Lecture 16: Hidden Markov Models



Unobserved Variables

e Latent or hidden variables in the model are never observed

 We may or may not be interested in their values, but
their existence is crucial to the model

e Some observations in a particular sample may be missing

 Missing information on surveys or medical records
(quite common)

 We may need to model how the variables are missing



Learning with Latent Variables

* Log-likelihood with latent variables:
N
logl(0) = z logp(x®]6)
i7vl
= z logz p(x, y|0)
=1 y

e Again, this is typically not a concave function of 6

 We will apply the same trick that we did with GMMs last
lecture



Expectation Maximization




Expectation Maximization

\ p(x®,y|6)
F(q,0) = z z q;(y) log
=1 y

o Ai(y)

e Maximizing F is equivalent to the maximizing the log-
likelihood

e Maximize it using coordinate ascent

t

gt*t! = arg max F(q, 0%
d1,---

dK

gttt = argmax F(qt*t, 0)



Expectation Maximization

=2

qdi(y)

=1

(D v |gt
zczi(y)logp(x 716
y

* Maximized when q;(y) = p(y|x®, 8¢)

e Can reformulate the EM algorithm as

N
ottt = argmgxz z p(y|x®, 6% logp(x™, y|6)

i=1 vy



Hidden Markov Models

p(x1, o X7, Y1, 0, Y1) = (V1) (X1 |Y1) 1_[ PYelye—1)p(xe|ye)
t

» X’s are observed variables, Y’s are latent/hidden

* Time homogenous: p(y; = jlyi—1 =) = pyy = jlyy -1 = 1)

 For learning, we are given sequences of observations



Markov Chains

* A Markov chain is a sequence of random variables X4, ..., X1 €
S such that

P (Xprq]X1, s x7) = P(Xpsqlxe )

e The set S is called the state space, and p(X;;1 = j|X; = 1) is
the probability of transitioning from state i to state j at step t



Markov Chains

e When the probability of transitioning between two states
does not depend on time, we call it a time homogeneous
Markov chain

* Representit by a |S| X |S| transition matrix A

Aij = P(Xiy1 = JjlXe = 1)

e A is a stochastic matrix (all rows sum to one)



Learning HMMs

e A bit of notation:
c m; =pY; =10)
* Ajj =p(Y; =jlYioq1 =1)
° bj(xt) =pXt = x¢|Y: =)
e These parameters describe an HMM, 8 = {m, A, b}

o We’'ll derive the updates in the case that the observations
X; are discrete random variables

10



Learning HMMs

zp(ylxﬁs) logp(x,y|0) =
y

T
= ) pOlx,6%)log (p(yap(xuyl) ﬂp(yuyt_l)p(xtm))
y t=2

T
= z p(ylx,0°%)log| m,, by (x1) 1_[ Ay v, by (x¢)
y t=2
T T
= D PO1x, 0% logm,, + ) p([x, 6°) (Z log byt(xt)> +) pOIx,6) (Z logAyt,yt_1>
y y t=1 y t=2

Epm = ilx,6%) logr; +ZZWt = ilx,6°) log by (x;) +Zzzpm = i,Y,y = jlx,0%) log Ay,

t=1 i t=2 i
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Learning HMMs

T
p(x,y|0°%) = 7Ty1 1]935,1 1(x1) nAYth 1bS 1(xt)
t=2

s _p(h =ilx,6°)
L 1
T_ Y:lx,055x=k
i (i) = 2oz Pe = 0, 0)8(x: = k)
=1 p(Ye = i|x,0%)
AS. = Z=2 p(x, Y, =1i,Y._1 =jl6%)
ij =

’11;=2 p(Yt—l = jlx, 95)
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Prediction in HMMs

e Once we learn the model, given a new sequence of
observations, x4, ..., X7, we want to predict yr

e In the tree application, this corresponds to finding the
temperature at a specific time given the rings of a tree

* In the missile tracking example, this corresponds to finding
the position of the missile at a particular time

 Want to compute p(yr|x, 0)
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Prediction in HMMs

* Want to compute p(yrlx, 8) = p(x,yr|6)/p(x|6)

e Direct approach:

pYr=i0)= D Py Yy = 116)
Y1,-0YT-1

* Dynamic programming approach:
p(x,Yr =1i|0) = Zp(x» Yr=0Yr_1 =)
J
= Zp(xp v Xr—1, Yro1 = Dper, Yr = i]xq, oo, X7, Yoo =)
J

N Zp(xl, s X—1, Yro1 = p(xr|Yr = Dp(Yr = i|Yr-1 =)
J
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Prediction in HMMs

* Want to compute p(yrlx, 0) = p(x,yr|6)/p(x)

e Direct approach:

p(x, YT — l|9) = z p(nylJ ---;yT—l;YT = ll@)
YV1,4YT-1

* Dynamic programming approach: Called filtering: easy to implement

using dynamic programming

p(x,Yr =i|0) = EP(X, Yr=1,Yr_1 =)
J
= 2 p(xX1, oy Xp—1, Yrq = j)p(xT: Yr =1|xq, .., X7_1,Yr—1 = J)
J

N Ep(xl, s X—1, Yro1 = p(xr|Yr = Dp(Yr = i|Yr-1 =)
J
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Latent Variables & EM

e Previous updates derived for a single observation (to simplify)

e Can get the general updates for multiple sequences by
adding sums in the appropriate places

e Suffers from the existence of lots of local optima
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