Main topics for the lecture include SSSP.

Prelude

- Homework 7 due today.
- Homework 8 due Wednesday, November 1st.

Shortest Paths

- Last time, we were discussing algorithms for the single source shortest path problem.
- Given a weighted directed graph $G = (V, E, w)$ and vertex s, find paths to all other vertices that minimize the sum of weights along each path. You’ll end up computing a shortest path tree.
- Remember, you may have negative weights! Algorithms for this problem generally fail if you have a negative weight cycle, because a shortest walk would just go around the cycle over and over again forever.
- There was just the one algorithm.
- $d_s(v)$ is the length of a tentative shortest s to v path, or infinity if we haven’t found one yet.
- pred(v) is the predecessor of v in the tentative shortest s to v path, or Null if we haven’t found one yet.
- Call an edge $u \xrightarrow{} v$ tense if $d_s(u) + w(u \xrightarrow{} v) < d_s(v)$.
- We want to relax tense edges to represent our newly found shorter path.

\[
\text{RELAX}(u \xrightarrow{} v):
\]
\[
\begin{align*}
d_s(v) &\leftarrow d_s(u) + w(u \xrightarrow{} v) \\
pred(v) &\leftarrow u
\end{align*}
\]

- The only SSSP algorithm repeatedly finds a tense edge and relaxes it.
- We do this by putting possible predecessors of tense edges in a bag.

\[
\text{InitSSSP}(s):
\]
\[
\begin{align*}
d_s(s) &\leftarrow 0 \\
pred(s) &\leftarrow \text{Null} \\
\text{for all vertices } v \neq s \\
d_s(v) &\leftarrow \infty \\
pred(v) &\leftarrow \text{Null}
\end{align*}
\]

\[
\text{GenericSSSP}(s):
\]
\[
\text{InitSSSP}(s)
\]
\[
\begin{align*}
\text{while the bag is not empty} &
\end{align*}
\]
\[
\begin{align*}
take u \text{ from the bag} \\
\text{for all edges } u \xrightarrow{} v \\
\text{if } u \xrightarrow{} v \text{ is tense} \\
\text{RELAX}(u \xrightarrow{} v) \\
\text{put } v \text{ in the bag}
\end{align*}
\]

- The data structure we use for the bag determines the algorithm we’re running.
- Stacks are just bad. The algorithm may take $\Theta(2^V)$ time.
- Priority queues keyed by distance are great if edges have non-negative weight. This was
Dijkstra’s algorithm, and it ran in $O(E + V \log V)$ time if we used Fibonacci heaps. It even runs fine in practice if you have a few negative weight edges.

Shimbel’s Algorithm

- Now let’s try a normal first-in first-out queue. This algorithm was found by Shimbel in 1954, and then by some others including Bellman in 1958.
- The relaxation scheme we’re using is by Ford, so it’s often called Bellman-Ford.
- This algorithm is efficient even if there are negative weight edges, and it can be used to detect negative weight cycles.
- But how do we analyze it?
- Let’s break the algorithm into phases by putting a token into the queue with the vertices.
- At the beginning of a phase, we’ll add the token. The phase ends when we pull the token back out. The algorithm doesn’t actually do anything with the token, it just puts it back in for the next phase.
- In the 0th phase, s is the only vertex removed from the queue. The algorithm ends when the token is the only member of the queue.
- Here’s each phase of the algorithm:

![Diagram of Shimbel’s Algorithm](image)

- Here we removed from the queue s, token a, b, c, token d, f, b, token a, e, d, token d, a, token
- Main Lemma: After i phases of the algorithm, dist(v) is at most the length of the shortest walk from s to v consisting of at most i edges.
 - Proof via induction on i.
 - A simple path has at most $V-1$ edges, so the algorithm either halts after V phases or there is a negative cycle.
Each vertex is removed at most once per phase, so each edge is scanned at most once per phase. Each phase takes \(O(E)\) time and the total time is \(O(V E)\).

But now that we understand what’s going on, why don’t we simplify the algorithm? We just need to make sure that in the \(i^{th}\) phase, we relax any incoming edges to a vertex whose shortest path uses \(i\) edges.

We know that shortest paths are computed by the end of that for loop as long as there are no negative length cycles. But, there is always a tense edge if there is a negative length cycle, so the last pass through the edges will discover if there is a negative length cycle.

Now the running time is obvious.

That statement about paths of \(i\) edges still holds, so this new way of writing it is correct.

Shimbel via Dynamic Programming

Let’s talk about Shimbel’s algorithms bit longer. We’ll use it as an excuse to review a concept from earlier in the semester.

We had that claim that Shimbel computes all shortest paths of at most \(i\) vertices by the end of the \(i^{th}\) phase. What if we made wrote an algorithm with that goal in mind?

Let \(\text{dist}_i(v)\) denote the length of the shortest path consisting of at most \(i\) edges.

If there are no negative cycles, then \(\text{dist}_{(V-1)}(t)\) is the shortest path distance to \(t\).

It turns out \(\text{dist}_i(v)\) has a simple recursive definition!

\[
\text{dist}_i(v) =
\begin{cases}
0 & \text{if } i = 0 \text{ and } v = s \\
\infty & \text{if } i = 0 \text{ and } v \neq s \\
\min \{ \text{dist}_{i-1}(v), \min_{u \in E} \{ \text{dist}_{i-1}(v) + w(u \leftrightarrow v) \} \} & \text{otherwise}
\end{cases}
\]

Basically, the shortest path with at most \(i\) edges is either the shortest path with at most \(i - 1\) edges, or there’s some \(i^{th}\) edge which we append to the end of a shortest path with at most \(i - 1\) edges.

We can use dynamic programming to turn this into an iterative algorithm.
OK, but we can simplify this a bit.

First, it doesn’t matter what order we look at those edges since we’ll get to every edge coming in v anyway, so let’s push that last for loop to the left.

Second, we’re immediately setting dist[i,v] to be dist[i-1,v] before relaxing any edges. So we may as well use that (or something even smaller if we happen to find it first) while looping over the edges.

OK, but now we don’t really need dist[i-1] since that first inner for loop is just carrying the value forward to dist[i] anyway. Why don’t we just use a single dist variable per vertex?

Oh! It’s just Shimbel’s algorithm again. All we’re missing is maintaining the predecessors, but that’s easy to add back in as a last line in that inner for loop.

Shortest Paths in DAGs

One last thing today, because I want to start fresh with a completely different problem on Monday.

Suppose G is a directed acyclic graph. So there aren’t any negative weight cycles, because there are no cycles at all!
• It turns out the queue is a great choice for DAGs, but you have to fill it with vertices before you do any relaxations.
• We should add vertices in topological order!

Since there are no backward edges, we will never add a vertex back into the queue.

So like before, we can simplify the algorithm somewhat.

DAGSSSP(s):
• InitSSSP(s)
• Topologically sort vertices
• for every vertex u in topological order
 • for every edge u → v
 • if u → v is tense
 • Relax(u → v)
• It takes O(V + E) time to do a topological sort, and each edge is checked and possibly relaxed once, so the whole algorithm takes O(V + E) time.
• We can even use this as a starting point for a problem that’s usually very difficult in graphs,
computing longest paths.

- Let’s say we want to compute longest paths from s in DAG G. We can take two approaches.
 1. Multiply all edge weights by -1. Longest paths with the original weights are now shortest paths. G is a DAG so we certainly didn’t create negative cycles.
 2. Change the algorithm itself. Initialize all dist values to -infinity instead of infinity and use a > in the definition of tense instead of a <.