Synchronous Model

- Directed Graph $G=(V,E)$
 - V: Set of processes (nodes)
 - E: Set of communication links
 - $(u,v) \in E \Rightarrow u$ can send a message to v and v is a neighbor of u. Is bidirectional unless said otherwise
 - In-nbrs_i, out-nbrs_i for each process i
 - M: Set of messages
At each node/process i

- States_i: set of states
- Start_i: start/initial state (may be many)
- FinalState_i: final state (may be many)
- Msgs_i: function: $\text{states}_i \times \text{out-nbrs}_i \rightarrow \mathbb{M} \cup \{\text{null}\}$, message generation function
- Trans_i: state transition function
 - $\text{States}_i \times \{\mathbb{M}\}^k \rightarrow \text{states}_i$
Each process does the following in lock step synchrony (with other processes):

- Apply message generation function to current state, generate messages and send to recipients.
- Apply state transition function to current state and incoming messages and go to new state; Remove all messages from channel.
Synchronous Algorithm

- All processes start from an initial state
- All communication links are empty
- Execute one round after another
- Terminate when you reach a final state
Complexity

- **Time complexity:**
 - Number of rounds until all required outputs are produced or until all processes halt.
 - Processes start at different times?

- **Message complexity**
 - Total number of non-null messages
 - Number of bits