CS6301: ADVANCED COMPUTATIONAL METHODS FOR DATA SCIENCE

Lecture 11: High Dimensional Problems I
Algorithm 6.1 Best subset selection

1. Let \mathcal{M}_0 denote the null model, which contains no predictors. This model simply predicts the sample mean for each observation.

2. For $k = 1, 2, \ldots, p$:

 (a) Fit all $\binom{p}{k}$ models that contain exactly k predictors.

 (b) Pick the best among these $\binom{p}{k}$ models, and call it \mathcal{M}_k. Here best is defined as having the smallest RSS, or equivalently largest R^2.

3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2.
Algorithm 6.2 Forward stepwise selection

1. Let M_0 denote the *null* model, which contains no predictors.

2. For $k = 0, \ldots, p - 1$:

 (a) Consider all $p - k$ models that augment the predictors in M_k with one additional predictor.

 (b) Choose the *best* among these $p - k$ models, and call it M_{k+1}. Here *best* is defined as having smallest RSS or highest R^2.

3. Select a single best model from among M_0, \ldots, M_p using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2.

FORWARD STEPWISE SELECTION
Algorithm 6.3 Backward stepwise selection

1. Let M_p denote the full model, which contains all p predictors.

2. For $k = p, p - 1, \ldots, 1$:

 (a) Consider all k models that contain all but one of the predictors in M_k, for a total of $k - 1$ predictors.

 (b) Choose the best among these k models, and call it M_{k-1}. Here best is defined as having smallest RSS or highest R^2.

3. Select a single best model from among M_0, \ldots, M_p using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2.

BACKWARDS STEPWISE SELECTION
\[C_p = \frac{1}{n} (\text{RSS} + 2d\sigma^2), \]

\[\text{Adjusted } R^2 = 1 - \frac{\text{RSS}/(n - d - 1)}{\text{TSS}/(n - 1)}. \]

\[\text{AIC} = \frac{1}{n\sigma^2} (\text{RSS} + 2d\sigma^2), \]

\[\text{BIC} = \frac{1}{n} (\text{RSS} + \log(n)d\sigma^2). \]
MODEL ASSESSMENT
RIDGE REGRESSION

$$\text{RSS} = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2.$$

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = \text{RSS} + \lambda \sum_{j=1}^{p} \beta_j^2.$$
RIDGE REGRESSION