LCR Algorithm for Leader Election in Unidirectional Rings

- Value of n unknown
- Leader performs output
- Each process has its unique id
LCR Algorithm
(by Le Lann, Chang and Roberts)

- Each process sends its id around the ring (relay id) (smallest id is winner)
- On receiving an id:
 - Compare with own id
 - If incoming id > own id, discard message
 - Else if incoming id < own id, pass id to next process
 - Else (incoming id = own id) declare self as leader
Leader needs to let others know when to stop.
Analysis

- **Termination**
 - When U(min) declares itself the leader (see below), it sends an announcement around ring; everyone knows

- **Correctness**
 - Lemma: After r rounds, r processes will know the id of U(min); Proof by induction
 - Lemma: After n rounds, one leader is elected

- **Complexity**
 - Time: 2n rounds
 - Message: O(n*n)
 - O(n) message per round (worst case)
 - n rounds
Better message complexity?
(Hirschberg and Sinclair Algorithm)

- Bidirectional Rings; n can be unknown
- Several Phases
- At beginning of a phase, each active process initiates a token (has its id) and sends to both neighbors
- If both tokens come back, process proceeds to next phase
- Else a process becomes passive (cannot originate tokens cannot become a leader but forwards tokens)
At Phase l

- Phase l consists of 2×2^l phases
- Active process originates 2 tokens (sends in both directions)
 - token has id of originator, # of hops
- Token traverses 2^l hops.
 - If token is not discarded, it is returned to sender after it traverses 2^l hops.
- If both tokens return
 - Go to next phase
- Else become passive
Token (in forward phase) with id $u(i)$ reaches process with id $u(j)$

- If $u(i) = u(j)$, process j (with id $u(j)$) is leader
- If $u(i) < u(j)$, process j forwards token
 - (after decrementing hop count)
- Else discard token
- If hop count of token = 1, return token (in return phase)
Proof and Complexity

- **Proof: Exercise**
- **Message complexity**
 - Phase 0: Each process (originates one token)
 - Sends in both directions and may return in both directions (worst case)
 - 4 messages/process; 4n messages for phase 0
Phase l

- A process enters phase l only after receiving both tokens sent in phase $l-1$ (which would have traversed $2^{(l-1)}$ hops in both directions)
- No other process among the $(2^{(l-1)}+1)$ consecutive processes can be active in phase l
- Max # of processes active in phase $l = n/(1+2^{(l-1)})$
- Each process in phase l is charged $4*2^{l}$ messages
Message Complexity

- Total phase l messages =
 $4.2^l \cdot \left\lfloor \frac{n}{1 + 2^{(l-1)}} \right\rfloor \leq 8n$
- Total number of phases: $1 + \text{ceiling}(\log n)$
- Total number of messages: $O(n \log n)$
- Can we improve this further?
- Time complexity? $O(n)$
Non-comparison based algorithms

- Less than $O(n \log n)$ messages
- Time slice algorithm: ids are positive integers, n is known
- Proceeds in phases, 1, 2, ...
- Each phase consists of n rounds
- During beginning of phase v
 - process with id v sends a token with v around the ring if it has not received a token till that time
Time Slice Algorithm

- Process with Umin is elected leader; all others terminate after round Umin*n rounds
- Communication complexity:
 - n messages
- Time complexity
 - n.Umin rounds
- What if process with max id is to be elected?
 - 2n more messages/rounds
Variable Speeds Algorithm

- Unidirectional ring; n is unknown
- Process i with id Ui sends a token with Ui. This token travels one hop for each 2*Ui rounds.
- Consider process j
 - u = smallest id j has seen so far
 - j discards any token with an id larger than u
- Token returns to sender => it is the leader
- Process with smallest id is elected leader
Communication Complexity

- By the time Umin gets back, the second smallest id would have traversed at most $\frac{1}{2}$ the way around.
- k^{th} smallest is would have traversed $\frac{1}{2}^{k-1}$ way around.
- Total number of messages = $n + \sum(n/2^{k-1}) = 2n$.
- Time complexity: $n.2^{Umin}$.

S. Venkatesan Department of Computer Science
Variable start times?

- Read from book.
Lower Bound for Comparison based Algorithms

- $\Omega(n \log n)$ messages even if communication is bidirectional and ring size n is known
- All processes are identical except for ids

- Even if processes have unique ids, symmetry arises and certain communication is needed to break it.
- Comparison based algorithms: Send/receive messages that contain ids only.
 - Make comparisons and decide
Main Ideas

- Show that there exists an assignment of ids in a ring that is “bad.”
- If an algorithm does not send “many” messages, then the id assignment fools the algorithm.
- In order to get out of the “bad” situation, algorithm is forced to send “many” messages.
Some Definitions

- **Order Equivalence:**
 - $U=(u_1, u_2, \ldots, u_k)$ and $V=(v_1, v_2, \ldots, v_k)$ are sequence of ids
 - U is order equivalent to V if for each i,j
 - $u_i \leq u_j \iff v_i \leq v_j$
 - Example: $(4,2,3,7,1)$ and $(8,6,7,9,4)$ are order equivalent
Definitions (Continued)

\[\text{k-neighborhood of process } I \text{ (2k+1 processes)} \]

Process states \(s \) and \(t \) correspond wrt sequences \(U \) and \(V \) of IDs if

1. IDs of \(s \) are from \(U \)
2. IDs of \(t \) are from \(V \)
3. \(t = s \) except that each \(u_i \) in \(s \) is replaced by \(v_i \) in \(t \)
Lemma 3.5

A is comparison based algorithm in a ring R of n nodes. k is an int 0 ≤ k ≤ n/2. Let i and j be processes s.t. their k neighborhoods are Order equivalent.

After k rounds, i and j are in corresponding states

Proof by induction on k
Let $c, 0 \leq c \leq 1$ be a constant. R is ring of size n.

R is c-symmetric if for all $l \sqrt{n} \leq l \leq n$, for every segment S of length l, there are at least $\frac{cn}{l}$ segments of R that are order equivalent.

[Every bit reversal ring is $\frac{1}{2}$ symmetric]
Lemma 3.8

A is a comparison based algorithm in c-symmetric ring.

A elects a leader k is an integer $\sqrt{n} \leq 2k+1$ and $\frac{cn}{2k+1} > 2$.

A has more than k active rounds.

Proof: By contradiction. i and j are centers of 2 order equivalent k-neighborhoods.

I and J will be in “equivalent” states after k rounds.
Theorem 3.9

Algorithm A needs \(\Omega(n \log n) \) messages

Proof: \(c \) is a constant between 0 and 1 and \(R \) is a \(c \)-symmetric ring of size \(n \)

\[
k = \frac{cn - 2}{4} \implies \sqrt{n} \leq 2k + 1 \quad \text{(if } n \text{ is large)},
\]

\[
\frac{cn}{2k + 1} \geq 2.
\]
By lemma 3.8, there are at least k+1 rounds

Consider round r s.t. $\sqrt{n}+1 \leq r \leq k+1$

Round r is active. Some process i is active
 – (i sends a message in round r)

S = (r-1) neighborhood of i.

There are $\frac{cn}{2r-1}$ order equivalent (to S) segments in R

Mid points of these are in corresponding states
 – The all send messages