1. Prove that every tournament contains a Hamiltonian path.

Solution: Let G be a tournament. If G contains no vertices (the base case), the empty path is a Hamiltonian path of G since it visits every vertex of G exactly once. (We could also use a tournament of one vertex as a base case, but it makes the inductive step a bit more tedious to describe.)

Now, suppose G contains $n \geq 1$ vertices, and assume inductively (the inductive hypothesis) that every tournament of strictly fewer than n vertices contains a Hamiltonian path. Now (the inductive step), let v be an arbitrary vertex of G. Consider the two sets of vertices $N^+(v) = \{ u \mid u \to v \text{ is an edge} \}$ and $N^-(v) = \{ u \mid v \to u \text{ is an edge} \}$. Let G^+ and G^- respectively be the subgraphs of G induced by $N^+(v)$ and $N^-(v)$, respectively. Both G^+ and G^- contain exactly one directed edge between each pair of vertices, so they are tournaments. They also contain strictly fewer than n vertices. Inductively, they each contain a Hamiltonian path. Let P^+ and P^- be the paths for G^+ and G^-, respectively. If P^+ is non-empty, there is a directed edge from its last vertex to v. Similarly, there is a directed edge from v to the first vertex of P^- if it exists. Path $P^+ \circ v \circ P^-$ exists in G and is Hamiltonian.

We could also solve the problem using a weak inductive hypothesis, but that solution is (in Kyle’s opinion) more difficult to discover. Here is that proof in case you are curious.

Solution (Using weak inductive hypothesis): Let G be a tournament. If G contains no vertices (the base case), the empty path is a Hamiltonian path of G since it visits every vertex of G exactly once. Suppose G has $n \geq 1$ vertices, and assume inductively that any tournament of $n - 1$ vertices contains a Hamiltonian path. Let v be an arbitrary vertex of G. If v is the only vertex, then it alone is a Hamiltonian path. Otherwise, $G \setminus v$ contains exactly one directed edge between each pair of vertices, so it is a tournament. There exists a Hamiltonian path $P = \langle u_1, u_2, \ldots, u_{n-1} \rangle$ of $G \setminus v$. If edge $v \to u_1$ exists in G, then path $v \circ P$ exists in G and is Hamiltonian. If edge $u_{n-1} \to v$ exists in G, then path $P \circ v$ exists in G and is Hamiltonian. If neither case holds, then let i be the greatest index such that edge $u_i \to v$ exists in G; i is well defined, and $i < n$. Edge $v \to u_{i+1}$ exists in G. Therefore, directed path $\langle u_1, \ldots, u_i, v, u_{i+1}, \ldots, u_{n-1} \rangle$ exists in G and is Hamiltonian.

Rubric: 10 points total: 2 points for base case; 3 points for strong inductive hypothesis; 1 point for weak inductive hypothesis unless the rest is perfect, then 3 points; 5 points for inductive step

2. Using Θ-notation, provide asymptotically tight bounds in terms of n that answer each of the following questions.

Solution:
(a) $\Theta(n^3)$
(b) $\Theta(n)$
(c) $\Theta(n \log n)$
(d) $\Theta(n^2)$
(e) $\Theta(\sqrt{n})$
(f) $\Theta(\log n)$
(g) $\Theta(n)$
(h) $\Theta(1)$
(i) $\Theta(n^3)$
(j) $\Theta(n)$

Rubric: 10 points total: 1 point, all or nothing, per item. No proofs required.

3. Sort the functions listed below from asymptotically smallest to asymptotically largest, indicating ties if there are any.

Solution:

$$20 \equiv 2 + \sin n \ll \log \log n \ll \log n \ll \sqrt{\log n} \ll \log n \equiv H_{\sqrt{n}} \equiv \ln(5n) \ll$$
$$\log^{\sqrt{2}} n \ll \log^2 n \ll n^{1/1000} \ll \sqrt{n} \ll n \equiv H_{2^n} \ll n \log n \ll n \sqrt{n} \ll$$
$$n^2 \equiv 4^{\log n} \equiv 500n^2 \ll n^4 - (n - 1)^4 \ll 2n^{500} \ll 1.001^n \ll 2^n \ll e^n$$

Rubric: 10 points total: -1 point for each pair of consecutive non-equivalent items with an incorrect comparison; -1/2 point for each pair of consecutive equivalent items listed as non-equivalent; minimum of 0 points. No proofs required.

4. More formally, you are given an array $X[1..n]$. The only method you have to compare elements of X is a procedure $\text{SAME}(x, y)$ that returns TRUE if elements x and y are equivalent and FALSE otherwise. Design and analyze an algorithm to output a member of X whose equivalence class contains strictly greater than $n/2$ members. For your analysis, give an asymptotic bound on the number of times your algorithm calls SAME.

Solution: We've only learned one algorithm design technique so far in this class, so let's solve the problem using the divide-and-conquer paradigm. Suppose we divide X into two equal sized groups. The main observation we will use is that the majority equivalence class for X is also the majority equivalence class for at least one of the two groups. However, one of the two groups may not contain a majority group. We will describe an algorithm MAJORITY that outputs an element in the majority set of X if more than half the elements are equivalent. Otherwise, MAJORITY will output the sentinel value \emptyset.

MAJORITY($X[1..n]$):
 if $n = 1$, then return $X[1]$
 $m \leftarrow \lceil n/2 \rceil$
 $\ell \leftarrow \text{MAJORITY}(X[1..m])$
 if $\ell \neq \emptyset$
 // Check if ℓ is a member of the majority set
 $\text{count} \leftarrow 0$
 for $i \leftarrow 1$ to n
 if $\text{SAME}(X[i], \ell)$, then $\text{count} \leftarrow \text{count} + 1$
 if $\text{count} > n/2$, return ℓ
 $r \leftarrow \text{MAJORITY}(X[m+1..n])$
 if $r \neq \emptyset$
 // Check if r is a member of the majority set
 $\text{count} \leftarrow 0$
 for $i \leftarrow 1$ to n
 if $\text{SAME}(X[i], r)$, then $\text{count} \leftarrow \text{count} + 1$
 if $\text{count} > n/2$, return r
 There was no majority this time!
 return \emptyset

The algorithm is correct for $n = 1$, because the one element is the majority of X. Now, suppose $n > 1$, and assume inductively that MAJORITY returns a representative of the majority set if there is a majority set and \emptyset otherwise for all arrays of fewer than n elements.

Suppose more than $n/2$ elements are equivalent in X, and let x be a member of this majority equivalence class. If $X[1..m]$ contains more than $m/2$ elements from this equivalence class, then the first recursive call to MAJORITY will return some member ℓ by the inductive hypothesis. The higher for loop will then discover the majority of elements in X are the same as ℓ and return ℓ correctly. Now suppose the first call returns some element outside the majority class for X or it returns \emptyset. In this case, at most $m/2$ elements of x’s class belong to $X[1..m]$. If n is even, $X[m+1..n]$ contains more than $n/2 - (n/2)/2 = n/4$ elements in x’s class, which is more than half the elements of $X[m+1..n]$. If n is odd, then $X[m+1..n]$ contains more than $n/2 - (n/2 - 1)/2 = n/4 + 1/4$ elements in x’s class, which is again more than half the elements of $X[m+1..n]$. Either way, the second call to MAJORITY will return a representative of that set by the inductive hypothesis, and the second for loop will verify that representative belongs to the majority set of X.

Finally, if there is no majority set in X, then neither for loops will succeed in increasing count enough to return an element. MAJORITY will correctly return \emptyset.

For the running time, we observe the for loops perform $\Theta(n)$ operations outside of the recursive calls. In the worst case, we make both recursive calls. Let $T(n)$ be the worst case running time. We have

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + \Theta(n).$$

This recurrence is the same one used for merge sort. We saw in class that the solution to this recurrence is $\Theta(n \log n)$. ■
Rubric: 10 points total: 1 point for base case; 4 points for the rest of the algorithm; 3 points for the proof; 2 points for full analysis, 1 point for just giving the recurrence. A correct $O(n^2)$ solution is worth at most 7 points.