Defect-Based Reliability Analysis for Mission-Critical Software 
Raymond A. Paul
Farokh Bastani, I-Ling Yen, Venkata U.B. Challagulla

OASD/C3I/Y2K, Department of Defense

Dept. of Computer Science, Univ. of Texas at Dallas

Ray.Paul@osd.pentagon.mil



{bastani,ilyen,uday}@utdallas.edu
Abstract

      Most software reliability methods have been developed to predict the reliability of a program using only data gathered during the testing and validation of a specific program. Hence, the confidence that can be attained in the reliability estimate is limited since practical resource constraints can result in a statistically small sample set. One exception is the Orthogonal Defect Classification (ODC) method, which uses data gathered from several projects to track the reliability of a new program. Combining ODC with root-cause analysis can be useful in many applications where it is important to know the reliability of a program for a specific type of a fault. By focusing on specific classes of defects, it becomes possible to (a) construct a detailed model of the defect and (b) use data from a large number of programs. In this paper, we develop one such approach and demonstrate its application to modeling Y2K defects.*
Keywords: Data analysis, Measurement data, Software defects, Software reliability, Y2K compliance assessment.

1    Introduction

      Due to the potential for catastrophic failures, it is very important to be able to assure the reliability of mission-critical software systems, such as command and control systems and aircraft control systems, to a high degree of confidence.  Many methods have been explored for assuring the reliability of software systems, but no single method has proved to be completely effective.  Formal verification is difficult to apply to complex programs and cannot cope with specification faults.  Testing can require over 100,000 years to achieve a reasonable confidence in the correctness of safety-critical software [But93, Lit94].  Even then, only a negligible fraction of the input space will have been exercised.  Other potentially serious problems with testing include the difficulty of constructing reliable test oracles [Amm94], the difficulty of estimating the operational profile [Ada96], and the difficulty of generating a large number of realistic test trajectories [Bas94].    

      While this sounds dismal, the special nature of some defects can allow a very effective modeling approach. Instead of having to certify whether a program is free of any defects, the problem is reduced to having to certify whether it is free of a very specific type of defect.  Examples include the absence of Y2K defects, the absence of deadlocks, the absence of memory overflows, the absence of missed real-time deadline, etc.  This focus on a fixed classes of defects makes it possible to combine observations from a large number of programs rather than having to consider each program separately.  This, in turn, can  provide a large number of observations that can result in high-confidence reliability assessment. 

    In this paper, we discuss an approach that can provide a quantitative confidence in the probability that a program is free of a specific class of defects.  The method is based on the memory-based reasoning approach.  In the first phase, information concerning the testing and analysis of a set of programs is acquired.  The information includes the attributes of the programs, the type of testing and analysis methods that were used, and the number of that class of defects that was detected by the different testing and analysis methods for different program categories.  The memory-based reasoning technique is then applied to analyze the information and estimate the number of remaining defects of that type given the attributes of the program and the results of the various testing and analysis methods.  Once a sufficient amount of information is collected, the statistical results can be applied to a program that is not in the analysis set to predict its reliability and guide the testing process.

      The rest of the paper is organized as follows: Section 2 compares and contrasts the defect-based reliability analysis approach with related methods from the literature.  Section 3 provides a general overview of the approach.  Section 4 develops the approach for Y2K defects and shows its applications to data for a set of mission-critical systems.  Section 5 summarizes the paper and outlines some future research directions.

2    Background
      Over the past 25 years, various methods have been developed for assessing software reliability, including fault-injection methods, reliability growth models, and sampling models.  Fault injection techniques introduce artificial faults into a program and observe the number of original faults and the number of seeded (artificial) faults that are detected during the testing and debugging phase.  This method can be adapted to defect-based analysis by ensuring that the seeded faults are all of the desired class of defects.  The data can be used to estimate the number of faults remaining in the program assuming that seeded faults have the same distribution as the original faults.  However, it is difficult to enforce this assumption in practice since the distribution of original faults is not known a priori.

      The second approach records the failure history of the program during the testing and debugging phase and uses the data to predict the distribution of the time to the next failure.  Since the reliability of the software generally improves when faults are removed from the program (provided no new faults are introduced), these models are called software reliability growth models.  Reliability growth models differ in the assumptions they make about the size of the faults in the software, the testing process, whether new faults can be introduced, etc.  There are also variations that use multiple models followed by goodness-of-fit tests [Abd86, Bro90].  More recent models use neural networks to learn the failure pattern of the software based on its failure history [Kar92].  All these methods can be adapted to defect-based reliability analysis by considering only data related to the specific class of defects.  However, this can greatly reduce the sample size and result in very low confidence bounds.

      The third method is similar to sampling techniques used to determine the reliability of hardware components.  However, instead of selecting a random sample of components and subjecting them to operational use, the program is tested with a random sample of points from its input domain [Tha78].  The sampling approach is theoretically sound, but it is a “brute force” method that is expensive to apply in practice [Bas94].  It requires a large number of test data to attain ultrahigh reliability objectives.  Furthermore, the reliability estimate is sensitive to the operational distribution (this is also true for reliability growth models) and requires significant re-testing of the software whenever the operational profile changes [Bas94].  Some other works related to the statistical approach have focused on analysis, evaluation, and variations to make it more practical.  All these methods can be adapted to defect-based analysis by confining the observations to the specific class of defects.  However, this again limits the sample size and reduces the confidence in the resulting estimate.

      While many of these techniques work well for low to medium confidence applications, they are controversial for safety critical applications. A natural way is to combine statistical testing with formal verification. This has been done to some extent in the input-domain based approach [Ram82] which divides the input space into a number of partitions. Only those partitions that cannot be formally verified are subjected to statistical testing . However, this partitioning approach requires the verification of complete program paths which is difficult to perform in practice. Also it does not help with the defect-based analysis unless a verification process is used that guarantees that all defects that all defects of a particular class will be uncovered fully during the verification.

      The ODC (Orthogonal Defect Classification) approach [Bha94] attempts to bridge the gap between the statistical methods discussed above and root cause analysis methods that focus on a detailed analysis of each type of defect.  ODC identifies a small number of defects and records the trigger (testing, analysis methods, etc.) and type for every defect that is detected during the development process.  This information is then used for statistical quality control, especially in-process monitoring and reliability assessment.  In-process monitoring is achieved by mapping the skills of the development personnel to review and inspection triggers [Cha93,Chi92]. For example, one person may have extensive knowledge of prior versions of a product (backward compatibility trigger) while another person may have knowledge of how a product works with other products within the same software configuration (lateral compatibility trigger) [Bha94].  The statistical defect history can be used to determine whether additional reviewers with a particular skill are needed for detecting the remaining defects.

      The key differences between our approach and ODC are as follows: (a) We focus on one class of defect and develop a detailed model of the defect, such as how the defect arises in a program and what methods are effective at triggering it.  (b) We use memory-based reasoning methods [Sta86, Wal87] to overcome some of the problems of pure statistical techniques.The main similarity with ODC is that our approach also can make use of data from multiple projects in order to attain high confidence in the statistical results.
3    Defect-Based Reliability Prediction

      Consider a particular class of defects, denoted as type-I (“type of interest”) defects.  Our reliability prediction approach starts with raw observations (e.g., reviews, analysis, test results, number of type-I defects) that have been gathered from the assessment effort for a program.  The raw data is first normalized by mapping it to a set of predefined attributes and are then added to the database.  The different attributes are used to partition or cluster the data set or to perform regression analysis. When a new program is provided to the system, it uses the partitioning rules obtained from the existing data set to find the best match between the new data and those that had been previously stored in the system.  Then regression analysis is performed on the selected cluster and used to predict the number of type-I defects remaining in the program.

      The approach we use to identify clustering rules is similar to the “memory-based reasoning” method [Sta86,Wal87].  Traditional learning systems, such as rule-based systems and neural networks, have the problem of plasticity of the knowledge base.  If the system is plastic (i.e., it modifies its rules continuously), then old information will become less and less relevant.  This can result in cases where some noise in the input stream wipes out all the knowledge that has been acquired by the system.  On the other hand, if the system is too rigid (it learns and then ceases to learn), then it will be unable to identify clusters that happened to be absent in the training pattern [Sta86,Wal87].

      Memory-based reasoning is a powerful, data-intensive learning method that records all information that is relevant to a prediction system.  When a prediction needs to be made, it matches the input pattern with all the information in the database and uses statistical procedures to compute the most likely scenario that describes the given input pattern.  Hence, it uses all the data to predict the reliability of the software.

     For mission critical systems, it is essential not only to have a quantitative measure of the reliability but also to demonstrate high confidence in the reliability estimate.  Combining data from a large number of programs provides a tight confidence bound on the probability that a particular feature implies the presence (or absence) of type-I defects.  However, since there is likely to be a very wide variation among the attributes and testing/analysis efforts for different programs, it is unlikely that there will be a large number of data points that are in close proximity to the specific profile of a new program.  The problem then is to develop an approach to compute an aggregate confidence bound for the composite profile from the individual confidence bounds for specific attributes or small groups of attributes.

  The system can be trained using data from programs in a training set.  The information from the next program in the training set is added to the database.  Then, the reliability and confidence numbers are computed for the program.  The training program is then subjected to extensive testing and analysis to determine whether it contains additional type-I defects.  The prediction of the system is compared with the actual observations to determine the accuracy of the system. Memory-based reasoning does not have “learning” in the way that neural networks do since it retains all the data. However, the result of the training is used to guide the addition of programs with attributes that are not predicted well by the current training set.

     A formal statistical experiment is conducted to test the prediction system.  As more and more programs are added to the database, the accuracy of the prediction should keep on improving.  Once the confidence interval reaches a specified limit, the system is ready for operational use.

4    Case Study: Application to Y2K Defect Analysis 

This section presents the results of data analysis that was done on 11 Mission-Critical Systems that had been subjected to rollover testing in 1999.  The intent was to capture trends and patterns that would provide data for a memory-based reasoning prediction model.  Table 1 shows some data for 11 mission-critical systems.  In general, the attributes can be classified into program attributes (i.e., attributes that can be obtained from the code or related information), testing attributes (methods of testing and the corresponding results), and analysis attributes (methods used to analyze the software and the corresponding results).  The results of clustering and regression analysis for the data shown in Table 1 are presented later in this section.


[image: image1.wmf]Table 1.  

Summary Y2K-related data for 11 mission-

critical systems.

Name,

Class*

#o

#s

#t

a

b

c

d

e

A

3

68

66

14

3

37

132

7

B

2

31

26

58

5

62

52

5

C

3

54

39

5

2

49

78

3

D

2

55

49

39

2

72

98

8

E

4

185

129

11

0

16

258

13

F

3

33

25

20

1

57

50

4

G

5

77

70

26

3

38

140

2

H

4

38

37

15

10

53

74

9

I

2

61

54

8

3

41

108

11

J

2

70

65

41

5

71

130

5

K

6

88

68

7

8

59

136

3

Total

36

773

**

628

244

42

1256

***

* A = command & control; B = command, control & communications

and weapons; C = communications D = command, database; E =

command, control, communications, database; F= communications,

database; G = control, command, communications; H = database,

transactions; I = command, control, communications, database

;  J =

database, communications; K = communications, control, command,

database.

** Some 

MCSs were tested by more than one group

*** Some test results were leveraged from other Y2K testing events


The first column in Table 1 shows the name of the system and its main application domain.  Column 2 shows the number of operational evaluations that were performed.   Column 3 shows the number of mission-critical systems for each row and column 4 shows the number of these systems that were deemed to be testable.  Column 5 shows the number of tasks that each system performs.  Column 6 shows the number of Y2K defects that were identified during rollover testing and column 7 shows the number of other (non-Y2K) defects that were uncovered by the same tests. Column 8 shows the total number of tests for each system and Column 9 provides an approximate measure of age of each system. The data are discussed and analyzed in greater detailed in this section.

4.1   Data Description and Classification

     All the 11 systems are large-scale systems with a large number of skilled individuals involved in their design, development, and evaluation. The scale of these systems provides formidable challenges in their analysis.  At the same time, their large scale can help overcome one major impediment to the analysis of the software, namely, the averaging out of the influence of widely varying productivities and skills of individual software engineers.  Since these systems involve substantial effort, it may be reasonably expected that any differences in their quality can be predicted using detailed technical analysis. Since the focus of this analysis is on determining the likelihood of residual Y2K defects, the technical factors that are relevant include the following:

(a) The application domain.  Typically, there are a number of basic application domains such as embedded process-control system, command and control system, hard real-time device controller, telecommunication system, financial system, patient care system, inventory control system, scheduler, trend analyzer, data tracking and capture. As with the ODC (Orthogonal Defect Classification) approach, it is best to have a few key classes so that a given application can be classified easily and correctly by the programmer. The application domain for the 11 systems shown in Table 1 range from pure communication, command & control, and database oriented functions to a combination of these capabilities.  The type of application can impact the dormancy of date-related information in the system, i.e., the oldest date that the software will have to handle. It can also affect the type and frequency of date-related operations that are used by the system. It is expected that database systems will have a higher dormancy period since they store date-related information for a long time on secondary and archival storage.  In contrast, communication and real-time embedded software are less likely to have date-related information that is very old.  It is also expected that database systems will make heavy use of calendar computations as well as operations that compare and rank two or more dates.  At the other extreme, communication and low level embedded control programs are more likely to use the system clock and compute differences between two time-related data items in order to determine the elapsed time between two events, synchronize multiple activities, etc.

(b) Level of external interaction. The level of external interactions that the system must participate in is also expected to influence the likelihood of Y2K defects.  A system that must interact with humans or with other autonomous systems is more likely to decompose the system time into the (seconds, minutes, hours, day of month, month, year) form than a system that is a stand-alone system.  The former systems are especially likely to incur Y2K defects due to the need to handle user inputs.

(c) Age of the system.  Our conjecture is that systems that were developed in the 1970s and 1980s will be more likely to have Y2K defects than a system that has been developed recently.  The rationale for this is that there was increasing awareness of the potential for Y2K problems in the 1990s as compared with earlier decades.  Hence, it is more likely that an older system will have Y2K defects than a more recently developed system.

(d) Intrinsic quality of the system.   It is expected that a system that has fewer defects in general will also have lower probability of having Y2K defects.  This is more likely to be true for more recently developed systems than for older systems.  The reason is that Y2K Y2K defects were often viewed as optimizations that made efficient use of system resources before the dangers of Y2K defects became apparent.

(e) Testability of the system.  A system that is more testable is more likely to show the presence of Y2K defects as compared with a system that is more difficult to test.  However, this does not mean that the latter systems have fewer Y2K defects.  On the contrary, it may imply that the latter systems are more likely to have undetected Y2K defects.

The analysis consists of evaluating the 11 systems for patterns based on the above technical data.  For a more detailed analysis, additional data would be required, including the following: Program Attributes such as (a) Size of the program, (b) Complexity of the program,  (c) Implementation language, (d) Platform, (e) Vendor. Test Attributes that capture different characteristics of the testing process used to assess the software including (a) Test generation method, (b) Test configuration, (c) Test execution, (d) Test stopping criteria.  Attributes of analysis method(s) that help identify the analysis methods used to evaluate the software.  These are especially relevant for systems that cannot be easily tested in simulated or operational environments.  Some of these attributes are (a) Analysis target, e.g., requirements specification, design, code, etc., (b) Analysis method, e.g., verification, simulated execution, desk checking, review, etc. and (c) Analysis procedure, e.g., independent inspection, walk-through, etc.

4.2   Classification of the systems based on application domain

From the data contained in Table 1, the systems can be classified into the following six categories.  The index assignment is intended to have a lower value for a system that is less database-oriented and a higher value for a system that is more database-oriented.

1. Communications (C)

2. Command & Control (A)

3. Command & Control + Communications (G,B,D)

4. Command & Control + Communications + Database (E, I, K)

5. Communications + Database (F, J)

6. Database (H)

The analysis shows a mildly positive correlation (0.44) between the number of Y2K-defects and the index assignment.  This provides some support for the conjecture that more database-oriented system has a higher probability of having Y2K defects.

4.3   Including quality factor

      In this step, the quality of the systems is considered based on an approximate estimate of the number of Non-Y2K defects that were observed.  The data is as follows (System name, No. of non-Y2K problems, No. of Y2K problems): (A,27,3), (B,17,5),  (C,21,2),  (D,15,2), (E,6,0),  (F,13,1),  (G,9,3), (H,19,10),  (I,7,3),  (J,16,5), (K,12,8) 

      The analysis classifies the system into the following two classes:

· Class A: C(1),  A(2),  E(4),  D(3),  F(6)

· Class C:  Subclass C-1: G(3), B(3), J(6)

               Subclass C-2: I(4), K(4), H(7)

      Systems in class A have better quality than those in Class C (average of 1.8 Y2K defects in A versus 5.7 defects in C).  Class C can be further split into C-1 (average of 4.3 Y2K defects) and C-2 (average of 7 Y2K defects).

Further analysis shows that classes A, C-1, and C-3 have strong positive correlation between the number of Non-Y2K defects found and the number of Y2K defects found.  For Class A, the correlation is 0.95, for subclass C-1 it is 0.97, and for subclass C-2 it is 0.94. Since subclasses C-1 and C-2 have only 3 elements each, it is prudent to consider the parent Class C.  The analysis shows that the correlation for elements in class C is reasonably positive (0.68) even for the parent class.

      The positive correlation is intuitively appealing since it means that a system which is generally of poorer quality is likely to be of poorer quality when only Y2K defects are considered. The data in classes A and C were analyzed separately to determine whether there was any good correlation with the application domain. The sample size is small, so the confidence level is low.  However, there is a higher probability that a system that is less database-oriented (lower index, 1 to 3) is in class A than in class C. The probability is estimated to be 0.6.  Similarly, the probability is higher (0.67) that a more database-oriented system is in class C than in class A.

4.4   Factor in "Time-in-Service"

      In the next step, the average number of years that the system has been in service was considered to test whether this measure of the age of a system was a good predictor of the probability of residual Y2K defects. The correlation was very low, -0.16.  Given the negative sign, it does not get support from technical/historical reasoning.  Hence, the data set does not support the expectation that newer systems would be more Y2K-compliant than older systems.  The reason for this could be that newer systems use older subsystems and may be assembled from COTS components that are not Y2K-compliant.

4.5   Factor in the testability of the systems

      In the next step, the data in the “number of tasks” column was considered. Using the definition that the number of tasks reflects “the number of critical tasks that have to be performed in order to successfully complete a mission objective”, it is reasonable, as a first-level approximation, to consider the “number of tasks” to be a measure of the ease of testing the system, i.e., a measure of its testability. Intuitively, if fewer tasks need to be completed, then the system can be tested more thoroughly than than if several tasks must be completed for a mission.  With this interpretation, the analysis results in the following subclasses:

· A-1: C(1)[5 tasks], E(4)[11 tasks], A(2)[14 tasks]

· A-2: F(5)[20 tasks], D(3)[39 tasks]

· C-1: G(3)[26 tasks], B(3)[58 tasks], J(5)[41 tasks]

· C-2: I(4)[8 tasks], K(4)[7 tasks], H(6)[15 tasks]

Systems in Subclass C-1 have significantly more tasks and significantly fewer Y2K defects than systems in Subclass C-2.  Systems in Subclass A-1 have fewer tasks than those in subclass A-2. However, there is only a small negative correlation (-0.28 for class A, -0.22 for class C) between the ratio of the number of MCS tests to the number of tasks and the number of Y2K defects.  This implies that systems that were tested more thoroughly revealed fewer Y2K-defects than those that were tested less thoroughly.  One possible explanation for this is that the test group tried very hard to uncover Y2K-defects and subjected systems for which no Y2K-defects had been found to more extensive testing.

4.6   Regression analysis

The most promising clustering of the data is the division of the data in Table 1 into class A and class C systems based on the quality factor.


[image: image2.wmf]Table 2. Summary of Correlated values and errors

Class A

System*

(f)

(x)

Error

(b-x)

(z)

Error

(b-z)

A

2

3.00001

-0.00001

1.68815

1.31185

C

1

2.00000

0.00000

2.49146

-0.49146

D

3

1.99999

0.00001

3.64957

-1.64957

E

4

0.00002

-0.00002

1.20159

-1.20159

F

5

0.99999

0.00001

6.11791

-5.11791

Class C

System

(f)

(y)

Error

(b-y)

(z)

Error

(b-z)

B

3

5.00004

-0.00004

2.97528

2.02472

G

3

3.00003

-0.00003

2.83549

0.16451

H

6

10.0000

0.00000

6.27899

3.72101

I

4

3.00003

-0.00003

3.60083

-0.60083

J

5

5.00004

-0.00004

5.63512

-0.63512

K

4

8.00002

-0.00002

5.52563

2.47437

* The 

meaning of system names are same as described in Table 1


      Regression analysis was then carried out for each class to relate the number of Y2K problems with the index of the system, the number of non-Y2K problems, the number of MCS tests, the number of tasks and the time in service of the system. Regression analysis was also carried for data with class A and class C combined together. The relation described above is shown by equation for each the three cases considered. The error between the actual value of number of Y2K problems and the calculated value (from correlation) of the number of Y2K problems are shown in the table.

      The correlation equation for Class A systems was:

x = 12.9981 – 0.016*a – 0.13187*c – 0.10317*d + 1.54172*e – 1.0339 * f

The correlation equation for Class C systems was:

y = 11.123 – 0.1286*a + 0.0683*c – 0.07539*d – 0.71914*e + 1.53966*f

The correlation equation for (Class A + C) systems  was

z = -0.2411 - 0.0371*a + 0.05516*c – 0.00436*d – 0.12711*e + 0.93659*f

where   x, y, z = calculated value of number of Y2K problems for different classes using respective correlations  and  a, c, d, e have their meaning as represented in the table 1 and  f = index assignment of the system.  From Table 2 we see that the error (b-z) is much larger than the error (b-x). Hence, it shows that the fit by correlation is extremely good when clustering is used i.e., the data from class C is considered separately from the data in class A. The error between the prediction and the actual observations is worse when the data in classes A and C are combined.
4.7   Analysis Summary

     Based on the interpretation of "number of tasks" as a measure of the difficulty of testing a system, this analysis of the data in the data in Table 1 implies the following:

(a) A system that has more Non-Y2K defects is more likely to have more Y2K defects than a system that has experienced fewer Non-Y2K defects.

(b) A communication/command&control-oriented system with more tasks (G,B,D) is more likely to have more Y2K defects than a similar system with fewer tasks (C,A).  The correlation coefficient is +0.7.  This trend is intuitively reasonable.

(c) There is no correlation between the number of tasks in a database-oriented system and the number of Y2K defects in the system. The correlation coefficient is only -0.016.  This lack of trend needs explanation.  The two systems to look at in this case are E and F. E has 11 tasks and 258 MCS tests.  The ratio of MCS tests to the number of tasks is 23.5, the highest of all the 11 systems.  One can reasonably assume that E is a very reliable system.  F has 20 tasks and 50 MCS tests.  The ratio of MCS tests to the number of tasks is 2.5, the lowest among the more database-oriented systems.  It revealed only 1 Y2K defect which is less than other database-oriented systems (I, J, K, H).  Given the low ratio of MCS tests to the number of tasks, it is safer to identify some other explanation for the lower number of Y2K defects found in F.

5 Summary

      In this paper, we have developed an approach for assessing the quality of a given program for a given type of defect using data from multiple programs.  The data encompass program attributes, attributes of the testing process, and attributes of the analysis techniques.  The data set is partitioned into clusters using some of the attributes to partition the data.  Then, regression analysis is performed to predict desired metrics based on the available data.  The approach was applied to Y2K-related data for a set of mission-critical systems and the partitioning and regression analysis resulted in very low prediction errors.

The current approach uses hypothesis generated by modeling of the defect to identify the partitions.  Future research will include the development of automated analysis techniques for identifying the best partitions and application of the method to other types of defects.

 References

[Abd86] A.A. Abdel-Ghaly, P.Y. Chan, and B. Littlewood, “Evaluation of competing software reliability predictions,” IEEE Trans. on Softw. Eng., Vol. SE-12, No. 9, Sep. 1986, pp. 950-967.

[Ada96] T. Adams, “Total variance approach to software reliability estimation,” IEEE Trans. on Softw. Eng., Vol. 22, No. 9, Sep. 1996, pp. 687-688.

[Amm94] P.E. Amman, S.S. Brilliant, and J.C. Knight, “The effect of imperfect error detection on reliability assessment via life testing,” IEEE Trans. on Softw. Eng., Vol. 20, No. 2, Feb. 1994, pp. 142-148.

[Bas94] F.B. Bastani and A. Pasquini, “Assessment of a sampling method for measuring safety-critical software reliability,” 5th Intl. Symp. on Software Reliability Engineering, Monterey, CA, Nov. 1994, pp. 93-102.

[Bha94] I. Bhandari, M.J. Halliday, J. Chaar, R. Chillarege, K. Jones, J.S. Atkinson, C. Lepori-Costello, P.Y. Jasper, E.D. Tarver, C.C. Lewis, and M. Yonezawa, “In-process improvements through defect data interpretation,” IBM Systems Journal, Vol. 33, No. 1, 1994, pp. 182-214.

[Bro90] S. Brocklehurst, P.Y. Chan, B. Littlewood, and J. Snell, “Recaliberating software reliability models,” IEEE Trans. on Softw. Eng., Vol. SE-16, No. 4, Apr. 1990, pp. 458-470.

[But93] R.W. Butler and G.B. Finelli, “The infeasibility of quantifying the reliability of life-critical real-time software,” IEEE Trans. Soft. Eng., Vol. 19, No. 1, Jan. 1993, pp. 3-12.

[Cha93] J. Chaar, M. Halliday, I. Bhandari, and R. Chillarege, “In-process evaluation for software inspection and test,” IEEE Trans. on Softw. Eng., Vol. 19, No. 11, Nov. 1993, pp. 1055-1070.

[Chi92] R. Chillarege, I.S. Bhandari, J.K. Chaar, M.J. Halliday, D.S. Moebus, B.K. Ray, and M.-Y. Wong, “Orthogonal Defect Classification - A concept for in-process measurements,” IEEE Trans. on Softw. Eng., Vol. 18, No. 11, Nov. 1992, pp. 943-956.

[Lit94] B. Littlewood, “Learning to live with uncertainty on our software,” Proceedings of the $2nd International Software Metrics Symposium, London, UK, Oct. 1994.

[Kar92] N. Karunanithi, D. Whitley, and Y.K. Malaiya, “Using neural networks in reliability prediction,” IEEE Software, Vol. 9, No. 4, July 1992, pp. 53-59.

[Ram82] C.V. Ramamoorthy and F.B. Bastani, “Software reliability - status and perspectives,” IEEE Trans. Soft. Eng., Vol. SE-8, July 1982, pp. 354-370.

[Sta86] C. Stanfill and D. Waltz, “Toward memory-based reasoning,” Comm. Of the ACM, Vol. 29, No. 12, pp. 1213-1228, Dec. 1986.

[Tha78] T. A. Thayer, M. Lipow, and E.C. Nelson, Software Reliability, North-Holland, 1978.

[Wal87] D.L. Waltz, “Application of the Connection Machine,” Computer (IEEE), Vol. 20, No. 1, pp. 85-97, Jan. 1987.










* This research was supported in part by the Army Research Laboratory under contract #DAKF11-99-P-1297.  The views expressed in this paper are only those of the authors and do not imply views of the Army.





_1024497951.doc
Table 1.  Summary Y2K-related data for 11 mission-critical systems.


Name,


Class*

#o

#s

#t

a

b

c

d

e



A

3

68

66

14

3

37

132

7



B

2

31

26

58

5

62

52

5



C

3

54

39

5

2

49

78

3



D

2

55

49

39

2

72

98

8



E

4

185

129

11

0

16

258

13



F

3

33

25

20

1

57

50

4



G

5

77

70

26

3

38

140

2



H

4

38

37

15

10

53

74

9



I

2

61

54

8

3

41

108

11



J

2

70

65

41

5

71

130

5



K

6

88

68

7

8

59

136

3



Total

36

773**

628

244

42



1256***





* A = command & control; B = command, control & communications and weapons; C = communications D = command, database; E = command, control, communications, database; F= communications, database; G = control, command, communications; H = database, transactions; I = command, control, communications, database;  J = database, communications; K = communications, control, command, database.


** Some MCSs were tested by more than one group


*** Some test results were leveraged from other Y2K testing events



_1024988030.doc
Table 2. Summary of Correlated values and errors

Class A  System*

(f)

(x)

Error


(b-x)

(z)

Error


(b-z)



A

2

3.00001

-0.00001

1.68815

1.31185



C

1

2.00000

0.00000

2.49146

-0.49146



D

3

1.99999

0.00001

3.64957

-1.64957



E

4

0.00002

-0.00002

1.20159

-1.20159



F

5

0.99999

0.00001

6.11791

-5.11791



Class C System

(f)

(y)

Error


(b-y)

(z)

Error 


(b-z)



B

3

5.00004

-0.00004

2.97528

2.02472



G

3

3.00003

-0.00003

2.83549

0.16451



H

6

10.0000

0.00000

6.27899

3.72101



I

4

3.00003

-0.00003

3.60083

-0.60083



J

5

5.00004

-0.00004

5.63512

-0.63512



K

4

8.00002

-0.00002

5.52563

2.47437



* The meaning of system names are same as described in Table 1



