Realistic practice for the general sections of the FE exam

Second Edition

per year, chine pay two if compounding is considered? The effective annual interest rate is 6%.

- (A) 5.2 years
- (B) 6.1 years
- (C) 7 years
- (D) 8 years
- **59.** Funds are deposited in a savings account at an interest rate of 8% per annum. If the interest is compounded semi-annually, what is most nearly the initial amount that must be deposited to yield a total of \$10,000 in 10 years?
 - (A) \$4530
 - (B) \$4560
 - (C) \$6730
 - (D) \$8200
- **60.** \$500 is deposited into a bank savings account with 6% interest compounded annually. Most nearly how much is in the account at the end of three years?
 - (A) \$550
 - (B) \$600
 - (C) \$650
 - (D) \$700
- 61. At the end of each year for five years, \$500 is deposited into a credit union account. The credit union pays 5% interest compounded annually. At the end of five years (immediately following the fifth deposit) most nearly how much will be in the account?
 - (A) \$640
 - (B) \$1750
 - (C) \$2760
 - (D) \$3550
- **62.** On January 1, \$5000 is deposited into a high-interest savings account that pays 8% interest compounded annually. If all of the money is withdrawn in five equal end-of-year sums beginning December 31 of the first year, most nearly how much will each withdrawal be?
 - (A) \$1008
 - (B) \$1150
 - (C) \$1210
 - (D) \$1250
- **63.** If you needed to have \$800 in savings at the end of four years and your savings account yielded 5% interest paid annually, most nearly how much would you need to deposit today?

- (A) \$570
- (B) \$600
- (C) \$660
- (D) \$770

64. What is most nearly the reaction at A?

- (A) 50 N
- (B) 100 N
- (C) 130 N
- (D) 150 N
- **65.** Find the magnitude of the force in the member marked with an "X." All members are pin-connected.

- (A) 9.70 N
- (B) 27.3 N
- (C) 85.0 N
- (D) 223 N
- **66.** The approximate vertical force component in member BC is

- (A) 990 N
- (B) 1300 N
- (C) 2300 N
- (D) 3600 N

67. What is most nearly the frictional force between the 80 kg block and the ramp? The coefficient of static friction is 0.2, and the coefficient of dynamic friction is 0.15.

- (A) 60 N
- (B) 80 N
- (C) 90 N
- (D) 120 N

68. Force F is gradually increased until the 20 kg block begins moving to the right. The 5 kg block is prevented from moving by a cord. What is most nearly the minimum force F for which movement is possible?

- (A) 7.4 N
- (B) 59 N
- (C) 74 N
- (D) 81 N

69. Most nearly, what force, F, is required to lift a 50 N load? All pulleys are frictionless. Assume all strands are parallel.

- (A) 8.3 N
- (B) 13 N
- (C) 17 N
- (D) 25 N

70. What is most nearly the maximum value of x such that F can be applied without tipping the block? ($\mu = 0.4$.)

- (A) 1.5 m
- (B) 3.5 m
- (C) 4.4 m
- (D) 5.0 m

DYNA DNKS

71. What is most nearly the component of velocity perpendicular to the wall after impact if the coefficient of restitution is 0.8?

- (A) 24 m/s
- (B) 30 m/s
- (C) 32 m/s
- (D) 40 m/s

72. The velocity of a particle at time t is

$$\mathbf{v}(t) = 12t^4 + \frac{7}{t}$$

Most nearly, what total distance is traveled between t=0.2 and t=0.3?

- (A) 0.98
- (B) 1.8
- (C) 2.8
- (D) 8.4
- **73.** A spring has a spring constant of 10 N/cm. It is compressed 5 cm. The spring is released and pushes against a free projectile with a mass of 1 kg. The projectile velocity immediately after losing contact with the spring is most nearly
 - (A) 0.32 m/s
 - (B) 1.6 m/s
 - (C) 32 m/s
 - (D) 50 m/s
- **74.** A rocket is moving through a vacuum. It changes its velocity from 9020 m/s to 5100 m/s in 48 s. The power required to accomplish this if the rocket's mass is $213\,000$ kg is most nearly
 - (A) 34 GW
 - (B) 120 GW
 - (C) 170 GW
 - (D) 250 GW
- **75.** A projectile is launched at 52 degrees from horizontal with an initial velocity of 3600 m/s. If the mass of the projectile is 32 kg, what is most nearly the total kinetic and potential energy possessed by the projectile at t=13 s? Neglect all forms of friction.
 - (A) 5.9 kJ
 - (B) 0.58 MJ
 - (C) 210 MJ
 - (D) 420 MJ

Problems 76 and 77 are based on the following statement.

A 30 cm long rod ($E=3\times10^7$ N/cm², $\alpha=6\times10^{-6}$ cm/cm·°C) with a 2 cm² cross section is fixed at both ends.

- **76.** If the rod is heated to 60°C above the neutral temperature, what is most nearly the stress?
 - (A) 110 N/cm^2
 - (B) $11\,000\,\,\text{N/cm}^2$
 - (C) $36\,000\,\mathrm{N/cm^2}$
 - (D) 57000 N/cm^2

- 77. If one end of the rod is free to expand the elongation is most nearly
 - (A) 5.4×10^{-4} cm
 - (B) 3.6×10^{-4} cm
 - (C) 0.01 cm
 - (D) 0.03 cm
- 78. Vickers, Knoop, and Brinell are all names of
 - (A) Nobel prize winners in metallurgy
 - (B) thermodynamic constants
 - (C) hardness tests
 - (D) chi-squared statistics
- **79.** What is the maximum flexural stress at a distance x from the free end of a cantilever beam supporting a tip load, P?

- (A) $\frac{Pxc}{2I}$
- (B) $\frac{Pc}{2I}$
- (C) $\frac{PcL}{2I}$
- (D) $\frac{Pxc}{2EI}$
- 80. What is most nearly the elongation in the cable if F = 1000 N? The cable's effective cross-sectional area is 2 cm². Its modulus of elasticity is 1.5×10^6 N/cm².

- (A) 0.0028 cm
- (B) 0.14 cm
- (C) 0.28 cm
- (D) 0.56 cm