Given the Krylov subspace

$$
\begin{equation*}
\mathcal{K}\left(A, q_{1}, n\right):=\operatorname{span}\left\{q_{1}, A q_{1}, \ldots, A^{n-1} q_{1}\right\} \tag{1}
\end{equation*}
$$

and the Lanczos Algorithm

$$
\begin{gather*}
q_{j}=r_{j-1} / \beta_{j-1} \tag{2}\\
\alpha_{j}=q_{j}^{t} A q_{j} \tag{3}\\
r_{j}=\left(A-\alpha_{j} I\right) q_{j}-\beta_{j-1} q_{j-1} \tag{4}\\
\beta_{j}=\left\|r_{j}\right\|_{2} \tag{5}
\end{gather*}
$$

for $j=1, \ldots, M$ with $r_{0}=q_{1}, \beta_{0}=1, q_{0}=0$, and M is the smallest positive integer such that $\beta_{M}=0$.

Theorem: Let $A \in \mathbb{R}^{n \times n}$ be symmetric and assume $q_{1} \in \mathbb{R}^{n}$ with $\left\|q_{1}\right\|_{2}=1$. Then the Lanczos iteration runs until $j=m$ where $m=\operatorname{rank}\left(\left\{\mathcal{K}\left(A, q_{1}, n\right)\right\}\right)$. Moreover, for $j=1, \ldots, m$ we have

$$
\begin{equation*}
A Q_{j}=Q_{j} T_{j}+r_{j} e_{j}^{t} \tag{6}
\end{equation*}
$$

where

$$
T_{j}=\left[\begin{array}{ccccc}
\alpha_{1} & \beta_{1} & \cdots & 0 & 0 \tag{7}\\
\beta_{1} & \alpha_{2} & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & \alpha_{j-1} & \beta_{j-1} \\
0 & 0 & \cdots & \beta_{j-1} & \alpha_{j}
\end{array}\right] \in \mathbb{R}^{j \times j}
$$

$e_{j}=[0,0, \ldots, 1]^{t} \in \mathbb{R}^{j}$ and $Q_{j}=\left[q_{1}|\cdots| q_{j}\right]$ has orthonormal columns that span $\mathcal{K}\left(A, q_{1}, j\right)$.

Proof:

(1) We prove the statements by using the mathematical induction on j .

For $j=1$, by (4) we have $A q_{1}=r_{1}+\beta_{0} q_{0}+\alpha_{1} q_{1}=\alpha_{1} q_{1}+r_{1} e_{1}^{t}$, then (6) followed by $Q_{1}=q_{1}$ and $T_{1}=\left[\alpha_{1}\right]$. The Q_{2} has orthonormal columns is due to $q_{1}^{t} q_{1}=\left\|q_{1}\right\|_{2}^{2}=1, q_{2}^{t} q_{2}=$ $\left\|q_{2}\right\|_{2}^{2}=\left\|r_{1} / \beta_{1}\right\|_{2}^{2}=1$, and $q_{1}^{t} q_{2}=\left[q_{1}^{t}\left(A-\alpha_{1} I\right) q_{1}-\beta_{0} q_{1}^{t} q_{0}\right] / \beta_{1}=\left[q_{1}^{t} A q_{1}-\alpha_{1} q_{1}^{t} q_{1}\right] / \beta_{1}=0$. And by (2) and (4) we have $A q_{1}=\alpha_{1} q_{1}+r_{1}=\alpha_{1} q_{1}+\beta_{1} q_{2}$, $\operatorname{so} \operatorname{span}\left\{q_{1}, q_{2}\right\}=\operatorname{span}\left\{q_{1}, A q_{1}\right\}=$ $\mathcal{K}\left(A, q_{1}, 2\right)$.

Now assume that it holds for $j \leq k$, where $k \leq M-1$ (i.e., $\beta_{k} \neq 0$).
We have $A Q_{k}=Q_{k} T_{k}+r_{j} e_{k}^{t}, Q_{k}^{t} Q_{k}=I_{k}$, and range $\left(Q_{j}\right)=\mathcal{K}\left(A, q_{1}, j\right)$ for $j \leq k$. When $j=k+1$, we have

$$
\begin{aligned}
Q_{k+1} T_{k+1}+r_{k+1} e_{k+1}^{t} & =\left[\begin{array}{ll}
Q_{k} & q_{k+1}
\end{array}\right]\left[\begin{array}{cc}
T_{k} & \beta_{k} e_{k} \\
\beta_{k} e_{k}^{t} & \alpha_{k+1}
\end{array}\right]+r_{k+1}\left[\begin{array}{ll}
0_{k \times 1} & 1
\end{array}\right] \\
& =\left[\begin{array}{ll}
Q_{k} T_{k}+\beta_{k} q_{k+1} e_{k}^{t} & \beta_{k} Q_{k} e_{k}+\alpha_{k+1} q_{k+1}+r_{k+1}
\end{array}\right] \\
& =\left[\begin{array}{ll}
Q_{k} T_{k}+r_{k} e_{k}^{t} & \beta_{k} q_{k}+\alpha_{k+1} q_{k+1}+r_{k+1}
\end{array}\right] \\
& =\left[\begin{array}{ll}
A Q_{k} & A q_{k+1}
\end{array}\right] \\
& =A Q_{k+1}
\end{aligned}
$$

where the third and forth equalities are due to (2), (4), and induction hypothesis, so we had proven (6) for $j=k+1$.

To prove $Q_{k+1}^{t} Q_{k+1}=I_{k+1}$, it suffices to prove $q_{i}^{t} q_{k+1}=0$ for $i \leq k$ and $q_{k+1}^{t} q_{k+1}=1$. The latter one is obvious (by (2)) and the former one is more complicated. For $i=k$, it is clear that

$$
\begin{aligned}
q_{k}^{t} q_{k+1} & =\left(q_{k}^{t} A q_{k}-\alpha_{k} q_{k}^{t} q_{k}-\beta_{k-1} q_{k}^{t} q_{k-1}\right) / \beta_{k} \\
& =\left(q_{k}^{t} A q_{k}-\alpha_{k}\right) / \beta_{k} \\
& =0
\end{aligned}
$$

For $i=k-1$, we have

$$
\begin{aligned}
q_{k-1}^{t} q_{k+1} & =\left(q_{k-1}^{t} A q_{k}-\alpha_{k} q_{k-1}^{t} q_{k}-\beta_{k-1} q_{k-1}^{t} q_{k-1}\right) / \beta_{k} \\
& =\left(q_{k-1}^{t} A q_{k}-\beta_{k-1}\right) / \beta_{k} \\
& =0
\end{aligned}
$$

where

$$
\begin{aligned}
q_{k-1}^{t} A q_{k} & =\left(A q_{k-1}\right)^{t} q_{k} \\
& =\left(r_{k-1}+\alpha_{k-1} q_{k-1}+\beta_{k-1} q_{k-2}\right)^{t} q_{k} \\
& =r_{k-1}^{t} q_{k}=r_{k-1}^{t} r_{k-1} / \beta_{k-1} \\
& =\beta_{k-1} .
\end{aligned}
$$

And for $i \leq k-2$ we have $q_{i}^{t} q_{k+1}=\left(q_{i}^{t} A q_{k}-\alpha_{k} q_{i}^{t} q_{k}-\beta_{k-1} q_{i}^{t} q_{k-1}\right) / \beta_{k}=\left(\left(A q_{i}\right)^{t}\right) q_{k} / \beta_{k}=$ 0 , where the last equality we used $q_{i} \in \mathcal{K}\left(A, q_{1}, k-2\right)=\operatorname{span}\left\{q_{1}, A q_{1}, \ldots, A^{k-3} q_{1}\right\}$ so $A q_{i} \in \operatorname{span}\left\{A q_{1}, A^{2} q_{1}, \ldots, A^{k-2} q_{1}\right\} \subset \mathcal{K}\left(A, q_{1}, k-1\right)$, i.e., $A q_{i}$ is a linear combination of $\left\{q_{1}, q_{2}, \ldots, q_{k-1}\right\}$, so $\left(A q_{i}\right)^{t} q_{k}=0$.

It is clearly that $\operatorname{rank}\left(\mathcal{K}\left(A, q_{1}, k+1\right)\right) \leq k+1$. Since q_{1}, \ldots, q_{k+1} are linearly independent, $\operatorname{span}\left\{q_{1}, \ldots, q_{k}\right\} \subset \mathcal{K}\left(A, q_{1}, k\right) \subset \mathcal{K}\left(A, q_{1}, k+1\right)$, and $q_{k+1}=\left(A q_{k}-\alpha_{k} q_{k}-\right.$ $\left.\beta_{k-1} q_{k-1}\right) / \beta_{k} \in \operatorname{span}\left\{A q_{k}, q_{k}, q_{k-1}\right\} \subset \operatorname{span}\left\{q_{1}, A q_{1}, \ldots, A^{k} q_{1}\right\}=\mathcal{K}\left(A, q_{1}, k+1\right)$, so $\operatorname{span}\left\{q_{1}, \ldots, q_{k+1}\right\}=\mathcal{K}\left(A, q_{1}, k+1\right)$.
(2) We show that $M=m$, in fact, for $j=M-1$, the above results tell us $\operatorname{span}\left\{q_{1}, \ldots, q_{M}\right\}=$ $\mathcal{K}\left(A, q_{1}, M\right) \subset \mathcal{K}\left(A, q_{1}, n\right)$, thus $m \geq M$.

Now, since M is finite, so for $j=M$ we have $A Q_{M}=Q_{M} T_{M}$, thus, $A q_{M}$ is a linear combination of $\left\{q_{1}, \ldots, q_{M}\right\}$ for $i \leq M$. But

$$
\begin{aligned}
\mathcal{K}\left(A, q_{1}, M+1\right) & =\operatorname{span}\left\{q_{1}, A q_{1}, \ldots, A^{M} q_{1}\right\} \\
& =\operatorname{span}\left\{q_{1}, A \mathcal{K}\left(A, q_{1}, M\right)\right\} \\
& =\operatorname{span}\left\{q_{1}, A q_{1}, \ldots, A q_{M}\right\} \\
& =\operatorname{span}\left\{q_{1}, A q_{1}, \ldots, A q_{M-1}\right\} \\
& =\operatorname{span}\left\{q_{1}, A \mathcal{K}\left(A, q_{1}, M-1\right)\right\} \\
& =\operatorname{span}\left\{q_{1}, A q_{1}, \ldots, A^{M-1} q_{1}\right\} \\
& =\mathcal{K}\left(A, q_{1}, M\right)
\end{aligned}
$$

and use the induction sense we can show that

$$
\begin{aligned}
\mathcal{K}\left(A, q_{1}, i+1\right) & =\operatorname{span}\left\{q_{1}, A q_{1}, \ldots, A^{i} q_{1}\right\} \\
& =\operatorname{span}\left\{q_{1}, A \mathcal{K}\left(A, q_{1}, i\right)\right\} \\
& =\operatorname{span}\left\{q_{1}, A \mathcal{K}\left(A, q_{1}, i-1\right)\right\} \\
& =\operatorname{span}\left\{q_{1}, A q_{1}, \ldots, A^{i-1} q_{1}\right\} \\
& =\mathcal{K}\left(A, q_{1}, i\right)
\end{aligned}
$$

for $i \geq M+1$ provided $\mathcal{K}\left(A, q_{1}, i\right)=\mathcal{K}\left(A, q_{1}, i-1\right)$. So $\mathcal{K}\left(A, q_{1}, M\right)=\mathcal{K}\left(A, q_{1}, n\right)$ has rank m, i.e., $M \geq m$.

