Geochemistry and tectonic evolution of the Late Cretaceous Gogher–Baft ophiolite, central Iran

Hadi Shafaii Moghadam a,⁎, Robert J. Stern b, Massimo Chiaradia c, Mohamad Rahgoshay d

a School of Earth Sciences, Damghan University, Damghan 36716-41167, Iran
b Geosciences Dept., University of Texas at Dallas, Richardson, TX 75083-0688, USA
c Département de Paléontologie, Université de Genève, Switzerland
d Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran

ARTICLE INFO
Article history:
Received 16 October 2012
Accepted 21 January 2013
Available online 10 February 2013

Keywords:
Gogher–Baft ophiolite
Geochemistry
Subduction initiation
Supra-subduction zone
Neo-Tethys
Iran

ABSTRACT
The Late Cretaceous Gogher–Baft ophiolite is one of the best preserved remnants of Neo-Tethyan oceanic lithospheric within the inner Zagros ophiolite belt. The ophiolite comprises from bottom to top, harzburgites, pegmatite and isotropic gabbroic lenses within the mantle sequence, pillowed to massive basalts to dacites and pyroclastic rocks associated with blocks of pelagic limestone and radiolarite. Basaltic to dacitic sills cut the pyroclastic rocks. The ophiolite sequence is overlain by Turonian Maastrichtian pelagic limestones (93.5–65.5 Ma). Mineral compositions of harzburgites are similar to those of fore-arc peridotites and overlap with abyssal peridotites. Most Gogher–Baft ophiolite magmatic rocks show supra-subduction zone affinities, except for some E-MORB type lavas. The geochemical characteristics suggest that Gogher–Baft ophiolite magmatic rocks were generated during subduction initiation. These show progressive source depletion leading to the formation of MORB to boninitic magmas. Early E-MORB-type pillow lavas may have originated by melting mantle that was not affected by subduction components as the Tethyan oceanic plate began to sink beneath Eurasia as subduction began in the Late Cretaceous. Initial εNd (t) values range from +2.6 to +9 for Gogher-Baft magmatic rocks. Samples with radiogenic Nd overlap with least radiogenic MORBs and with Oman and other Late Cretaceous Tethyan ophiolitic rocks. The initial 87Sr/86Sr ratios range from 0.7048 to 0.7057, indicating modification due to seawater alteration. Radiogenic 207Pb/204Pb isotopic compositions (systematically above the NHRL) and less radiogenic Nd isotopic compositions suggest the involvement of sediments in the mantle source in some magmatic rocks. Our results for Gogher–Baft ophiolite and the similarity of these to other Iranian Zagros ophiolites suggest a subduction initiation setting for the generation of these magmatic rocks.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction
Ophiolites are relics of oceanic lithosphere that commonly delineate suture zones between continental terranes. They are important markers of convergent margin processes and preserve the records of tectonic and magmatic events from rift-drift through subduction, accretion and collision stages of continental margin evolution (Dilek and Furnes, 2011). Ophiolites are interpreted to form in a wide variety of plate tectonic settings including oceanic spreading centers, back arc basins, fore arcs, as well as arc and other extensional settings including hotspots (Dilek et al., 2007; Kusky, 2004; Pearce and Robinson, 2010; Santosh et al., 2009; among others). Among the various categories of ophiolites, the mid-ocean ridge (MOR) and supra-subduction zone (SSZ) types constitute the major categories (Pearce et al., 1984). The origin and tectonic evolution of ophiolites provide important constraints on the evolution of orogenic belts. Understanding ophiolites in a region such as Iran, the geologic history of which is dominated by accretionary tectonics where tectonostratigraphic terranes of different origin are now juxtaposed (Ghazi et al., 2003), is particularly important. The Zagros Orogenic Belt which formed by the most recent and ongoing accretion, reflects the Oligo-Miocene closure of Tethys. The growth of Zagros Orogenic Belt accompanies the continuing subduction of Arabia beneath Iran, with continental contact commencing at ~10–20 Ma (McQuarrie et al., 2003). The abundant Zagros Orogenic Belt ophiolites thus define the evolving suture between Arabia and Eurasia. The Zagros ophiolitic belt, of central interest to this study, lies along the NE flank of the Zagros fold-thrust belt and marks a Late Cretaceous episode of subduction initiation on the northern side of Neotethys (Shafaii Moghadam et al., 2010). Zagros ophiolites constitute the central parts of the Late Cretaceous Tethyan ophiolite belt, which extends ~3000 km from Cyprus to Oman (e.g., Alabaster et al., 1982; Dilek and Furnes, 2009; Dilek et al., 2007; Floyd et al., 1998; Garfunkel, 2006; Godard et al., 2003, 2006; Robertson and Mountrakis, 2006; Robertson, 1998, 2002; Sengor, 1990; among others). Although Zagros ophiolites make up almost half of the length of the Tethyan ophiolite belt, their...
tectonic evolution is relatively poorly constrained due to limited field, geochemical and geochronological data. Zagros ophiolites can be subdivided into an "inner belt" and an "outer belt" south of the Main Zagros Thrust Fault and along the SW periphery of the Central Iranian block (Stocklin, 1977). Hereafter, we use "Outer Zagros Ophiolite Belt" and "Inner Zagros Ophiolite Belt" for describing the two NW–SE belts containing the Neyriz-Haji-Abad and Nain–Gogher–Baft ophiolites, respectively (Fig. 1).

Fig. 1. (A) Map showing the distribution of the Nain-Baft (inner) Zagros ophiolitic belt, the Kermanshah-Neyriz-Haji-Abad (outer) Zagros ophiolitic belt, the location of the Urumieh–Dokhtar magmatic arc (Eocene-Quaternary), and the main Zagros thrust (MZT). (B) Schematic cross section showing the relations between the outer and the inner Zagros ophiolitic belts and the Zagros thrust-fold belt (after Shafaii Moghadam et al., 2010).
The Outer Zagros Ophiolitic Belt has been considered as slices of Tethyan oceanic lithosphere scraped off during NE-directed subduction underneath Iran (e.g., Baibaei et al., 2001; Braud, 1970, 1978; Ricou, 1971, 1976; Ricou et al., 1977). The Inner Zagros Ophiolitic Belt is less well-known. The Inner Belt is described as ophiolitic mélangé defining the SW margin of the Central Iranian block (e.g., Arvin and Robinson, 1994; Arvin and Shokri, 1996; Berberian and King, 1981; Davoudzadeh, 1972; Desmons and Beccaluva, 1983; McCall and Kidd, 1981; Stocklin et al., 1972). Inner Belt tectonic setting is controversial, and has been interpreted in several ways over the past four decades such as: (1) a narrow, Red Sea-like ocean, created at a slow spreading center (e.g., Baibaei et al., 2001; Berberian and King, 1981; Davoudzadeh, 1972); (2) a Cretaceous arc basin related to Tethyan subduction that was inferred to have been active from upper Triassic to Miocene (e.g., Delaloye and Desmons, 1980; Ghazi and Hassanpak, 2000); (3) a Late Cretaceous back-arc basin (Agard et al., 2006; Shafaii Moghadam et al., 2009; Shahabpour, 2005); and (4) as part of a forearc that formed when subduction began beneath Southern Iran in Late Cretaceous time (Shafaii Moghadam and Stern, 2011; Shafaii Moghadam et al., 2010).

In this study we investigate the Gogher–Baft ophiolite complex, a typical Inner Belt ophiolite. This ophiolite was first studied by Dimitrijevic (1973) who carried out field mapping of the Kerman region. Here we report the first petrologic, geochemical, and isotopic study of this ophiolite. We use magmatic chromatography to trace the geochemical evolution of the ophiolite through time. A previous report, on the Dehshir ophiolite (Shafaii Moghadam et al., 2010), applied the subduction initiation model of Stern and Bloomer (1994; Arvin and Robinson, 1994; Arvin and Shokri, 1996): 1 — tholeiitic basalts similar to N-MORB and 2 — transitional basalts, geochemically intermediate between MORB and island-arc tholeiites (IAT), the latter generated by melting of a subduction-modified mantle source. Depleted harzburgite with abundant diabase dikes (Appendix 1B) constitute the ophiolite mantle sequence (Fig. 2). Isolated pockets of mafic-gabbro gabro and lenses of isotropic gabbro occur in the upper mantle section. Isotropic gabbros are locally intruded by late diabasic, gabbroic and plagiogranitic dikes, especially N–NW of Baft town (Fig. 2). Podiform chromitites are hosted in mantle depleted harzburgites although they are typically enveloped by dunite. They are mainly pod-like and/or lensoid in form. The contact between the chromitite pods and host dunites or harzburgites is usually sharp.

A variety of Gogher–Baft volcanic rocks are found as tectonic slices: massive and pillowed basalt to andesite–dacite lava flows, showing faulted contacts with pelagic limestones and/or serpentinites (Appendix 1C). Hyaloclastites, cold breccias and pillow breccias are locally found throughout the volcanic pile.

Pyroclastic rocks including tuffs and volcanic breccias associated with blocks of pelagic limestone and radiolarite are common in the upper parts of this ophiolite. Pyroclastics constitute a 300–400 meter thick unit resting on ophiolitic basaltic flows (Fig. 3) and/or pillow.

2. Field observations

The Gogher–Baft ophiolite occurs as a 5–10 km wide and about 60 km long, NNW-trending belt. The ophiolite is composed of ultramafic and mafic rocks, capped by Turonian–Maastrichtian (93.5–65.5 Ma) pelagic sediments resting directly on the ophiolite (Figs. 2, 3). Gogher–Baft is a dismembered ophiolite, and does not contain ultramafic cumulates; cumulate gabbros, crustal isotropic gabbros or a sheeted dyke complex. Two types of basaltic pillow lavas and lava flows are recognized in the Baft and Gogher regions (Arvin and Robinson, 1994; Arvin and Shokri, 1996): 1 — tholeiitic basalts similar to N-MORB and 2 — transitional basalts, geochemically intermediate between MORB and island-arc tholeiites (IAT), the latter generated by melting of a subduction-modified mantle source.

Depleted harzburgite with abundant diabase dikes (Appendix 1B) constitute the ophiolite mantle sequence (Fig. 2). Isolated pockets of mafic-gabbro gabro and lenses of isotropic gabbro occur in the upper mantle section. Isotropic gabbros are locally intruded by late diabasic, gabbroic and plagiogranitic dikes, especially N–NW of Baft town (Fig. 2). Podiform chromitites are hosted in mantle depleted harzburgites although they are typically enveloped by dunite. They are mainly pod-like and/or lensoid in form. The contact between the chromitite pods and host dunites or harzburgites is usually sharp.

A variety of Gogher–Baft volcanic rocks are found as tectonic slices: massive and pillowed basalt to andesite–dacite lava flows, showing faulted contacts with pelagic limestones and/or serpentinites (Appendix 1C). Hyaloclastites, cold breccias and pillow breccias are locally found throughout the volcanic pile.

Pyroclastic rocks including tuffs and volcanic breccias associated with blocks of pelagic limestone and radiolarite are common in the upper parts of this ophiolite. Pyroclastics constitute a 300–400 meter thick unit resting on ophiolitic basaltic flows (Fig. 3) and/or pillow.

Fig. 2. Simplified stratigraphic column illustrating the idealized internal lithologic successions in the Gogher–Baft ophiolite. The approximate stratigraphic positions of samples are also shown.
lava (Mijalkovic et al., 1972). Pyroclastic rocks include volcanic breccias, agglomerates, tuff, tuffaceous sandstones and lutes, cold pillow breccias and andesitic hyaloclastites with basaltic–andesitic pillow fragments. Pyroclastic rocks are usually coarse in the SE and grade into finer-grained tuffs to the NW, suggesting that Late Cretaceous explosive volcanic centers — probably a nascent arc — existed east of the study area. Small andesitic-dacitic lava outcrops are also observed in the pyroclastics. Basaltic–andesitic and dacitic sills are common among the pyroclastic rocks (Appendix 1D, E). Rock fragments in the pyroclastic units range in composition from basalt (aphyric to pyroxene-phyric) to porphyritic or sanukitoid andesite. Rare rhyolitic dikes crosscut the pyroclastic rocks. At the top of the pyroclastic unit, thick sequences of tuff and tuffaceous sandstones with intercalated pelagic limestone and radiolarite are found along the northeast flank of the ophiolite (Fig. 3), in places with sedimentary contacts. The thickness of the pyroclastic unit increases to the NE, further suggesting that explosive arc volcanoes lay in that direction in Late Cretaceous time. This observation supports the hypothesis that the Gogher–Baft ophiolite and other masses in the inner ophiolite belt represent a forearc to what subsequently became the Urumieh-Dokhtar magmatic arc.

Turonian–Maestrichtian limestones rest stratigraphically above the pyroclastic rocks, tuffaceous sandstones and/or the lavas (Appendix 1A).

3. Lithologic descriptions and mineral compositions

The locations of samples that were investigated in this study are shown stratigraphically in Fig. 2 and geographically in Fig. 3. About 80 thin sections from all rock units of the Gogher–Baft ophiolite were examined. From these, nine representative samples were selected for microscope analyses, including podiform chromitite (BT06-40), harzburgites (BT06-28, BT06-41, and BT06-45), pegmatite gabbro (BT07-8), isotropic gabbro (BT06-22), andesitic fragment in breccia (BT06-10), basaltic and dacitic rocks (BT06-15, BT06-6) (see Appendix 3 for analytical methods).

3.1. Mantle sequence

This includes clinopyroxene-poor and clinopyroxene-free spinel harzburgites. Most of these rocks have been serpentinized, usually more than 60%, even up to 100%. Where the primary texture is preserved, the harzburgite shows porphyroclastic nature, with coarse, deformed orthopyroxene grains (generally 1–3 mm, max. 5 mm) (Appendix 2A).

Relict olivines are homogeneous, ranging in composition from Fo90 to Fo92, indicating that the harzburgite is moderately depleted. Olivine NiO contents vary between 0.29 and 0.54 wt.% (Appendix 6). Orthopyroxene poikilocrysts in harzburgite have compositions ranging between Wo3En5Fs5 and Wo2En5Fs5. Their Mg# (Mg/Mg+Fe2+) ranges from 0.90 to 0.93 (Appendix 7). Orthopyroxenites contain relatively low Al2O3 (2.2–3.7%) and Cr2O3 (0.4–1.1%) contents (Appendix 7) (Fig. 4A).

Gogher–Baft harzburgite contains diopsidic clinopyroxene. The Mg# of clinopyroxene core contents range from 92.1 to 94.2 (Appendix 7). Al2O3 and TiO2 contents are markedly low, similar to clinopyroxenes from depleted fore-arc harzburgites (Ishii et al., 1992), and comparable to those from other inner and outer belt harzburgites (Fig. 4B & Appendix 7).

Spinel in the Gogher–Baft harzburgite is dark brown, with Mg# (Mg/Mg+Fe2+) varying between 0.57 and 0.76. The Cr# value (Cr/Cr+Al) of harzburgite spinel cores ranges between 0.45 and 0.53 (Appendix 8). Podiform chromitites have higher Cr#, between 0.84 and 0.85. As shown in Fig. 5A, the high Cr# of the Baft–Gogher harzburgite spinels plots in the compositional range defined by spinels from both fore-arc harzburgites and depleted abyssal peridotites (Dick and Bullen, 1984). Podiform chromitites plot in the boninitic field (Fig. 5A). The TiO2 content of harzburgite spinels is less than 0.1 wt.%, similar to those from fore-arc harzburgites as reported by Tamura and Arai (2006) (Fig. 5B). TiO2 content of chromitites is less than about 0.2 wt.%

3.2. Pegmatite gabbros

Gogher–Baft ophiolite pegmatite gabbros occur as small pockets within the mantle harzburgite. Plagioclase and clinopyroxene are the predominant rock-forming phases, whereas olivine and spinel occur as trace phases (<3%). Two types of plagioclase can be distinguished: a coarse, slightly zoned variety and a fine-grained variety occurring interstitially between large plagioclase and clinopyroxene phenocrysts. Pegmatite gabbros have olivine with Fo83 and 0.25 to 0.30% NiO (Appendix 6).

Clinopyroxene in pegmatite gabbros is diopsidic to augite, with low Al2O3 and TiO2 and high Mg# and Cr2O3 content (Appendix 9), indicating crystallization from a primitive melt (De Bar and Coleman, 1989).
Fine-grained plagioclases are andesine and coarse plagioclases are bytownite (Appendix 10).

3.3. Mafic-intermediate magmatic rocks

Gogher–Baft ophiolite mafic igneous rocks include isotropic gabbros, pillow lavas, basaltic–andesitic flows, basaltic–andesitic sills in pyroclastic rocks and diabasic dikes intruding harzburgite and/or isotropic gabbro. Plagioclase and clinopyroxene are the main constituents of the isotropic gabbros (Appendix 2B). In more hydrothermally altered samples (diortitic facies), green amphibole (actinolite) and highly altered plagioclase dominate (Appendix 2C). Clinopyroxenes are Fe-rich augite, with Mg# and TiO₂ ranging from 67.4 to 69.7 and 0.57 to 0.95% respectively (Appendix 9).

Ophiolite lavas are porphyritic, with coarse-grained, euhedral to subhedral plagioclase (1 to >4 mm) and subhedral to anhedral clinopyroxene (2–3 mm) phenocrysts in an altered glassy groundmass with plagioclase microlites (Appendix 2D). Clinopyroxene in basaltic lavas is high-Mg augite and diopside, with higher Mg# and lower TiO₂ compared to those of isotropic gabbros (Appendix 9).

Andesitic and dacitic lavas are characterized by plagioclase phenocrysts (>1–2 mm) and microlites (<0.2 mm). Coarse-grained plagioclase can be subdivided into two groups: euhedral to subhedral phenocrysts with relatively uniform labradorite (An₅₁–₅₇) cores (Appendix 9) and corroded phenocrysts (composition not measured) suggesting disequilibrium. Hornblende in the andesite shows oxidized margins and alteration into chlorite and clays (Appendix 2E).

Basaltic–andesitic and dacitic sills in pyroclastic rocks include highly altered plagioclase laths set in a groundmass of altered glass and plagioclase microlites. Clinopyroxene phenocrysts (1–1.5 mm) are present, except in the dacites.

Diabasic dikes intrude mantle harzburgite and isotropic gabbros (associated with microgabbro dikes; see Fig. 2). These diabasic dikes include saussuritized plagioclase microlites associated with chloritized–uralitized clinopyroxene.

3.4. Pyroclastic rocks and hyaloclastites

Volcanic breccias, agglomerates and hyaloclastites are characterized by angular volcanic rock fragments in a groundmass of clays,
polycrystalline fine-grained quartz, and chlorite. Broken and angular plagioclase and quartz are also present between rock fragments (Appendix 2H). Pyroclastic rock fragments are divided into basaltic, andesitic and sanukitoids. The basaltic–andesitic fragments contain large clinopyroxene and plagioclase phenocrysts.

Orthopyroxene phenocrysts (0.5–2 mm) are common in the sanukitoid rock fragments (Appendix 2F). The sanukitoids contain plagioclase phenocrysts (0.5–2 mm) with oscillatory and/or patchy zoning and sieve texture confirming either rapid decompression or magma mixing (Nelson and Montana, 1992) (Appendix 2G). Some plagioclase phenocrysts show complex zoning between core and rim.

Clinopyroxene in the andesitic fragments is augite with higher Fe content than that in basalt. The Mg#, Al₂O₃ and TiO₂ in clinopyroxene vary from 71.4 to 73.3, 0.95 to 1.4% and 0.28 to 0.33% respectively (Appendix 9). Orthopyroxene phenocrysts are pigeonite to pigeonite and also show high Al₂O₃ content and low Mg# (Appendix 9). TiO₂ and Al₂O₃ content in clinopyroxene from different Gogher–Baft ophiolitic rocks. (Fig. 6), excepting clinopyroxene from the pegmatite gabbros, which are MORB-like. Low TiO₂ content of Gogher–Baft clinopyroxenes indicates a depleted mantle source (e.g., Pearce and Norry, 1979) and formation in a supra-subduction zone environment. MORB-like pegmatite gabbros perhaps reflect an early melt, produced during initial stage of subduction initiation and trapped as a lens within mantle peridotites.

4. Major, trace, REE and Sr–Nd–Pb isotope geochemistry

We present major and trace (REE) elements data for 39 whole rock samples including four harzburgites, two pegmatite gabbros, seven isotropic gabbros, two gabbroic dikes that intrude isotropic gabbros, four pillowed and flow basalts, nine pyroclastic rocks, seven samples of mafic–felsic sills and dikes within pyroclastic rocks and four samples of diabasic dikes that intrude harzburgite (Appendix 4). Sample positions and locations are shown in Figs. 2 and 3. The analyzed samples are characterized by variable loss on ignition (LOI; 1–8.2% except in peridotites with 1.6–10.9%). Because of the mobility of large ion lithophile elements (LILE) during alteration, we use immobile trace elements such as Rare Earth (REE) and high field strength elements (HFSE) to evaluate the geochemical signature and tectono-magmatic setting of these rocks. Selected rock samples (7 samples) were also investigated for their Sr, Nd and Pb isotopic compositions (Table 1).

4.1. Mantle sequence

4.1.1. Harzburgite

Gogher–Baft harzburgites are distinguished by Mg# ranging from 88.8 to 91.2. They have <1.3 wt.% Al₂O₃ and <1.00 wt.% CaO (Appendix 4) except for sample BT06–45, with 2.5 wt.% Al₂O₃ and 2.2 wt.% CaO.

3.5. Clinopyroxene composition of mafic/magmatic rocks

The composition of clinopyroxene in basaltic rocks provides a useful indicator of the different magma compositions and is therefore a good index to characterize the tectonic setting (Leterrier et al., 1982) as well as to classify the different ophiolite types (Hout et al., 2002). For this purpose, we applied the Al₂O₃ vs. Cr₂O₃ + TiO₂ diagram of Hout et al. (2002) to clinopyroxenes from different Gogher–Baft ophiolitic mafic-intermediate rock units (Fig. 6). These clinopyroxenes have low TiO₂ and Al₂O₃ and are mostly similar to clinopyroxenes in boninites (Fig. 6), excepting clinopyroxenes from the pegmatite gabbros, which are MORB-like. Low TiO₂ content of Gogher–Baft clinopyroxenes indicates a depleted mantle source (e.g., Pearce and Norry, 1979) and formation in a supra-subduction zone environment. MORB-like pegmatite gabbros perhaps reflect an early melt, produced during initial stage of subduction initiation and trapped as a lens within mantle peridotites.

Table 1

<table>
<thead>
<tr>
<th>Sample</th>
<th>BT-06-7</th>
<th>BT-06-10</th>
<th>BT-06-19</th>
<th>BT-06-33</th>
<th>BT-06-31</th>
<th>BT-07-4</th>
<th>BT-07-7</th>
<th>BT-07-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lithology</td>
<td>Rhyolitic dikes</td>
<td>And. Fragment</td>
<td>Basaltic sill</td>
<td>Pillow lava</td>
<td>Diabasic dikes</td>
<td>Diabasic dikes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nd (ppm)</td>
<td>7.213</td>
<td>12.640</td>
<td>5.606</td>
<td>7.053</td>
<td>25.355</td>
<td>4.770</td>
<td>2.380</td>
<td></td>
</tr>
<tr>
<td>Sm (ppm)</td>
<td>2.747</td>
<td>2.922</td>
<td>2.002</td>
<td>2.178</td>
<td>6.070</td>
<td>1.47</td>
<td>0.919</td>
<td></td>
</tr>
<tr>
<td>Rb (ppm)</td>
<td>0.916</td>
<td>9.845</td>
<td>11.435</td>
<td>10.376</td>
<td>5.254</td>
<td>0.075</td>
<td>18.252</td>
<td></td>
</tr>
<tr>
<td>Sr (ppm)</td>
<td>102.924</td>
<td>660.615</td>
<td>212.166</td>
<td>360.812</td>
<td>225.169</td>
<td>38.526</td>
<td>138.302</td>
<td></td>
</tr>
<tr>
<td>U (ppm)</td>
<td>0.242</td>
<td>0.885</td>
<td>0.183</td>
<td>0.166</td>
<td>0.903</td>
<td>0.001</td>
<td>0.074</td>
<td></td>
</tr>
<tr>
<td>Th (ppm)</td>
<td>0.429</td>
<td>3.039</td>
<td>0.169</td>
<td>0.634</td>
<td>2.782</td>
<td>0.598</td>
<td>0.348</td>
<td></td>
</tr>
<tr>
<td>Pb (ppm)</td>
<td>0.452</td>
<td>11.758</td>
<td>0.564</td>
<td>0.671</td>
<td>1.605</td>
<td>0.463</td>
<td>0.842</td>
<td></td>
</tr>
<tr>
<td>143Nd/144Nd</td>
<td>0.5130325</td>
<td>0.5130204</td>
<td>0.5129630</td>
<td>0.5131909</td>
<td>0.5129242</td>
<td>0.5127630</td>
<td>0.5131228</td>
<td></td>
</tr>
<tr>
<td>147Sm/144Nd</td>
<td>0.2292545</td>
<td>0.1391693</td>
<td>0.2149731</td>
<td>0.1850616</td>
<td>0.1441348</td>
<td>0.1876849</td>
<td>0.2325661</td>
<td></td>
</tr>
<tr>
<td>143Nd/144Nd</td>
<td>0.7054312</td>
<td>0.7055535</td>
<td>0.7050837</td>
<td>0.7059087</td>
<td>0.7052499</td>
<td>0.7052382</td>
<td>0.7057374</td>
<td></td>
</tr>
<tr>
<td>εNd (100 Ma)</td>
<td>7.28</td>
<td>8.20</td>
<td>6.11</td>
<td>7.57</td>
<td>6.26</td>
<td>2.55</td>
<td>9.00</td>
<td></td>
</tr>
<tr>
<td>87Sr/86Sr</td>
<td>0.7054312</td>
<td>0.7055535</td>
<td>0.7050837</td>
<td>0.7059087</td>
<td>0.7052499</td>
<td>0.7052382</td>
<td>0.7057374</td>
<td></td>
</tr>
<tr>
<td>87Sr/86Sr</td>
<td>0.0000928</td>
<td>0.0000531</td>
<td>0.0000026</td>
<td>0.0000180</td>
<td>0.0000017</td>
<td>0.0000028</td>
<td>0.0000017</td>
<td></td>
</tr>
<tr>
<td>87Sr/86Sr</td>
<td>0.0257321</td>
<td>0.0431071</td>
<td>0.0588950</td>
<td>0.0831849</td>
<td>0.0674957</td>
<td>0.0056536</td>
<td>0.0317448</td>
<td></td>
</tr>
<tr>
<td>87Sr/86Sr</td>
<td>0.0753946</td>
<td>0.0754593</td>
<td>0.0748622</td>
<td>0.0750905</td>
<td>0.0751540</td>
<td>0.0752302</td>
<td>0.0751950</td>
<td></td>
</tr>
<tr>
<td>87Sr/86Sr</td>
<td>15.6106568</td>
<td>15.5590351</td>
<td>15.5166269</td>
<td>15.6120822</td>
<td>15.5672759</td>
<td>15.6613230</td>
<td>15.6198950</td>
<td></td>
</tr>
<tr>
<td>87Sr/86Sr</td>
<td>38.8154508</td>
<td>38.4308986</td>
<td>38.1624197</td>
<td>39.229419</td>
<td>39.110426</td>
<td>39.0145090</td>
<td>38.6028173</td>
<td></td>
</tr>
<tr>
<td>87Sr/86Sr</td>
<td>18.468004</td>
<td>18.333666</td>
<td>17.8725678</td>
<td>18.8630563</td>
<td>18.5273557</td>
<td>18.5079471</td>
<td>18.5017356</td>
<td></td>
</tr>
<tr>
<td>87Sr/86Sr</td>
<td>15.5847582</td>
<td>15.5554528</td>
<td>15.5012720</td>
<td>15.6000628</td>
<td>15.5938985</td>
<td>15.6403449</td>
<td>15.6157792</td>
<td></td>
</tr>
<tr>
<td>87Sr/86Sr</td>
<td>38.4946815</td>
<td>38.1467825</td>
<td>38.054521</td>
<td>38.9113888</td>
<td>38.5359406</td>
<td>38.6072331</td>
<td>38.4678175</td>
<td></td>
</tr>
</tbody>
</table>
REE abundances in harzburgites are low and show light REE enrichment and U-shape patterns, except sample BT06-45 (Fig. 7A) with slightly enriched bulk REE content. Such selective LREE enrichment suggests interaction with trapped LREE-enriched melt or aqueous fluids, either liberated from the subducted slab or due to alteration during serpentinization (Bodinier et al., 1990; Gruau et al., 1998; Prinzhofer et al., 2010). Alteration may be responsible for La enrichment as indicated by high LOI content of peridotites. LREE enrichment in whole rocks is also reported from abyssal peridotites (Niu, 2004). Nearly flat to upward-sloping MREE to HREE profiles indicate significant melt depletion, similar to South Sandwich Trench-Strike Zone intersection fore-arc harzburgite (Pearce et al., 2000) but clearly different from highly dePLETED Izu-Bonin–Mariana forearc peridotites. Sample BT06-45 is less refractory, as testified by the higher REE content with HREE enrichment (Fig. 7A). This sample might be a simple residue after relatively low-degrees of partial melting, although it might have been re-enriched by melt infiltration (Pearce et al., 2000).

Ultrarefractory elements such as K, Rb, and Ba, which are sensitive to low-temperature alteration, do not show large positive anomalies, except for Pb and Sr (Fig. 7B).

4.1.2. Pegmatite gabbro

Pegmatite gabbros are characterized by variable Mg#, CaO, Al2O3, and CaO/Al2O3 ratio (Appendix 4). These have high bulk REE (Fig. 7C), with La = 8.9–17.6×chondrite and Yb = 3.5–9.7×chondrite. Sample BT07-8 is highly enriched. The pegmatite gabbros are in general slightly enriched in LREE (La/Yb = 1.8–2.6×chondrite), with REE patterns similar to those of the Gogher–Baft ophiolite basaltic flows (see next section). There are no conspicuous Eu anomalies (except sample BT07-9 with slight Eu positive anomalies). The N-MORB normalized trace element patterns for pegmatite gabbros (Fig. 7D) reflect selective enrichment in highly incompatible elements (e.g., Rb, Ba and K) relative to LREE (e.g., Ba/La = 18.4–28.6×N-MORB). They also show spikes in Sr and Pb (Sr/La = 2.7–5.2×N-MORB and Pb/La = 1.8–1.9×N-MORB) (Fig. 7D). Gogher–Baft pegmatite gabbros do not show depletion in Nb and Ta relative to LREE (Nb/La = 1.1–1.2×N-MORB). Such behavior along with slight enrichment in LREE relative to HREE is consistent with a T-MORB affinity, influenced by subduction components.

4.1.3. Isotropic gabbros

SiO2 abundances in isotropic gabbros are variable (42.4–52.4 wt.%) and the lowest value (sample BT06-29, 42.4 wt.% SiO2) is associated with high LOI and Na2O contents (Appendix 4). The Al2O3 and Sc contents show only limited variations (Appendix 4) which differs from variations in the cumulative gabbros. The Mg#, TiO2, and Zr contents of the isotopic gabbros are variable (Appendix 4). In the T/V diagram of Shervais (1982) (Fig. 8), isotopic gabbros plot in IAT, boninite and MORB fields.

Gogher–Baft isotropic gabbros comprise three groups: (1) IAT-like gabbros (BT06-48A and BT06-48B) with flat REE patterns (Fig. 7C; e.g., La/Yb = 1.13–1.15×chondrite), depletion in HFSE (Nb, Ta, Ti) and enrichment in LILEs (Ba, Rb, Th, K, Sr, Pb and U) relative to N-MORB (Fig. 7D); (2) calc-alkaline gabbros (BT06-29, BT06-33, BT05-5 and BT06-34) showing greater LREE enrichment (Fig. 7C).
These samples also show enriched LILEs (Rb, Ba, Th, U, K, Pb) (except BT06-34), and Sr and depleted HFSE (Nb and Ta) relative to LREE (Fig. 6D); and (3) one MORB-like sample (BT06-22) showing LREE depletion (Fig. 7D; e.g., La/Yb = 0.7 × chondrite). Sample BT06-22 does not show Nb depletion relative to LREE and is geochemically similar to fractionated N-MORBs.

Gogher–Baft gabbros, both pegmatite and isotropic varieties, are geochemically different from Oman gabbros (Fig. 7C), except for MORB-like sample BT06-22, which is similar to Oman massive gabbros 1. Oman massive gabbros 1 show fl at REE patterns, resembling N-MORBs (similar to the V1 lava unit) and are thought to have formed via partial melting of residual MORB mantle, whereas massive (cumulate and non-cumulate) gabbros 2 are suggested to form from residual mantle that was metasomatized by subduction components, similar to Oman V2 lavas (Tsuchiya et al., 2013).

4.1.4. Mafic dikes

Diabasic and gabbroic dikes intrude both mantle harzburgite (BT05-10, BT07-7 and BT07-12) and isotropic gabbro (BT05-2A, BT05-3 and BT05-6). The dikes show a broad range in silica content (40.3–52.7 wt.% SiO₂) with low values found in samples with high LOI and CaO due to calcite alteration. All other major elements except FeO seem to be diluted by high CaO. The dikes are primitive to fractionated (Mg# = 46–72) and contain variable TiO₂, Zr and Ti/V (Appendix 4). These fall into the IAT field of Shervais (1982) while gabbroic dike BT05-3 shows boninitic affinities with low abundances of Zr and TiO₂, low Ti/V and higher Mg# (Fig. 8, Appendix 3).

Diabasic dikes intruding harzburgites display slight LREE enrichment (e.g., La/Yb = 1.42 × chondrite, sample BT07-7; Fig. 7E) and/or LREE depletion (e.g., La/Yb = 0.8–0.5 × chondrite). Negative Nb and Ta anomalies and positive anomalies in Ba, Th, U, Pb, Sr, K characterize these diabasic dikes, similar to calc-alkaline/IAT series (Fig. 7F).

Diabasic dikes intruding isotropic gabbros are enriched in LREE relative to HREE (Fig. 7E). Relative to N-MORB, these dikes are enriched in Ba, Th, U, Pb and depleted in Nb and Ta, similar to calc-alkaline magmas. Their high LILE/HFSE and LREE/HFSE ratios are interpreted as supra-subduction zone signatures, where LILE-enriched aqueous fluids derived from the down-going slab have modified the depleted mantle wedge, which then melts to generate arc-like basal magmas (e.g., Stern, 2002; Tatsumi et al., 1986).

4.2. Crustal sequence of the Gogher–Baft ophiolite

4.2.1. Massive and pillowed lavas

Massive and pillowed lavas are basaltic to basaltic andesitic, with 49.3 to 53 wt.% SiO₂ (Appendix 4). The lavas are fractionated, with Mg# from 36.3 to 53. Pillow lavas are more MORB-like, with higher TiO₂, Zr and Ti/V ratio (Appendix 4) whereas massive lavas are more arc-like, with lower TiO₂, Zr and Ti/V ratio. In Ti vs. V discrimination diagram of Shervais (1982), the pillow lavas have MORB (to slightly OIB-like) characteristics similar to Oman V1 lavas, whereas massive lavas have low Ti/V and display IAT signature (Fig. 8).

Pillow lavas show LREE enrichment (Fig. 7G) with La/Nb/Yb inbetween 4.8 and 5.7. Relative to N-MORB, pillow lavas are enriched in HFSE and LILE (Fig. 7H). Pillow lava compositions resemble E-MORB (e.g., enriched in LREE/HREE and HFSE/LREE) albeit showing slight U enrichment or Nb depletion (e.g., Nb/U = 0.6 × N-MORB; Nb/U = 46.1 for E-MORB (Sun and McDonough, 1989)). Low Nb/U may reflect
contribution of slab-derived components to the asthenospheric mantle source during the early stages of subduction. In contrast, massive lava flows exhibit slight LREE depletion (Fig. 7G), Nb–Ti depletion and LILE enrichment on a multi-element N-MORB-normalized diagram (Fig. 7H). The total REE abundance is low in sample BT06-15, similar to boninite, whereas sample BT06-13 shows IAT signature.

4.2.2. Basaltic–andesitic sills in pyroclastic rocks

Basaltic–andesitic sills intruding pyroclastic rocks contain 50.1 to 54.4 wt.% SiO2 and are fractionated with Mg# = 43.9 to 50 (Appendix 4). These rocks are somewhat altered with relatively high LOI (Appendix 4) and tend to plot in the IAT field on the Ti/V diagram of Shervais (1982), similar to Oman V2 lavas (Fig. 8). Sill samples are characterized by flat REE patterns and seem to be co-genetic, following similar trends (Fig. 7I). The rocks display negative Nb and Ti anomalies (and positive anomalies of LILE relative to LREE (Fig. 7J)). Such geochemical characteristics resemble island-arc tholeiitic lavas erupted above subduction zones.

4.2.3. Rock fragments in pyroclastics

Rock fragments in pyroclastics (including pillow fragments in cold breccias) contain 43.9 to 60.8 wt.% SiO2 (Appendix 4) and are basaltic to andesitic. Most samples plot in the IAT field on the Ti/V diagram of Shervais (1982) (Fig. 8) except for calc-alkaline sample BT06-13. Other samples show fractionated REE patterns with high LREE/HREE ratio (Fig. 7I & J). On a multi-element N-MORB-normalized diagram, breccia fragments have negative HFSE and positive LILE anomalies relative to LREE (Fig. 7J), similar to calc-alkaline lavas.

Fig. 8. Plot of the Gogher–Baft lavas on the Ti vs. V diagram (after Shervais, 1982). Most Gogher–Baft rocks occupy IAT (Ti/V > 10) field, although some mafic rocks fall into MORB/ BABB and boninite fields. Fields for the V1 (lower, Geotimes unit) and V2 (upper, Lasail unit) lavas of the Oman ophiolite are from Alabaster et al. (1982) and Godard et al. (2006). For comparison, fields for outer Zagros ophiolites (A) (including Kermanshah, Neyriz and Haji-Abad ophiolites), inner Zagros ophiolites (B) (Nain and Dehshir ophiolites) and Troodos lavas, with lavas from IBM fore-arc (C) are shown. Nearly all lavas from the inner ophiolitic belt plot in IAT and boninite fields while the Neyriz lavas are distinguished by both fore-arc and boninite-like Ti/V ratios. Some Haji-Abad lavas show MORB characteristics whereas Kermanshah calc-alkaline lavas are represented by high Ti/V, such as Oman V1 lavas. Data for Nain ophiolite is from Shafaii Moghadam (2009), for Dehshir ophiolite from Shafaii Moghadam et al. (2010); for Haji-Abad from Shafaii Moghadam et al. (2012b) and for Kermanshah and Neyriz ophiolites are unpublished data. Data for Troodos and Izu-Bonin-Marian forearc basalts are from Pearce et al. (1992) and Reagan et al. (2010) respectively.
relative to LREE in N-MORB-normalized multi-elements diagram (Fig. 7L), similar to island-arc tholeiites. Tuffs constitute another important member of Gogher–Baft pyroclastic units and show significant alteration (LOI~3–8 wt.%). These are more felsic than underlying ophiolitic units. Tuffs display both LREE-depleted (BT06-1) and enriched (BT06-11) patterns (Fig. 7K). Tuffs also show strong HFSE depletion and LILE enrichment (Fig. 7L), consistent with a calc-alkalic (BT06-11) and island-arc tholeiitic (BT06-1) nature.

The rhyolitic dike is similar to andesitic hyaloclastites, showing LREE-depletion (Fig. 7K), enrichment in LILE and depletion in Nb–Ta (Fig. 7L). The dacitic lava has a highly fractionated REE pattern with $\text{La(N)/Yb(N)} \approx 7$ (Fig. 7K). Depletion in HFSE and enrichment in LILE, especially Ba and Th (Fig. 7K) confirm the shoshonitic nature of this sample.

4.3. Sr–Nd–Pb isotope geochemistry

Initial εNd (t) values calculated at 100 Ma (the crystallization age of Inner Belt ophiolites) range from +2.6 to +9 for Gogher–Baft magmatic rocks (Table 1). Rhyolitic dike (BT06-7), andesitic fragment in breccias (BT06-10), isotropic gabbro (BT06-33) and diabasic dike (BT07-12, IAT) are more radiogenic compared to pillow lava (BT07-4), basaltic sill (BT06-19) and calc-alkaline diabasic dike (BT07-7). Samples with more radiogenic Nd overlap with the least radiogenic area of the MORB domain and with Oman and other Late Cretaceous Tethyan ophiolitic rocks (Fig. 9A). E-MORB type pillow lava and basaltic sill samples have similar εNd (t) values. Sample BT07-12 with higher εNd (t) shows lower REE content compared to other diabasic dikes (Fig. 7E).

Initial $^{87}\text{Sr}/^{86}\text{Sr}$ calculated at 100 Ma range from 0.7048 to 0.7057 (Table 1), higher than for oceanic tholeiites and likely do not represent the magmatic Sr isotope signature of the rocks. This shift toward higher $^{87}\text{Sr}/^{86}\text{Sr}$ ratios is commonly attributed to exchange between rock and seawater during alteration (Kawahata et al., 2001; McCulloch et al., 1981), but Sr isotopic determinations of mineral separates such as magmatic clinopyroxene or hornblende is needed to confirm this suspicion.

The initial Pb isotopic ratios range from 38.06 to 38.91 for $^{208}\text{Pb}/^{204}\text{Pb}$, from 15.50 to 15.64 for $^{207}\text{Pb}/^{204}\text{Pb}$ and from 17.9 to 18.87 for $^{206}\text{Pb}/^{204}\text{Pb}$ (Table 1). The magmatic rocks plot above the NHRL in $^{208}\text{Pb}/^{204}\text{Pb}$ and $^{207}\text{Pb}/^{204}\text{Pb}$ versus $^{206}\text{Pb}/^{204}\text{Pb}$ diagram, similar
to Indian Ocean MORB (Fig. 10). Diabasic dikes (BT07-7 and BT07-12) and isotropic gabbro (BT06-33) show high 207Pb/204Pb at similar 206Pb/204Pb (Fig. 10), which is often interpreted as a crustal and/or slab-derived contribution (Godard et al., 2006). The magmatic rocks plot within least radiogenic area of modern marine sediments and overlap in 207Pb/204Pb with Lau Basin lavas (Fig. 10).

Isotopic compositions of Gogher–Baft magmatic rocks reflect different involvement of sediment or crust in their mantle source, either as melt and/or slab-releasing fluids, as implied by variable Th/Yb ratios (Fig. 9B). Samples with radiogenic Nd, show lower Th/Yb except for calc-alkaline sample BT07-7 and sample BT06-10, which both show radiogenic Nd and high Th/Yb. IBM forearc basalts (Reagan et al., 2010), Oman lavas (Godard et al., 2006) and Neeyriz ophiolite (Shafaii Moghadam et al., unpublished data) show similar high radiogenic Nd with low Th/Yb. These are mostly MORB-like lavas with a slight signature of subducted components.

5. Discussion

Below we consider three implications of the new data we have presented. First, we address the question of how Gogher–Baft ophiolitic magmas were generated. Then we compare and contrast Gogher–Baft with other Zagros ophiolites. Finally, we use our new results for the Gogher–Baft ophiolite to interpret the tectonic and geodynamic setting in which this ophiolite formed.

5.1. Petrogenesis of Gogher–Baft ophiolites: SSZ vs. MORB setting

Most Gogher–Baft mantle peridotites are harzburgites, with low CaO (<1.0%) and Al$_2$O$_3$ (≤1.3%) contents similar to modern fore-arc peridotites but overlapping with mid-oceanic ridge peridotites. Gogher–Baft mantle peridotites are similar to South Sandwich forearc peridotites, where harzburgite residues were subsequently modified into slightly enriched peridotites as a result of interaction with arc magmas (Pearce et al., 2000). Harzburgite spinels show medium Cr# (~45 to 53) along with low TiO$_2$, similar to those from fore-arc harzburgites (Fig. 5). These spinel Cr# are mostly higher than those of typical MOR spinels, and could be residues after moderate degrees of melting. Forearc mantle peridotite is composed of depleted harzburgite, characterized by spinels mostly with Cr# > 50 and low TiO$_2$ contents (Bloomer and Hawkins, 1983; Parkinson and Pearce, 1998; Stern, 2010). Gogher–Baft chromite probably formed from a boninitic melt. Chromeites with high Cr# spinel are not reported from normal ocean floor, but are common from forearcs (e.g., Arai, 1994, 1997). Gogher–Baft ophiolite mantle units include diverse magma types: island-arc tholeiite, calc-alkaline, boninitic as well as E-MORB-type magmas. The Gogher–Baft ophiolite extrusive sequence consists of older basalt and basaltic andesite pillow to mass flows (with E-MORB and IAT signatures), changing upward to andesite, dacite and rhyolite (with calc-alkaline, IAT and boninitic affinities). Our new geochemical data suggest that there are four main types of maflc as well as felsic magmas. These are: 1) the early E-MORB pillow lavas and T-MORB gabbros 2) island-arc tholeites, 3) calc-alkaline rocks, and 4) late stage boninitic lavas. The late-stage magmas, like those injected into the pyroclastic rocks, also display IAT signature. Dacitic lava in pyroclastic rocks possesses a shoshonitic character. The negative Nb-Ta and positive LILE anomalies (relative to LREE on N-MORB normalized multi-element diagrams) obtained from these magmatic rocks clearly indicate a supra-subduction zone tectonic environment (Fig. 7). In chondrite-normalized REE diagrams, flat to slightly LREE depleted patterns and very low REE concentrations are characteristic of IAT and boninitic series respectively. These characteristics are commonly found in the supra-subduction zone-type ophiolites of the Eastern Mediterranean region (e.g., Al-Riyami et al., 2002; Bagci and Parlak, 2009; Parlak et al., 2006; Yaliniz et al., 1996) as well as in other Zagros Late Cretaceous ophiolites (Shafaii Moghadam and Stern, 2011). The presence of boninitic rocks has been documented in southern Mediterranean ophiolites including Kizildag (Hatay) (Bagcý et al., 2008), Tekirova (Antalya) (Bagci and Parlak, 2009), Baer-Bassit in northern Syria (Al-Riyami et al., 2002), Troodos in Cyprus (Dilek and Flower, 2003) as well as from Oman ophiolites. Boninitic magmatism is also common in other Late Cretaceous Zagros ophiolites (Shafaii Moghadam and Stern, 2011).

E-MORB-type pillow lavas are similar to Late Cretaceous OIB-type dikes intruding Tauride belt ophiolites of Turkey (Celik and Delaloye, 2003; Parlak et al., 2006), and have also been reported from the Haji-Abad ophiolite (Outer Belt) (Shafaii Moghadam and Stern, 2011). sNd of Gogher–Baft E-MORB lavas are similar to least radiogenic MORB domain and/or to OIB lavas (Fig. 9A), but show slightly more radiogenic Pb, similar to Indian MORBs (Fig. 10). The occurrence of E-MORB in these ophiolites has been suggested to be the result of late-stage off-axis magmatism fed by melts that possibly originated within an asthenospheric window due to slab break-off, shortly after the emplacement of the ophiolites (Shervais, 2001). These E-MORB-type igneous rocks could also be interpreted as the first magmas generated when the Tethyan oceanic plate began to subduct beneath Eurasia in the Late Cretaceous. We infer that these melts were generated from a mantle source that was not yet depleted or affected by subduction components, perhaps flowing in from beneath Eurasia to fill the space created by the initial sinking of the Tethyan plate as hypothesized by Stern and Bloomer (1992). The Th/Yb vs. Ta/Yb diagram (Fig. 11) discriminates between deplet mantle (MORB) and enriched mantle (OIB) sources (Pearce et al., 1995). For subduction-related magmatic rocks, the addition of elements such as Th, by slab-derived fluids/melts increases the Th/Yb in the mantle source as shown by the arrow in Fig. 11. Nearly all the samples from the present study show strong SSZ signature, with higher Th/Yb ratio, except the pillow lavas and pegmatite gabbros with E-MORB/OIB and E-MORB characteristics (Fig. 11).
5.2. Comparison with other Late Cretaceous Zagros ophiolites

Here we briefly compare geochemical features of both Outer Belt (Kermanshah, Neyriz and Haji-Abad) and Inner Belt Ophiolites (Nain, Dehshir, Shahr-e-Babak and Gogher–Baft) to better reconstruct the geochemical evolution and hence to evaluate their geodynamic setting.

As spinel composition is widely accepted to reflect the geodynamic setting of host peridotites, we compare these from both inner and outer ophiolite belts. Nearly all spinels from inner and outer belt ophiolites as well as Semail ophiolitic peridotites are similar to those of forearc harzburgites with some similar to abyssal peridotites (Fig. 5).

Geochemical signatures of Gogher–Baft magmatic rocks resemble those of both inner and outer belt Zagros ophiolitic lavas. Most inner and outer belt ophiolite lavas fall within the IAT and boninitic fields on Ti/V diagram of Shervais (1982), and are similar to both depleted Lasail (V2) lavas of Oman and to Troodos lavas (Fig. 8). These lavas are also similar to fore-arc basalt (Ishizuka et al., 2011; Reagan et al., 2010) and to boninites from the Izu-Bonin–Mariana fore-arc (Fig. 8). Some samples from Zagros inner and outer belt ophiolites (like MORB-like Haji-Abad lavas) are MORB-like, similar to V1 lavas of the Semail ophiolite. Neyriz ophiolite lavas are compositionally intermediate between tholeiitic lavas of the Oman Geotimes unit and depleted lavas of the Lasail unit, similar to Izu-Bonin–Mariana fore-arc basalt (Fig. 8). Available εNd (t) for Late Cretaceous Neotethyan ophiolites including Troodos, Oman, Dehshir, Neyriz and Gogher–Baft ophiolites are shown in Fig. 12. Most Troodos boninitic upper lavas and one Gogher–Baft ophiolite lava with calc–alkaline signatures have less radiogenic Nd than Oman, Neyriz and Dehshir ophiolitic lavas. The mantle source of samples with less radiogenic Nd may have been strongly affected by subducted sedimentary components.

5.3. Tectonic setting and geodynamic evolution of Gogher–Baft ophiolites

Magmatic rocks in ophiolites provide valuable information about crustal accretion processes in different tectono-magmatic environments. Volcanic sequences in an ophiolite sometimes display varying geochemical characteristics, indicating spatial and/or temporal modification of mantle sources as this evolved (e.g., Pearce et al., 1984). Many ophiolites are thus recognized to have formed in a supra-subduction zone (SSZ) environment (e.g., Miyashiro, 1974; Pearce et al., 1984; Shervais, 2001 and references therein; Dilek et al., 2007; Yellappa et al., 2011), including island arc, fore-arc and back-arc basins where new oceanic lithosphere is generated. SSZ-type ophiolites usually contain a geochemical stratigraphy which includes IAT, boninites, and calc-alkaline magmatic rocks with minor MORB-like lavas (Pearce, 2003; Pearce et al., 1984). The “Subduction Initiation Rule” provides important guidelines for ophiolites that formed in a forearc during subduction initiation (St. Whattam and Stern, 2011), specifically that early SSZ magmas are MORB-like and become increasingly arc-like with time.

Neo-Tethyan ophiolites on the southern flank of Eurasia formed in a SSZ setting, about the same time ~90–100 Ma. (Shafaii Moghadam et al., 2013) The southern branch of Neo-Tethys comprises well-documented ophiolites such as the Tekirova (Antalya), Kizildag (Hatay), Ispendere (Malata) in Turkey (Bagic and Parlak, 2009; Bagcý et al., 2005; Parlak and Robertson, 2004), Troodos in Cyprus (Dilek and Flower, 2003), Baer Bassit in Syria (Al-Riyami et al., 2011). Fig. 12. (A) Simplified tectonic map of the eastern Mediterranean-Zagros region showing the distribution of the Neotethyan ophiolites and suture zones (modified after Dilek et al., 2007). (B) Histograms compares available εNd (t) data for Troodos, Oman, Dehshir, Neyriz and Gogher–Baft ophiolites. Data are from Godard et al. (2006), McCulloch and Cameron (1983) and Shafaii Moghadam et al. (unpublished data) for Oman, Troodos and Neyriz respectively (colored figure for online version).
The first lavas in Tethyan ophiolites (including Zagros late Cretaceous ophiolites) as well as Izu-Bonin–Mariana fore-arc basalts tend to be MORB-like (and/or IAT), whereas younger ophiolitic lavas display IAT, boninitic and calc-alkalic characteristics. Boninites are found in many other ophiolitic complexes (Bédard et al., 1998; among others). Modern boninites are mainly restricted to fore-arc environments such as those of the Izu-Bonin–Mariana fore-arc (e.g., Stern, 2004; Stern and Bloomer, 1992), although boninites are also common in the N. Lau Basin, near its termination with a plate-bounding transform to the north (Fallon et al., 2007). The present position of Zagros Late Cretaceous ophiolites in a forearc along with the presence of IAT, calc-alkalic and boninitic lavas suggest that they formed in a fore-arc over a rapidly evolving supra-subduction zone setting in the southern Neo-Tethys (Shafaii Moghadam and Stern, 2011). In this scenario, a broad and continuous tract of oceanic lithosphere formed at about the same time during Late Cretaceous time along the southern margin of Eurasia. According to this model, the Zagros Outer and Inner Belt ophiolites are remnants of a one-continuous tract of fore-arc lithosphere that was created about the same time in association with a new subduction zone. This fore-arc tract extended beyond Iran through Syria and Turkey as far as Cyprus to the west and Oman to the east. Such a fore-arc model is increasingly proposed for eastern Mediterranean Late Cretaceous ophiolites (e.g., Bagci et al., 2005, 2006, 2008; Dilek and Thy, 2009; Dilek et al., 2007; Parlak et al., 2009).

All Zagros ophiolites (both Outer and Inner Belt) are dominated by components with strong supra-subduction zone affinity, from mantle harzburgites to overlying magmatic rocks with some MORB-like lava. MORB-like lavas are usually older than the arc-like lavas. These lithological and geochemical variations in ophiolites are traditionally explained by a shift in tectonic setting from mid-oceanic ridge to island-arc and/or two distant mantle sources for generating magmatic rocks (e.g., Pchnyagin et al., 1997). More recently, this compositional bimodality has been ascribed to progressive deformation and plucked-relation and sediment-related metamorphism of the mantle source during ophiolite formation. According to this model, all ophiolitic magmatic rocks (MORB, IAT, boninites) formed in the same fore-arc region, beginning with eruption of early MORB-like tholeiites (fore-arc basalts “FAB” of Reagan et al., 2010) and evolving to younger boninitic lavas (Whattam and Stern, 2011). This is consistent with the observation in the Izu-Bonin–Mariana forearc that earlier MORB-like basaltic lavas (FAB) were followed by boninitic magmatism (Ishizuka et al., 2011; Reagan et al., 2010). The fore-arc/subduction initiation scenario for the Zagros ophiolites is mostly consistent with the occurrence of boninites and depleted harzburgites with high Cr# number (40–Cr# > 80%) in these ophiolites. The forearc lavas have similar ages, varying from 90–94 Ma for Cyprus (Mukasa and Ludden, 1987), ~95 Ma and/or 99–100 Ma for Oman ophiolites (Goodenough et al., 2010; Tsuchiya et al., 2013; Warren et al., 2005), 92–93 Ma for Neyriz (Outer Belt) (Babaei et al., 2006) and 101–103 Ma for Nain-Dehshir (Inner Belt) ophiolites (Shafaii Moghadam et al., 2013), consistent with a model whereby subduction initiation began along the Iran margin and propagated E and W with time.

6. Conclusions

The Late Cretaceous Zagros–Baft ophiolite is a slice of the Neo-Tethyan oceanic lithosphere within the Inner Zagros Ophiolitic Belt. Depleted mantle harzburgites, pegmatite and isotopic gabbros, pillow lavas and anodesitic–dactitic massive lavas with overlying pyroclastic rocks are the main rock units. Layered ultramafic–mafic cumulates, crustal isotropic gabbros, and sheeted dike complex are not recognized. Turonian to Maastrichtian pelagic sediments cover and/or are interbedded with both ophiolitic lavas and pyroclastic rocks.

Mantle harzburgites have depleted geochemical signatures, characterized by moderate to high Cr# similar to those from fore-arc and abyssal harzburgites. Chromitites probably formed from a boninitic melt. Zagors Baft magmatic rocks have supra-subduction zone affinity, but rare MORB-type lavas also exist. Sr isotopic compositions may reflect the effects of seawater alteration. Nd isotope compositions of Zagors–Baft magmatic rocks reflect variable involvement of sediment components in the mantle source, introduced as either melt or fluids. Lead isotopic compositions plot systematically above the NHRL overlapping with least radiogenic marine sediments and Lau Basin lavas.

Zagros outer and inner belt ophiolites and other Late Cretaceous Neo-Tethyan ophiolites along the Bitlis-Zagros suture zone, show many similarities including the age of overlying sediments, age of magmatism, lithological variations and geochemical evolution. The similarity of ages for magmatic rocks and overlying sediments suggests that Zagros inner and outer ophiolite belts are the exposed limbs of a single deformed sheet, which formed as a magmatic forearc to the Cretaceous and younger igneous rocks of the Urumieh–Dokhtar arc and also acted as backstop to the growing Zagros accretionary prism. In this scenario, the Zagros ophiolites formed when northeast-directed subduction began beneath southern Eurasia, from Cyprus to Oman, beginning about 100 Ma and thus record a complex history of supra-subduction zone formation adjacent to Eurasia.

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.lithos.2013.01.013.

Acknowledgments

We are very grateful to Tomoaki Morishita and Ibrahim Uysal for their constructive reviews of the manuscript. Editorial suggestions by Dr. Andrew Kerr are highly appreciated.

References

Bagci, U., Parlak, O., Hock, V., 2008. Geochemistry and tectonic environment of diverse magma generation processes forming the crustal units of the Kiyizdag (Hatay) ophiolite, southern Turkey. Turkish Journal of Earth Sciences 17, 43–71.
