Describe and analyze an efficient algorithm that either returns the minimum number of moves required to solve a given number maze, or correctly reports that the maze has no solution. Your running time should be in terms of n.

Solution: We'll index grid squares using pairs (i, j) where $1 \leq i \leq n$ and $1 \leq j \leq n$. The upper left corner is $(1, 1)$ and the lower right corner is (n, n). For the algorithm, we will build a configuration graph $G = (V, E)$. Vertex set V is the set of grid squares (i, j). There is an edge $(i, j) \rightarrow (i', j')$ for each pair of squares (i, j) and (i', j') where you can reach (i', j') from (i, j) in a single move (for example, if k appears at (i, j) and $i' = i$, $j' = j + k$, then there is an edge $(i, j) \rightarrow (i', j')$). There are n^2 vertices and at most $4n^2$ edges, and we can add these to an adjacency list representation of G in constant time each, so it takes $O(n^2)$ time to build G.

After building G, we will run a breadth-first search with parent pointers from $(1, 1)$. One way to do so is to use the TRAVERSE procedure shown in lecture with a queue for the bag. If the search does not mark (n, n), then we report the maze has no solution. Otherwise, we count the edges in the path $\text{parent}((n, n)), \text{parent}(\text{parent}((n, n))), \ldots$ leading back to s and return that count.

To show correctness, we observe that any sequence of moves in the maze corresponds to a sequence of directed edges in G with consecutive edges sharing a vertex (i.e., a walk). The same holds in the other direction; we can take a walk in G and each edge of the walk is a move in the maze. The breadth-first search marks (n, n) if and only if it is reachable in G from $(1, 1)$ or there is a sequence of moves to reach the lower-right corner in the maze. So the algorithm is correct in cases it claims there is no solution. In other cases, the path found by the breadth-first search is the shortest path from $(1, 1)$, meaning the corresponding set of moves in the maze is as short as possible.

The running time of a breadth-first search is $O(E)$. Since $E = O(n^2)$, the running time of the whole algorithm is $O(n^2)$.

Rubric: 10 points total: 5 points for the algorithm, -2 if the algorithm fails to check for no solution, -3 if the algorithm fails to compute the minimum number of moves; 3 points for the proof; 2 points for the analysis.
Describe and analyze an algorithm to compute the length of the maximum-length monotonically increasing path with vertices in S. Assume you have a subroutine \(\text{LENGTH}(x, y, x', y') \) that returns the length of the segment from \((x, y)\) to \((x', y')\).

Solution: We will build a directed graph \(G = (V, E) \) where \(V = S \) is the set of \(n \) points and there is an edge \(a \rightarrow b \) if \(X[a] < X[b] \) and \(Y[a] < Y[b] \). Each edge \(a \rightarrow b \) is given the length \(\text{LENGTH}(x, y, x', y') \). We will argue later that \(G \) is a directed acyclic graph. There are \(n \) vertices in \(G \). We spend \(O(n^2) \) time checking each pair \(a, b \in S \) to see if edge \(a \rightarrow b \) exists, and if so, adding it to an adjacency list representation of \(G \). The time spend building \(G \) is \(O(n^2) \). Finally, we compute the length of the maximum-length directed path in \(G \) in \(O(V + E) = O(n^2) \) time and return that length. The total running time is \(O(n^2) \).

Edges correspond exactly to line segments that can appear in a monotonically increasing path with vertices in \(S \), so the paths in \(G \) correspond to monotonically increasing paths with vertices in \(S \). Further, the lengths of the edges are set so the lengths of these paths are the same in both \(G \) and in the plane. Finally, we can use the longest path algorithm, because \(G \) is a directed acyclic graph. Suppose to the contrary that \(G \) has a cycle \(a, b, \ldots, a \). The \(x \)-coordinates of the vertices along any walk in \(G \) are strictly increasing, but then point \(a \) cannot appear at the end of a non-trivial walk that starts with \(a \).

Rubric: 10 points total: 5 points for the algorithm; 3 points for the proof; 2 points for the analysis.