is not tight for all inputs.
- **Can somebody name an instance where the algorithm runs faster than $\Theta(n^2)$?**
- If the array is already sorted, we never even enter the while loop. There are at most $bn + c = \Theta(n)$ operations in this case.
- So it’s not quite right to say the running time of Insertion-Sort is $\Theta(n^2)$, because Theta-notation is supposed to provide both an upper bound and a lower bound.

- For running times we usually just want an asymptotic upper bound, so we use big-oh notation.
- $O(g(n)) = \{f(n) : \text{there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \leq f(n) \leq c g(n) \text{ for all } n \geq n_0\}$.
- [draw another figure]
- As before, if $f(n) \in O(g(n))$, then we can write $f(n) = O(g(n))$.
- We may say $f(n) = O(1)$ if $f(n) \leq c$ for some constant c once n grows large enough.
- big-oh notation is only an upper bound. So $\Theta(g(n)) \subseteq O(g(n))$, meaning a $n^2 + bn + c = O(n^2)$, but also $n = O(n^2)$ as well.
- It’s pretty common to miss this distinction. Often in other classes or even algorithms literature you’ll see people claim a function if $O(g(n))$ as a tight bound or even a lower bound. They may say things like “this problem has a lower bound of $O(n \log n)$”, but taken
literately, the lower bound could be $1 = O(n \log n)$. If your goal is to describe a lower bound, use the big-omega notation I will define in a little bit.

- But loose upper bounds can be nice, because we can easily describe the running time of algorithms like Insertion-Sort. Here are some $O(1)$ time operations that occur at most n^2 times, maybe fewer. So Insertion-Sort takes $O(n^2)$ time. It's fine that some inputs are faster, because big-oh is only an upper bound.
- And since it is only an upper bound, we can even say Insertion-Sort runs in $O(n^{400})$ time, but that wouldn't be very useful.
- Formally, when we say the running time is $O(f(n))$, then we mean all running times on inputs of length n including the worst-case running time is $O(f(n))$ even if some inputs have better running times.
- When analyzing algorithms you usually want to use big-oh notation just in case the algorithm runs faster on some inputs. But you still want to give the slowest growing function you can. So the best analysis of Insertion-Sort is that it runs in $O(n^2)$ time.

- Now, we have upper bounds, so it makes sense to have asymptotic lower bounds as well. We use big-omega notation.
- $\Omega(g(n)) = \{f(n) : \text{there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \leq cg(n) \leq f(n) \text{ for all } n \geq n_0\}$.
- I like to imagine the Omega arms holding up the functions from below.
- [picture]
- Similar to before, $f(n) = \Omega(1)$ means $f(n)$ never dips below some constant $c > 0$ once n is big enough.
- We have an asymptotic lower bound and an asymptotic upper bound. If they’re both the same, then that must mean the function is asymptotically tight.
- In other words, $f(n) = \Theta(g(n)) \text{ if and only if both } f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n))$
- For running times, we use big-oh to present the optimistic view. The running time for insertion sort will never be worst than n^2.
- big-omega provides a more pessimistic view.
- If the running time of an algorithm is $\Omega(f(n))$, then every input of size n takes $\Omega(f(n))$ time. Maybe more.
- Take Insertion-Sort for example. We perform $n - 1$ operations just iterating over the different values for j. Therefore, Insertion-Sort takes $\Omega(n)$ time.

- When analyzing algorithms, we’ll often have to evaluate certain expressions that come out to be the running time. For example, we might notice that there are $n - 1$ iterations of that for loop, each of which takes $O(n)$ time. So we would like to say running time is at most $O(1) + (n - 1) * O(n) = O(n^2)$.
• So let's make this concrete.
• Consider a more simple example $2n^2 + 3n + 1 = 2n^2 + \Theta(n)$.
• We interpret this equation as saying there exists a function $f(n)$ such that $f(n) = \Theta(n)$ and makes the equation true.
• More generally, you should be able to substitute in some function equal to each piece of asymptotic notation for each time the asymptotic notation appears on the right hand side of an equation.
• This means each time it appears in writing, so you only substitute in one function for an expression like $\sum_{i=1}^n O(i)$.
• Here's another example: $2n^2 + \Theta(n) = \Theta(n^2)$.
• If the asymptotic notation appears on the left hand side, then the equation must be true for every function equal to the notation. So that expression is true only if $2n^2 + 100000 n = \Theta(n^2)$, which is itself true because there exists something for the right hand side, namely $2n^2 + 100000 n$.
• So in short, think of the left hand side being a big for all expression and the right hand side holding a there exists.
• We can even chain equations using these rules
 • $2n^2 + 3n + 1 = 2n^2 + \Theta(n) = \Theta(n^2)$.
 • Yep, $2n^2 + 3n + 1 = \Theta(n^2)$ like we would expect.

• I’ll introduce two more pieces of notation for when you want bounds that are not asymptotically tight.
 • little-oh: $o(g(n)) = \{f(n) : \text{for any positive constant } c > 0, \text{there exists a constant } n_0 > 0 \text{ such that } 0 \leq f(n) < c g(n) \text{ for all } n \geq n_0\}$.
 • In big-oh, g may only get away only if we chose a big enough constant c.
 • But in little-oh, g will always get away no matter what constant c we choose.
 • In other words, there does not exist a constant so that g is smaller. $f(n) \neq \Omega(g(n))$ and therefore $f(n) \neq \Theta(g(n))$.
 • Also, if $f(n) = o(g(n))$, then $\lim_{n \to \infty} f(n)/g(n) = 0$.
 • Examples: $2n = o(n^2)$, but $2n^2 \neq o(n^2)$.
 • $f(n) = o(1)$ means $f(n)$ approaches 0 in the limit.
 • Insertion-Sort runs in $o(n^{400})$ time but not $o(n^2)$ time since you may actually have $~n^2$ operations in the worst case.
 • Finally, little-omega: $\omega(g(n)) = \{g(n) : \text{for any positive constant } c > 0, \text{there exists a constant } n_0 > 0 \text{ such that } 0 \leq_c g(n) < f(n) \text{ for all } n \geq n_0\}$. Now f will always get away, and $f(n) \neq O(g(n))$.
 • Or, if $f(n) = \omega(g(n))$, then $\lim_{n \to \infty} f(n)/g(n) = \infty$.
 • Examples: $n^{n^2}/2 = \omega(n)$ but $n^{n^2}/2 \neq \omega(n^{n^2})$.
 • $f(n) = \omega(1)$ means $f(n)$ approaches infinity in the limit, even if it grows very, very slowly.
We’re almost ready to discuss algorithms again, but first we should go over some properties of functions and asymptotics that will come up when analyzing and designing algorithms.

First, asymptotics transpose in a natural way. For example
- if \(f(n) = \Theta(g(n)) \) and \(g(n) = \Theta(h(n)) \), then \(f(n) = \Theta(h) \)
- if \(f(n) = O(g(n)) \) and \(g(n) = O(h(n)) \), then \(f(n) = O(h(n)) \)
 and this pattern holds for the others as well.

Big Theta is symmetric, so \(f(n) = \Theta(g(n)) \) if and only if \(g(n) = \Theta(f(n)) \)

The others are transpose symmetric, so \(f(n) = O(g(n)) \) if and only if \(g(n) = \Omega(f(n)) \) and \(f(n) = o(g(n)) \) if and only if \(g(n) = \omega(f(n)) \)

So asymptotics feel like comparisons between real numbers
- \(f(n) = O(g(n)) \) is like \(\leq \)
- \(f(n) = \Omega(g(n)) \) is like \(\geq \)
- \(f(n) = \Theta(g(n)) \) is like \(= \)
- \(f(n) = o(g(n)) \) is like \(< \) (\(f(n) \) is asymptotically smaller) and
- \(f(n) = \omega(g(n)) \) is like \(> \) (\(f(n) \) is asymptotically larger)

But, it’s not the case that we can always compare functions. i.e. neither \(f(n) = O(g(n)) \) nor \(f(n) = \Omega(g(n)) \) may be true. For example, we cannot compare \(n \) and \(n^{1 + \sin n} \), because the later keeps oscillating between growing faster and then slower than \(n \).

There are a few natural classes of functions that tend to pop up when describing running times.

- We say a function \(f(n) \) is *polynomially bounded* if \(f(n) = O(n^k) \) for some constant \(k \). So, the running time of Insertion-Sort is polynomially bounded.
- Some other functions, such as \(2^n \), grow exponentially. Algorithms with exponentially large running times are very slow in the worst-case.
 - The base matters! For constants \(b > a > 1 \), \(a^n = o(b^n) \). So \(2^n = o(2.01^n) \).
 - But any base is bad for large enough \(n \). For any real constants \(a \) and \(b \) with \(a > 0 \), \(n^b = o(a^n) \). So \(n^{100} = o(1.01^n) \).
- Some other functions have logarithmic growth. These have some interesting properties if we apply the normal log rules.
 - For example, \(\log n^k = k \log n = \Theta(\log n) \) for any constant \(k > 0 \).
 - Also, \(\log_b n = \log n / \log b = \Theta(\log n) \) for any constant \(b > 0 \), meaning the base doesn’t matter for asymptotic growth if it is constant.
- You might see me write \(\lg n \) sometimes to mean \(\log_2 n \). Dividing problems into 2 parts or writing in binary is common enough that it’s useful to have the notation. And we can safely throw \(\lg n \) or \(\log n \) into our asymptotic functions (usually), because \(\Theta(\lg n) = \Theta(\log n) \).
• But be careful, because the base may matter if the lg appears in an exponent. $2^{\lg n} \neq \Theta(2^{\log n})$.
• We say a function $f(n)$ is \textit{polylogarithmically bounded} if $f(n) = O(\lg^k n)$.
• These functions grow really slowly usually. For example, the number of bits needed to store the number n is only $O(\log n)$. That’s why our 64-bit computers can still address far more bytes of ram than we’ll ever fit in there anytime in the near (maybe far?) future.
• In fact, for any constants $a, b > 0$, $\lg^b n = o(n^a)$. So $\lg^{100} n = o(n^{0.01})$.
• Our ideal goal for this class will be to write algorithms that run in polylogarithmic time, but this is usually only possible if the input has a nice structure like a sorted array or you’re doing something with data structures. Otherwise, we’ll usually try to find something polynomial, and the smaller the exponent, the better.