Kimberlites and the start of plate tectonics

R.J. Stern1, M.I. Leybourne2, and T. Tsujimori3,4

1Department of Geoscience, University of Texas at Dallas, Richardson, Texas 75080, USA
2Mineral Exploration Research Centre, Department of Earth Sciences, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
3Center for Northeast Asian Studies, Tohoku University, 41 Kawachi, Aoba-ku, Sendai, Miyagi 980-8576, Japan
4Department of Earth Science, Tohoku University, Sendai, 6-3 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8576, Japan

We thank Gary Ernst for his interest in and Comments (Ernst, 2017) about our recent Geology paper (Stern et al., 2016), which highlighted the temporal distribution of kimberlites. We considered what are the possible reasons for the young kimberlite phenomenon and the implications regarding the onset of plate tectonics and conclude that the best possible reasons for the young kimberlite phenomenon and the implications of the temporal distribution of kimberlites. We agree with many of Ernst’s points, including “Initial mantle circulation might have been chiefly bottom up (plume-driven), but as Earth cooled, top-down overturn (plate subduction) began to dominate its thermal evolution”, but we disagree about when this change in tectonic style occurred.

Ernst’s closing sentence “Lithospheric subduction (plate tectonics) apparently has operated episodically or continuously (?) since consolidation of the Hadean magma ocean” nicely captures the main point of disagreement. This statement implies that there is no other way to deform rocks and generate melts except plate tectonics. We define plate tectonics as a style of silicate body convection where lid fragment (plate) motions are mostly due to sinking of dense lithosphere in subduction zones, causing upwelling of asthenosphere at divergent plate boundaries and seafloor spreading accompanied by focused upwellings (mantle plumes). With this definition, the key geodynamic question is when did Earth’s lithosphere become dense enough to begin to sink beneath underlying asthenosphere? We are impressed by the evidence that sufficient lithospheric densification required sufficient cooling and so is likely to have happened late in Earth history (Korenaga, 2013).

Here we use two lines of evidence to refute Ernst’s uniformitarian assumption that plate tectonics has dominated Earth’s tectonic history. The first line of evidence comes from comparative planetology. Humanity finished taking a look at all the large bodies in the solar system in 2015 with the NASA Dawn mission to Ceres and the New Horizons mission to Pluto and Charon, and now know that Earth is alone in the solar system in having plate tectonics. Venus, Mars, and Io are tectonically and magmatically active, but none have plate tectonics. Io is the most active of the three because it is Jupiter’s innermost satellite and is kept hot by tidal flexing. Io is characterized by heat pipe tectonics whereby subsurface magma erupts periodically, burying older lava flows under until the base of the volcanic pile sinks back into the magma (Moore and Webb, 2013). Venus is also tectonically and magmatically active, but dominated by mantle plumes and lithospheric drips (Gerya, 2014). Mars is a georamic planet but has still shown activity in the Tharsis and Elysium regions and tectonic activity centered on the Vallis Marineris. These planets share a stagnant lid tectonic style, where a single plate makes up the lithosphere and this is the dominant tectonic style of active planets, dwarf planets, and moons. Based on what we know about these bodies, there is a large range in stagnant lid behavior that is expected over the life of a planet. It is likely that Earth also experienced stagnant lid tectonics before plate tectonics evolved.

Our second counterargument is that geoscientists are increasingly interpreting ancient rock sequences on Earth in terms of tectonic transitions (Condie and Aster, 2010; Arndt and Davaille, 2013; Hawkesworth et al., 2016). Figure 1A shows a recent subdivision of Earth into “pre-subduction” and “subduction” episodes that is consistent with the rock record (Hawkesworth et al., 2016); these could also be called “plate tectonic” and “pre-plate tectonic” episodes. Figure 1B is our modification, based on the distribution of key plate tectonic indicators. Our preferred interpretation of Earth history identifies stagnant lid and plate tectonic episodes; note that a short episode of something similar to plate tectonics in terms of ophiolites is identified ~1.9–2.0 and ~1.1 Ga. The door is opening to further explorations of pre-plate tectonic Earth history.

REFERENCES CITED


