Let $G = (V, E)$ be a directed graph with \textit{integer} edge capacities $c : E \rightarrow \mathbb{Z}_{\geq 0}$. Suppose you have already computed a maximum flow f^* in G.

(a) Describe and analyze an algorithm to update the maximum flow after the capacity of a single edge is increased by 1.

\textbf{Solution:} We will assume f^* is integral. We compute the residual graph G_f, using the \textit{new} capacities. If G_f contains an augmenting path from s to t, then we augment f^* by pushing one unit of flow along the path. That is the whole algorithm. Computing a single residual graph and possibly pushing flow along a single path takes $O(E)$ time total.

If there is no augmenting path, then f^* is already maximum for the new capacities and the algorithm is correct to do nothing. Otherwise, the path has a bottleneck of at least 1, because capacities are integral. Any (s, t)-cut including the minimum (s, t)-cut can have its capacity increase by at most 1 after increasing the capacity of a single edge by 1. Therefore, the new maximum flow has value at most 1 more than $|f^*|$, meaning one augmentation of one unit of flow is enough to find a new maximum flow. ■

\textbf{Rubric:} 4 points total: 3 points for the algorithm and analysis; 1 point for the proof.

(b) Describe and analyze an algorithm to update the maximum flow after the capacity of a single edge is decreased by 1.

\textbf{Solution:} We will assume f^* is integral. Let $u \rightarrow v$ be the edge whose capacity is decreasing, and let $c(u \rightarrow v)$ refer to the \textit{original} capacity of $u \rightarrow v$ before the decrease. We assume $u, v \notin \{s, t\}$. We can guarantee this without loss of generality by subdividing $u \rightarrow v$ to be a path $u \rightarrow u' \rightarrow v' \rightarrow v$, assigning $c(u \rightarrow u') = c(u' \rightarrow v') = c(v' \rightarrow v)$ and $f^*(u \rightarrow u') = f^*(u' \rightarrow v') = f^*(v' \rightarrow v)$, and decreasing the capacity of $u' \rightarrow v'$ instead.

Now, if $f^*(u \rightarrow v) < c(u \rightarrow v)$, then the algorithm terminates. Otherwise, we decrement $f^*(u \rightarrow v)$ to create flow f'. The flow f' does not satisfy the vertex conservation constraints for u and v, because the flow incoming to u is 1 unit too high and the flow entering v is 1 unit too low.

Let $G' = G - (u \rightarrow v)$. We compute the residual graph $G'_{f'}$. If there exists an augmenting path from u to v in $G'_{f'}$, we push 1 unit of flow along that path, and update f' accordingly. Otherwise, we push one unit along an augmenting path from u to s and one unit on an augmenting path from t to v. The algorithm then terminates. Computing residual graphs and searching for paths all take $O(E)$ time, so the total running time is $O(E)$.

If $f^*(u \rightarrow v) < c(u \rightarrow v)$, then f^* is still feasible after decreasing the capacity of $u \rightarrow v$, and it is still a maximum feasible flow. Otherwise, we need to correct the one unit of flow imbalance on u and v according to f'. If there is an augmenting path from u to v in $G'_{f'}$, then pushing along that path changes the flow imbalance on each of u and v by 1 unit so the new outgoing and incoming flows for each of u and v become equal. The new flow is feasible, and it still has the same value as f^* so it must be a maximum flow.

Consider the final case. Let $S \subset V$ be the set of vertices reachable from u in $G'_{f'}$, and let $T = V \setminus S$. Vertex u has more flow incoming than outgoing, and the only vertices with more
flow leaving then entering are s and v. However, that incoming flow cannot be coming from v, because then there would be a path from u back to v in $G'_{f'}$, contradicting the current case. We can follow a path of positive flow edges from s to u in G', so we can follow those edges backward in $G'_{f'}$ to see $s \in S$ and that we can push one unit from u to s. We have $v \notin S$ by assumption, so $v \in T$. By similar logic to $s \in S$, we have $t \in T$, and we can push one unit from t to v. Finally, these two augmenting paths don’t intersect since there are no residual graph edges from S to T, so we don’t decrease the flow on any edge twice when pushing along those paths. We are saturating every edge from S to T in G and avoiding every edge from T to S, since we cannot go from vertices of S to vertices of T in $G'_{f'}$. Therefore, (S, T) is a minimum (s, t)-cut whose capacity was just decreased by 1, meaning the value of the maximum flow must have decreased by 1. Flow f' must be a maximum flow according to the new capacities.

\begin{rubric}
6 points total: 4 points for the algorithm; 1 point for the analysis; 1 point for the proof.
\end{rubric}
Suppose you are given an $n \times n$ grid, some of whose squares are colored black and the rest white. Describe and analyze an algorithm to determine whether tokens can be placed on the grid so that

- every token is on a white square;
- every row of the grid contains exactly one token; and
- every column of the grid contains exactly one token.

Your input is a two dimensional array $\text{IsWhite}[1 .. n][1 .. n]$ of booleans, indicating which squares are white. Your output is a single boolean.

Solution: We build a bipartite graph $G = (U \cup W, E)$ with one bipartite set $U = \{u_1, \ldots, u_n\}$ representing the rows and another bipartite set $W = \{w_1, \ldots, w_n\}$ representing the columns. For each pair (i, j) where $\text{IsWhite}[i][j] = \text{True}$, we add an edge u_iw_j to G. Finally, we compute a maximum matching in G using the algorithm from lecture and return True if and only if the maximum matching has n edges. Building the graph takes constant time per entry in IsWhite, so $O(n^2)$ time. Graph G has $O(n)$ vertices and $O(n^2)$ edges, and it takes $O(VE)$ time to compute a maximum matching using the algorithm from lecture, so the total running time is $O(n^3)$.

To prove correctness, we need to show there is a legal placement of tokens if and only if the maximum matching in G contains n edges. Suppose there is a legal placement of tokens. Let $E' \subseteq E$ be the subset of edges where $u_iv_j \in E'$ if and only if (i, j) gets a token. The tokens go only on white squares, so edge $u_iv_j \in E$. Also, no row or column gets more than one token, so E' forms a matching. It takes n tokens to put a token on each row, so the size of this matching is n.

Now, suppose there is a matching $E' \subseteq E$ of size n. We place a token on each position (i, j) where $u_iv_j \in E'$. Since $u_iv_j \in E$, position (i, j) must be white. Further, no vertex u_i is incident to more than one member of E' so no row gets more than one token. Similarly, no column gets more than one token. Finally, there are n tokens being placed, so we must be giving every row and column exactly one token.

Rubric: 10 points total: 5 points for the algorithm; 2 points for the analysis, -1 point for not giving the running time in terms of n; 3 points for the proof.
Suppose there are n candidate DJs and g different musical genres available. Describe and analyze an efficient algorithm that either assigns a DJ and a genre to each of the $3k$ sets, or correctly reports that no such assignment is possible.

Solution: We compute n by counting the DJs, and if $n < k$, then we report no assignment. Otherwise, we will reduce this problem to computing a maximum flow in a directed graph. We build the directed graph $G = (\{s, t\} \cup P \cup G \cup D, E)$ and capacity function $c : E \rightarrow \mathbb{Z}_{\geq 0}$ as follows. We build a set P of people vertices where each $p_i \in P$ is a single candidate DJ. We build a set G of genre vertices where each $g_j \in G$ is a single genre. We build a set $D = \{d_1, d_2, d_3\}$ of day vertices where each $d_i \in G$ is a single day. Finally, we add a source vertex s and target vertex t to G.

For each candidate DJ p_i, we add edge $s \to p_i$ to G and set $c(s \to p_i) := 3$. For each genre g_j that candidate DJ p_i is willing to play, we add edge $p_i \to g_j$ to G and set $c(p_i \to g_j) := \infty$. For each genre g_j and day d_t, we add edge $g_j \to d_t$ to G and set $c(g_j \to d_t) := 1$. Finally, for each day d_t, we add edge $d_t \to t$ to G and set $c(d_t \to t) := k$.

We then compute a maximum s, t-flow f^* in G using the augmenting path algorithm of Ford and Fulkerson. Because the capacities are integral, the flow will be integral as well. If $|f^*| < 3k$, we report there is no legal assignment of DJs. Otherwise, observe that every path from s to t is of the form $s \to p_i \to g_j \to d_t \to t$. We iteratively find an (s, t)-path $s \to p_i \to g_j \to d_t \to t$ whose edges have positive flow value, assign DJ p_i to play genre g_j on day d_t, decrease all flow values along the path by 1, and repeat until there is no such path.

Counting candidate DJs, checking if $n < k$, and reporting there is no assignment in that case takes $O(n)$ time. If we build graph G, then it contains $O(n + g)$ vertices and $O(ng)$ edges. The (s, t)-cut $(V \setminus \{t\}, \{t\})$ has capacity $O(k)$, so we can compute a maximum flow in $O(Ek) = O(ngk)$ time. Reporting the $O(k)$ DJ assignments takes $O(k)$ time, so the total running time is $O(ngk)$.

If $n < k$, then we cannot fill all $3k$ slots without somebody DJing more than 3 times, so the algorithm is correct to give up in that case. Now, suppose the algorithm finds a flow of value $3k$. Each time it assigns a DJ to play a set, it decreases the value of the flow by 1, so it must do $3k$ assignments. Each assignment is based on a path $s \to p_i \to g_j \to d_t \to t$ where by construction DJ p_i is willing to play genre g_j. We have $c(s \to p_i) = 3$, so we assign each DJ at most 3 times; $c(g_j \to d_t) = 1$, so we assign each genre to a day at most once; and $c(d_t \to t) = k$, so we assign at most k sets per day. Since we assign $3k$ sets total, each day gets exactly k sets.

Finally, we prove that if there is some legal assignment for the sets, then the algorithm will find a flow of value $3k$. Let f be the flow where $f(s \to p_i)$ is equal to the number of times DJ p_i is assigned, $f(p_i \to g_j)$ is equal to the number of times DJ p_i plays genre g_j, $f(g_j \to d_t)$ is equal to the number of times genre g_j is played on day d_t (so 0 or 1), and $f(d_t \to t)$ is equal to k. The numbers sum up to make f an (s, t)-flow, we have capacities high enough to guarantee this flow is feasible, and this flow has value $3k$. ■

Rubric: 5 points extra credit total: 3 points for the algorithm; 1 point for the analysis, -1/2 point for not giving the running time in terms of the input size; 1 point for the proof.