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Lecture 5

Exact Inference in MRFs



Inference

𝑝𝑝 𝑥𝑥𝐴𝐴, 𝑥𝑥𝐵𝐵, 𝑥𝑥𝐶𝐶, 𝑥𝑥𝐷𝐷 =
1
𝑍𝑍
𝜓𝜓𝐴𝐴𝐴𝐴 𝑥𝑥𝐴𝐴, 𝑥𝑥𝐵𝐵 𝜓𝜓𝐵𝐵𝐵𝐵 𝑥𝑥𝐵𝐵, 𝑥𝑥𝐶𝐶 𝜓𝜓𝐶𝐶𝐶𝐶(𝑥𝑥𝐶𝐶, 𝑥𝑥𝐷𝐷)

𝑍𝑍 = �
𝑥𝑥𝐴𝐴
′ ,𝑥𝑥𝐵𝐵

′ ,𝑥𝑥𝐶𝐶
′ ,𝑥𝑥𝐷𝐷

′

𝜓𝜓𝐴𝐴𝐴𝐴 𝑥𝑥𝐴𝐴′ , 𝑥𝑥𝐵𝐵′ 𝜓𝜓𝐵𝐵𝐵𝐵 𝑥𝑥𝐵𝐵′ , 𝑥𝑥𝐶𝐶′ 𝜓𝜓𝐶𝐶𝐶𝐶(𝑥𝑥𝐶𝐶′ , 𝑥𝑥𝐷𝐷′ )

2

𝐴𝐴 𝐵𝐵 𝐶𝐶 𝐷𝐷



Inference

𝑍𝑍 = �
𝑥𝑥𝐴𝐴
′ ,𝑥𝑥𝐵𝐵

′ ,𝑥𝑥𝐶𝐶
′ ,𝑥𝑥𝐷𝐷

′

𝜓𝜓𝐴𝐴𝐴𝐴 𝑥𝑥𝐴𝐴′ , 𝑥𝑥𝐵𝐵′ 𝜓𝜓𝐵𝐵𝐵𝐵 𝑥𝑥𝐵𝐵′ , 𝑥𝑥𝐶𝐶′ 𝜓𝜓𝐶𝐶𝐶𝐶(𝑥𝑥𝐶𝐶′ , 𝑥𝑥𝐷𝐷′ )

= �
𝑥𝑥𝐴𝐴
′

�
𝑥𝑥𝐵𝐵
′

�
𝑥𝑥𝐶𝐶
′

�
𝑥𝑥𝐷𝐷
′

𝜓𝜓𝐴𝐴𝐴𝐴 𝑥𝑥𝐴𝐴′ , 𝑥𝑥𝐵𝐵′ 𝜓𝜓𝐵𝐵𝐵𝐵 𝑥𝑥𝐵𝐵′ , 𝑥𝑥𝐶𝐶′ 𝜓𝜓𝐶𝐶𝐶𝐶(𝑥𝑥𝐶𝐶′ , 𝑥𝑥𝐷𝐷′ )

= �
𝑥𝑥𝐴𝐴
′

�
𝑥𝑥𝐵𝐵
′

𝜓𝜓𝐴𝐴𝐴𝐴 𝑥𝑥𝐴𝐴′ , 𝑥𝑥𝐵𝐵′ �
𝑥𝑥𝐶𝐶
′

𝜓𝜓𝐵𝐵𝐵𝐵 𝑥𝑥𝐵𝐵′ , 𝑥𝑥𝐶𝐶′ �
𝑥𝑥𝐷𝐷
′

𝜓𝜓𝐶𝐶𝐶𝐶(𝑥𝑥𝐶𝐶′ , 𝑥𝑥𝐷𝐷′ )
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Inference

𝑍𝑍 = �
𝑥𝑥𝐴𝐴
′ ,𝑥𝑥𝐵𝐵

′ ,𝑥𝑥𝐶𝐶
′ ,𝑥𝑥𝐷𝐷

′

𝜓𝜓𝐴𝐴𝐴𝐴 𝑥𝑥𝐴𝐴′ , 𝑥𝑥𝐵𝐵′ 𝜓𝜓𝐵𝐵𝐵𝐵 𝑥𝑥𝐵𝐵′ , 𝑥𝑥𝐶𝐶′ 𝜓𝜓𝐶𝐶𝐶𝐶(𝑥𝑥𝐶𝐶′ , 𝑥𝑥𝐷𝐷′ )

= �
𝑥𝑥𝐴𝐴
′

�
𝑥𝑥𝐵𝐵
′

�
𝑥𝑥𝐶𝐶
′

�
𝑥𝑥𝐷𝐷
′

𝜓𝜓𝐴𝐴𝐴𝐴 𝑥𝑥𝐴𝐴′ , 𝑥𝑥𝐵𝐵′ 𝜓𝜓𝐵𝐵𝐵𝐵 𝑥𝑥𝐵𝐵′ , 𝑥𝑥𝐶𝐶′ 𝜓𝜓𝐶𝐶𝐶𝐶(𝑥𝑥𝐶𝐶′ , 𝑥𝑥𝐷𝐷′ )

= �
𝑥𝑥𝐴𝐴
′

�
𝑥𝑥𝐵𝐵
′

𝜓𝜓𝐴𝐴𝐴𝐴 𝑥𝑥𝐴𝐴′ , 𝑥𝑥𝐵𝐵′ �
𝑥𝑥𝐶𝐶
′

𝜓𝜓𝐵𝐵𝐵𝐵 𝑥𝑥𝐵𝐵′ , 𝑥𝑥𝐶𝐶′ �
𝑥𝑥𝐷𝐷
′

𝜓𝜓𝐶𝐶𝐶𝐶(𝑥𝑥𝐶𝐶′ , 𝑥𝑥𝐷𝐷′ )

4

𝜙𝜙𝐶𝐶(𝑥𝑥𝐶𝐶′ )



Inference

𝑍𝑍 = �
𝑥𝑥𝐴𝐴
′ ,𝑥𝑥𝐵𝐵

′ ,𝑥𝑥𝐶𝐶
′ ,𝑥𝑥𝐷𝐷

′

𝜓𝜓𝐴𝐴𝐴𝐴 𝑥𝑥𝐴𝐴′ , 𝑥𝑥𝐵𝐵′ 𝜓𝜓𝐵𝐵𝐵𝐵 𝑥𝑥𝐵𝐵′ , 𝑥𝑥𝐶𝐶′ 𝜓𝜓𝐶𝐶𝐶𝐶(𝑥𝑥𝐶𝐶′ , 𝑥𝑥𝐷𝐷′ )

= �
𝑥𝑥𝐴𝐴
′

�
𝑥𝑥𝐵𝐵
′

�
𝑥𝑥𝐶𝐶
′

�
𝑥𝑥𝐷𝐷
′

𝜓𝜓𝐴𝐴𝐴𝐴 𝑥𝑥𝐴𝐴′ , 𝑥𝑥𝐵𝐵′ 𝜓𝜓𝐵𝐵𝐵𝐵 𝑥𝑥𝐵𝐵′ , 𝑥𝑥𝐶𝐶′ 𝜓𝜓𝐶𝐶𝐶𝐶(𝑥𝑥𝐶𝐶′ , 𝑥𝑥𝐷𝐷′ )

= �
𝑥𝑥𝐴𝐴
′

�
𝑥𝑥𝐵𝐵
′

𝜓𝜓𝐴𝐴𝐴𝐴 𝑥𝑥𝐴𝐴′ , 𝑥𝑥𝐵𝐵′ �
𝑥𝑥𝐶𝐶
′

𝜓𝜓𝐵𝐵𝐵𝐵 𝑥𝑥𝐵𝐵′ , 𝑥𝑥𝐶𝐶′ 𝜙𝜙𝐶𝐶(𝑥𝑥𝐶𝐶′ )

5



Inference

𝑍𝑍 = �
𝑥𝑥𝐴𝐴
′ ,𝑥𝑥𝐵𝐵

′ ,𝑥𝑥𝐶𝐶
′ ,𝑥𝑥𝐷𝐷

′

𝜓𝜓𝐴𝐴𝐴𝐴 𝑥𝑥𝐴𝐴′ , 𝑥𝑥𝐵𝐵′ 𝜓𝜓𝐵𝐵𝐵𝐵 𝑥𝑥𝐵𝐵′ , 𝑥𝑥𝐶𝐶′ 𝜓𝜓𝐶𝐶𝐶𝐶(𝑥𝑥𝐶𝐶′ , 𝑥𝑥𝐷𝐷′ )

= �
𝑥𝑥𝐴𝐴
′

�
𝑥𝑥𝐵𝐵
′

�
𝑥𝑥𝐶𝐶
′

�
𝑥𝑥𝐷𝐷
′

𝜓𝜓𝐴𝐴𝐴𝐴 𝑥𝑥𝐴𝐴′ , 𝑥𝑥𝐵𝐵′ 𝜓𝜓𝐵𝐵𝐵𝐵 𝑥𝑥𝐵𝐵′ , 𝑥𝑥𝐶𝐶′ 𝜓𝜓𝐶𝐶𝐶𝐶(𝑥𝑥𝐶𝐶′ , 𝑥𝑥𝐷𝐷′ )

= �
𝑥𝑥𝐴𝐴
′

�
𝑥𝑥𝐵𝐵
′

𝜓𝜓𝐴𝐴𝐴𝐴 𝑥𝑥𝐴𝐴′ , 𝑥𝑥𝐵𝐵′ �
𝑥𝑥𝐶𝐶
′

𝜓𝜓𝐵𝐵𝐵𝐵 𝑥𝑥𝐵𝐵′ , 𝑥𝑥𝐶𝐶′ 𝜙𝜙𝐶𝐶(𝑥𝑥𝐶𝐶′ )

6

𝜙𝜙𝐵𝐵(𝑥𝑥𝐵𝐵′ )



Inference

𝑍𝑍 = �
𝑥𝑥𝐴𝐴
′ ,𝑥𝑥𝐵𝐵

′ ,𝑥𝑥𝐶𝐶
′ ,𝑥𝑥𝐷𝐷

′

𝜓𝜓𝐴𝐴𝐴𝐴 𝑥𝑥𝐴𝐴′ , 𝑥𝑥𝐵𝐵′ 𝜓𝜓𝐵𝐵𝐵𝐵 𝑥𝑥𝐵𝐵′ , 𝑥𝑥𝐶𝐶′ 𝜓𝜓𝐶𝐶𝐶𝐶(𝑥𝑥𝐶𝐶′ , 𝑥𝑥𝐷𝐷′ )

= �
𝑥𝑥𝐴𝐴
′

�
𝑥𝑥𝐵𝐵
′

�
𝑥𝑥𝐶𝐶
′

�
𝑥𝑥𝐷𝐷
′

𝜓𝜓𝐴𝐴𝐴𝐴 𝑥𝑥𝐴𝐴′ , 𝑥𝑥𝐵𝐵′ 𝜓𝜓𝐵𝐵𝐵𝐵 𝑥𝑥𝐵𝐵′ , 𝑥𝑥𝐶𝐶′ 𝜓𝜓𝐶𝐶𝐶𝐶(𝑥𝑥𝐶𝐶′ , 𝑥𝑥𝐷𝐷′ )

= �
𝑥𝑥𝐴𝐴
′

�
𝑥𝑥𝐵𝐵
′

𝜓𝜓𝐴𝐴𝐴𝐴 𝑥𝑥𝐴𝐴′ , 𝑥𝑥𝐵𝐵′ 𝜙𝜙𝐵𝐵(𝑥𝑥𝐵𝐵′ )
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Inference

𝑍𝑍 = �
𝑥𝑥𝐴𝐴
′ ,𝑥𝑥𝐵𝐵

′ ,𝑥𝑥𝐶𝐶
′ ,𝑥𝑥𝐷𝐷

′

𝜓𝜓𝐴𝐴𝐴𝐴 𝑥𝑥𝐴𝐴′ , 𝑥𝑥𝐵𝐵′ 𝜓𝜓𝐵𝐵𝐵𝐵 𝑥𝑥𝐵𝐵′ , 𝑥𝑥𝐶𝐶′ 𝜓𝜓𝐶𝐶𝐶𝐶(𝑥𝑥𝐶𝐶′ , 𝑥𝑥𝐷𝐷′ )

= �
𝑥𝑥𝐴𝐴
′

�
𝑥𝑥𝐵𝐵
′

�
𝑥𝑥𝐶𝐶
′

�
𝑥𝑥𝐷𝐷
′

𝜓𝜓𝐴𝐴𝐴𝐴 𝑥𝑥𝐴𝐴′ , 𝑥𝑥𝐵𝐵′ 𝜓𝜓𝐵𝐵𝐵𝐵 𝑥𝑥𝐵𝐵′ , 𝑥𝑥𝐶𝐶′ 𝜓𝜓𝐶𝐶𝐶𝐶(𝑥𝑥𝐶𝐶′ , 𝑥𝑥𝐷𝐷′ )

= �
𝑥𝑥𝐴𝐴
′

�
𝑥𝑥𝐵𝐵
′

𝜓𝜓𝐴𝐴𝐴𝐴 𝑥𝑥𝐴𝐴′ , 𝑥𝑥𝐵𝐵′ 𝜙𝜙𝐵𝐵(𝑥𝑥𝐵𝐵′ )
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𝜙𝜙𝐴𝐴(𝑥𝑥𝐴𝐴′ )



Inference

𝑍𝑍 = �
𝑥𝑥𝐴𝐴
′ ,𝑥𝑥𝐵𝐵

′ ,𝑥𝑥𝐶𝐶
′ ,𝑥𝑥𝐷𝐷

′

𝜓𝜓𝐴𝐴𝐴𝐴 𝑥𝑥𝐴𝐴′ , 𝑥𝑥𝐵𝐵′ 𝜓𝜓𝐵𝐵𝐵𝐵 𝑥𝑥𝐵𝐵′ , 𝑥𝑥𝐶𝐶′ 𝜓𝜓𝐶𝐶𝐶𝐶(𝑥𝑥𝐶𝐶′ , 𝑥𝑥𝐷𝐷′ )

= �
𝑥𝑥𝐴𝐴
′

�
𝑥𝑥𝐵𝐵
′

�
𝑥𝑥𝐶𝐶
′

�
𝑥𝑥𝐷𝐷
′

𝜓𝜓𝐴𝐴𝐴𝐴 𝑥𝑥𝐴𝐴′ , 𝑥𝑥𝐵𝐵′ 𝜓𝜓𝐵𝐵𝐵𝐵 𝑥𝑥𝐵𝐵′ , 𝑥𝑥𝐶𝐶′ 𝜓𝜓𝐶𝐶𝐶𝐶(𝑥𝑥𝐶𝐶′ , 𝑥𝑥𝐷𝐷′ )

= �
𝑥𝑥𝐴𝐴
′

𝜙𝜙𝐴𝐴 𝑥𝑥𝐴𝐴′

9



Variable Elimination

• Choose an ordering of the random variables

• Sum the joint distribution over the variables one at a time in 
the specified order exploiting the factorization where possible

• Each time a variable is eliminated, it creates a new
potential that is multiplied back in after removing the sum 
that generated this potential

10



Variable Elimination

• What is the cost of the optimal variable elimination on the 
chain?

11



Variable Elimination

• What is the cost of the optimal variable elimination on the 
chain?

length of the chain × (size of state space)2

12



Another Example

Elimination order: C, B, D, F, E, A

(worked out on the board)

13

𝐴𝐴 𝐵𝐵 𝐶𝐶 𝐷𝐷

𝐸𝐸 𝐹𝐹



Another Example

Elimination order: C, B, D, F, E, A

14

𝐴𝐴 𝐵𝐵 𝐶𝐶 𝐷𝐷

𝐸𝐸 𝐹𝐹



Another Example

Elimination order: C, B, D, F, E, A

15

𝐴𝐴 𝐵𝐵 𝐷𝐷

𝐸𝐸 𝐹𝐹



Another Example

Elimination order: C, B, D, F, E, A

16

𝐴𝐴 𝐵𝐵 𝐷𝐷

𝐸𝐸 𝐹𝐹



Another Example

Elimination order: C, B, D, F, E, A

17

𝐴𝐴 𝐷𝐷

𝐸𝐸 𝐹𝐹



Another Example

Elimination order: C, B, D, F, E, A

18

𝐴𝐴 𝐷𝐷

𝐸𝐸 𝐹𝐹



Another Example

Elimination order: C, B, D, F, E, A

19

𝐴𝐴

𝐸𝐸 𝐹𝐹



Another Example

Elimination order: C, B, D, F, E, A

20

𝐴𝐴

𝐸𝐸 𝐹𝐹



Another Example

Elimination order: C, B, D, F, E, A

21

𝐴𝐴

𝐸𝐸



Another Example

Elimination order: C, B, D, F, E, A

22

𝐴𝐴

𝐸𝐸



Another Example

Elimination order: C, B, D, F, E, A

23

𝐴𝐴



Another Example

Elimination order: C, B, D, F, E, A

24

𝐴𝐴



Another Example

Elimination order: C, B, D, F, E, A

25



Treewidth

• The treewidth of a graph is equal to the size of the largest 
clique created in any optimal elimination ordering

• Tree width of a tree:  ?

26



Treewidth

• The treewidth of a graph is equal to the size of the largest 
clique created in any optimal elimination ordering

• Tree width of a tree:  1 (as long as it has at least one edge)

• The complexity of variable elimination is upper bounded by 

n ⋅ (size of the state space)treewidth+1

27



What is the Treewidth of this Graph?

28

𝐴𝐴 𝐵𝐵 𝐶𝐶 𝐷𝐷

𝐸𝐸 𝐹𝐹



What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A

29

𝐴𝐴 𝐵𝐵 𝐶𝐶 𝐷𝐷

𝐸𝐸 𝐹𝐹



What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A

30

𝐴𝐴 𝐵𝐵 𝐶𝐶 𝐷𝐷

𝐸𝐸 𝐹𝐹



What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A

31

𝐴𝐴 𝐵𝐵 𝐶𝐶

𝐸𝐸 𝐹𝐹



What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A

32

𝐴𝐴 𝐵𝐵 𝐶𝐶

𝐸𝐸 𝐹𝐹



What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A

33

𝐴𝐴 𝐵𝐵

𝐸𝐸 𝐹𝐹



What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A

34

𝐴𝐴 𝐵𝐵

𝐸𝐸 𝐹𝐹



What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A

35

𝐴𝐴 𝐵𝐵

𝐸𝐸



What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A

36

𝐴𝐴 𝐵𝐵

𝐸𝐸



What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A

37

𝐴𝐴 𝐵𝐵



What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A

38

𝐴𝐴 𝐵𝐵



What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A

39

𝐴𝐴



What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A

40

𝐴𝐴



What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A

Largest clique created had size two
(this is the best that we can do)

41



Elimination Orderings

• Finding the optimal elimination ordering is NP-hard!

• Heuristic methods are often used in practice

• Min-degree:  the cost of a vertex is the number of 
neighbors it has in the current graph

• Min-fill: the cost of a vertex is the number of new edges 
that need to be added to the graph due to its elimination

42



Belief Propagation

• Efficient method for inference on a tree

• Represent the variable elimination process as a collection of 
messages passed between nodes in the tree

• The messages keep track of the potential functions 
produced throughout the elimination process

• Optimal elimination order on a tree always eliminate leaves of 
the current tree (i.e., always eliminate degree 1 vertices)
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Belief Propagation

• 𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 = ∏𝑖𝑖∈𝑉𝑉 𝜙𝜙𝑖𝑖(𝑥𝑥𝑖𝑖)∏ 𝑖𝑖,𝑗𝑗 ∈𝐸𝐸 𝜓𝜓𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗)

𝑚𝑚𝑖𝑖→𝑗𝑗 𝑥𝑥𝑗𝑗 = �
𝑥𝑥𝑖𝑖

𝜙𝜙𝑖𝑖 𝑥𝑥𝑖𝑖 𝜓𝜓𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗 �
𝑘𝑘∈𝑁𝑁 𝑖𝑖 ∖𝑗𝑗

𝑚𝑚𝑘𝑘→i(𝑥𝑥𝑖𝑖)

where 𝑁𝑁(𝑖𝑖) is the set of neighbors of node 𝑖𝑖 in the graph

• Messages are passed in two phases:  from the leaves up to 
the root and then from the root down to the leaves
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Belief Propagation

• As an added bonus, BP allows you to efficiently compute the 
marginal probability over each single variable as well as the 
partition function

• Multiply the singleton potentials with all of the incoming 
messages

• Computing the normalization constant for this function 
gives the partition function of the model

• A similar strategy when the factor graph is a tree

• Two types of messages:  factor-to-variable and variable-to-
factor 
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Belief Propagation

• What is the complexity of belief propagation on a tree with 
state space 𝐷𝐷?
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Belief Propagation

• What is the complexity of belief propagation on a tree with 
state space 𝐷𝐷?

𝑂𝑂 𝑛𝑛 𝐷𝐷 2

• What if we want to compute the MAP assignment instead of 
the partition function?
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