Bifurcation of limit cycles from a fold-fold singularity in a glacial cycles model
(joint work of Oleg Makarenkov and Esther Widiasih)

To prove the existence of an attractive limit cycle in the model

w = —7(w—F(n)), B
i = p(w+ Lss(1 — ao)pa(n)) — p(TE +eT2), (1)
£ = e(b*(n—9) —a(l—n)),

we introduce a small parameter € > 0 as

b~ =by + 650, bt = by —}—851, Paper : b=1.75, by = 1.5, b1 =5,
T, =T +¢T , Tr=T%+ 6T+, Paper : T, =-5.5, T.f=-10.

Esther’s paper suggests that minus or plus in (1) take place according to whether (b+ a)n—a — &b
is negative or positive. We therefore, need to study the occurence of limit cycles in the system

& = flz,y), :

. i -1, if H(y,2) <0, B
y = 9(z,y) +g'(e), CI—{ 1, if H(y,2) > 0, H(y,z)=(b+a)y—a—>bz. (2)
i o= hiy,ze),

lo€{(z,y,2): H(y,z) =0} =: L.
We plan to prove bifurcation of a stable limit cycle from the point Ij.

In what follows, we denote by t (Xi(t,a_c,y, z,e),Yi(t,Z,7, z,¢), Z(t, T, 7, 2,5))T the general
solution of the i-th subsystem of (2) with the initial condition z(0) = z, y(0) = g, 2(0) = Z.
Throughout the paper we will allow ourselves to identify vector lines and vector columns where it
doesn’t lead to a confusion and makes expressions less bulky.

The following notations are required to formulate the theorem. They will also be used throughout
the proof.
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Note, VH (y, z) doesn’t depend on (y, z). Specifically,

VH(y,z) =(a+b,—b) = VH

Theorem 1 Let

(IL‘(), Yo, ZO) €L

be such a point that

f(xo,y0) =0 (border collision in z variable)

I



and

VH< 9(z0, 40) +9'(0) ) =0, ie€{—1,+1} (fold-fold in (y,2) variables). (5)
h (?/0, 20, 0)
Assume that
a — at 75 07 (6)
KM <0 (bifurcation of 2 fixed points occurs). (7)
Finally, assume that
ht (yo,20,0) - (77 —77) <0, (stability of 1/2 fixed points) (8)
k™ (yo, 20, 0)h ™ (3o, 20,0) < 0, (positivity of time map of 1/2 fixed points) 9)
bh+(y0,2070) ' <gy(x07y0) +bhy (y072070) h’j(yoaanO)) < 07 (10)
b _ _
bh+(y07 20, 0) ' (gy($07y0) - mhy (907 20, O) - h‘z (y07 20, 0)) < 0. (11)
(conditions for the limit cycle to be real rather than virtual) (12)

Then, for all € > 0 sufficiently small, system (2) admits a unique attractive limit cycle in a small
neighborhood of (xg, Yo, 20) that shrinks to (zo,yo, 20) as € — 0. The period of the cycle equals

T2 MK+ V/=EMTE +0() (13)

’h‘_(yOv'ZO?O” ‘h+(y01207

Proof. Step 1: Ezpanding the time map Ti(x,z). We will find T¢(z,2) as a solution of the
equation

BT, 2,((2),2.), Z(T,.C(2).2,2) = "
= (a+b)Y{(T,x C(z), z,€) —a— bZZ(T,x,C(z),z,E) =0.

To do this, we expand Y(T, z,((z), z,¢) and Z*(T,z,((z), z,¢) in Taylor’s series near (T, z, z,&) =
(0,0, 20,0). We write down an expansion for Z* only as Y expands analogously.
Z(T,x C( ):2,€) = Z(0,20,((20), 20,0) + Z*(loo) T + Z",(loo)¢" (0) (2 — 20) + Z"(lo0) (2 — 20)+

+ *ZZQQ(ZOO)T + Z"%! (loo) (z — o) + (2%, (loo)¢"(0) + 2" (loo)) (2 — 20) + Zié'e(loo)S] T+

1 1
+| S 2 000) T + 5 (2145, (Io0)C'(0) + 2741 (100) T(= = 20)+

6
1 1
(2Z%;;(l 0) (C’(O)) Z’Q;’Z(ZOO)C’(O) 2Zl;flzlz(l00)> (z — z0)2] T + remaining terms.

Using these expansions along with assumptions (4) and (5) we can rewrite (14) as

m'T + mt(z — xo) + M (2 — 20) + mle+
+ET? + ET(2 — 20) + k'(z — 20)? + remaining terms = 0,



where

. 1 ; |

m = (ot b)Y (log) — QbZ“Q(loo),

m' = (a+b)Y" L (loo) — bZ"(loo),

mt = (a4 )Y (o) (0) + Y4 (loo)) — b(Z4!, (loo)¢'(0) + Z%. (Ioo)),

m' = (a+b)Y"(loo) — bZ"(loo),

_. 1 . 1, .

Eo= g(a + 0)Y"411(loo) — gbZZQQQ(ZOO)v

N 1 ; : Ly i ‘

Bo= Slat+ b)Y, (o0)¢ (0) + YL (loo)) = 5b(Z57,loo)S(0) + 27 (loo)).
o= (a +b)< Y (lo0) (¢'(0))* + Y4 (loo) + Y’é’z’z(loo)>—

b (325000 (S0 + 2 ) + 327 0) )

Therefore, we can compute 1} as

Ti(z,2) = o' (x — o) + B'(2 — 20) +¥'e + 1" (2 — 20)* + remaining terms, (15)
i ml . ml i ml . k/,’L (lBl) _|__ k’LBZ + kl
of = e g = T V=—-= n'=- i :

Step 2: The Poincare map P- and its fized points. Expanding X*(T, z,((2), z,€) about (T, z, z,£) =
(0, zg, 20,0) we get

XUT,2,((2),2,€) = x0 + X% (loo)T + XV (loo)(x — z0)+

1
+ X%% loo)T* + X%;(ZOO)T(( )(z — 20) + X 1 (loo) T (2 — 20)+

(
| XU + X0z~ 20) + X (00)S O)(z = 20) + X l)( — 30) + Xl | T+
< X1l (0)? + X Io0)C'(0) + X;;;aoo)) (2 = 20| T+ remaining terms,

and similarly for Z¢(T, x,((2), z,€). Therefore, for the map

% _ Xi(Tg(x7Z)7x>C(z)vzv€)
Fela,2) = ( Zi(Ti (e, 2), 2, (=), 2. ) )



we have

1._.. ) ) .
T + §XZ%(ZOQ)TZ(SU, Z, 6) + X%lz(loo)(x - 930) + XZ%(ZO[))CI(O)(Z - ZQ)+

1. . 1 . )
X o0) T, 2,2 + 5 X1 (100) T (2, 2,2)C'(0) (2 — 20)+

1

Pz, 2) = + §Xig;;(zoo)g'(0)2(z — zo)ﬂ T (z, 2, €) +

. . 1 , .
z+ Z"(loo)T"(z, 2,€) + [zzzii(loo)Té(fE, z) + 2", (l00)¢" (0) (2 — 20)+

+2%(loo)(z — 20)| T (2, y, )
+ remaining terms.

Now we cancel some terms by observing that (5) yields

i 2
IB B hi(y032050)7 (16)

from where
%Xi;;(loo)ﬁi + X7 (loo)C'(0) = 0,
%zi;gaoow + 2%, (o) (0) + 27, (loo) = 0,
so that Pg can be rewritten in the form

Pi(z,z) = (x>+<Ai($—$0)+Bi(Z—zo)2+Cis>'

z hi(y()vZOvO)
. <(0zi, B9 < a; : ;Ug ) + 1% (z — 20)* + 'y’é) + remaining terms, (17)
where
A = %Xtit(lm) + X"} (loo),
B = SXUieo + SX ) (B + 3 Xt (o) (OB + 5 X7 1) (00,
= %Xii't(loo)’yi-

Since the way P! is introduced implies that P = (PEZ')_1 (i.e. P!is an involution) we can find fixed
points of the map

by solving the equation
P; (u) = P (u). (18)



We will first solve the second equation of (18) and find z(z,¢e). This will be found uniquely. Then
we will plug the result into the first equation of (18) and find z(¢). The later will have two solutions
which correspond to the two points where the cycle intersects the cross-section L.

Letting
(I)(x> 275) = [Pa_(xv z) - P;—(l‘, Z)]g )

we compute

@ (20,20,0) = o h”(yo,20,0) — a*hT(yo, 20,0),

P (x0,20,0) = B~ h™(yo,20,0) — BThT (yo, 20,0) = 0,
@, (20,20,0) = 20" h™ (y0,20,0) — 20" h" (3o, 20,0),
@, (20,20,0) = v~ h~(y0,20,0) — v A" (y0, 20,0),

Using assumption (6) we apply the Implicit Function Theorem and solve ®(z, z,) = 0 in 2 when
(z,¢€) is near (zp,0). The Implicit Function Theorem gives

1 1

@ (20, 20.0) (0, (20, 20.0)) , 2. (20,0) = — B/ (z, 29, 0).

o
0) = —
(.CEZ,.%'S)(ZO, ) CI);C(1'072070)

Therefore,
x(z,€) = zo + k(2 — 20)? + me + remaining terms. (19)

Plugging expression (19) into the first line of (18) we obtain the following equation for z — zy
J(z — 20)* + K(2 — 20)® + Le(z — 20)* + Me(z — 2y) + Ne? + remaining terms = 0.

The change of the variables

1/2

Z—20=¢€'""pP

yields
Jept + K53/2 34 Le?p® + M53/2p + Ne? 4 remaining terms = 0,

or
Je'2pt + Kp? + Le'/?p? + Mp 4+ Ne'/? 4 remaining terms = 0,

where we will need formulas for only some of J, K, L, M, and N, that we give a bit later. Assumption
(7) ensures that this quadratic polynomial admits two solutions z — zp and Z — zp. Combining
formulas for solutions of the quadratic polynomial with with formula (19), we conclude that the
Poincare map P: possesses the following two fixed points around (zg, 29) for € > 0 sufficiently small

(5)- (2 () Yoo
(20)= (2) - (SRR ) o

where

K = (KA~ +B7)3 — (kAT + BM)pT,
M = (mA~4+C7)B3 —(mAT +CH)p .



Step 3: Stability of fized points (z(e), z(€)) and (Z(¢),Z(e)). The fixed point (z(e), z(¢)) is stable,
if the eigenvalues of the matrix

(P:)'(z(e), 2(e)) = (P7)'(z(e), 2(e)) o (P) (z(e), 2()),  (z(e), 2(e)) = P (z(e), 2(e))  (21)

are strictly inside the unit circle. Formula (17) yields

< jg ) - ( z(e) - 81/25+hf((y€o), 20,0)\/—M/K ) + remaining terms, (22)

and since

(PiY(2,2) =

yo, 20, O) > (O[i,,Bi —+ 2772(2 . ZQ)) +

o+ (e

(1 2312‘“”)(( B (2T ) - s o) +
<A

1

T —x0) + Bz — 2)? + C'e

0 > (o, B" + 20'(z — 20)) + remaining terms,

the composition (21) takes the form

(P)'(2(e)2(e) = (U7 —2(L+ BT 0 (9o, 20,0))@7) (‘I’+ - 51/2<I>+) +0(e%?) =
= (v + E1/2(137) (leJr _ 81/2@+) + 0(83/2),

where

i 0 0 i - 1 0
v = I+ < Oéi ﬂ’L ) h (y072070) - ( Oéihi(yo,Z0,0) -1 > s
. Azﬁz 0
P = - -/ —-M/K,
< 0  2h'(yo, 20,0)n" ) /
or, equivalently,

(P (z(e),2(e) = U Ut +eV/2(@ 0T — 0~ dt) +0(e) =

_ 10 RV A=pT — Atpt 0
N * 1 * _2h_(y072070)77_ + 2h+(y072070)77+ ’

where *-symbols stay for some (different) constant, which values don’t influence the conclusions.
Therefore, the fixed point (z(¢), z(¢)) is stable, if

*

h’+(y0a 20, O>A+ —h” (y07 20, O)A_ < 07 h+(y07 20, 0)77+ —h” (y(]v 20, 0)77_ < 0.
Analogously, the fixed point (Z(¢),Zz(¢)) is stable, if
h* (Yo, 20,0)A™ — h™ (30, 20,0)A™ > 0, h* (Yo, 20, 0)n " — h™ (yo, 20,0)n~ > 0.

Assumption (8) ensures that one of these two sets of inequalities holds.



Step 4: Verifying that P= and PX map the points of L from the past to the future.

£

Case 1: The points from the neighborhood of (z(¢),z(¢)) and (z(¢),2(¢)), i.e. the case where
h*(yo, 20,0) > 0. We must check that
T"(z(e),2(e) >0 and T (z(e),z(e)) > 0. (23)

Using (15), (16), (20), and (22), we have

TH(z(e),z(e) = &'/? - yo,Zo, \/WJFO
T (2(c),2(e)) = —e'/? = \/ M/K + O(e)
(yo7207

Therefore the positivity properties (23) follow from (9).

Case 2: The points from the neighborhood of (Z(¢),z(¢)) and (Z(¢),z(e)), i.e. the case where
h~(yo, 20,0) > 0. By analogy with Case 1, one can use formulas (15), (16), (20), and an analogue
of (22) in order to verify that

TH(@(e),2(c)) = —&'/* T ywo’ \/ M/K + O(e)
T (T(e),Z(e)) = &'/? = \/ M/K + O(e)
(?JO,ZO,

under assumption (9).

Step 5: Verifying that P

€

H(y,z) > 0} respectively.

and PX act in the subspaces {(z,y,z) : H(y,z) < 0} and {(x,y,2) :

Case 1: The trajectory with the initial condition at (z(e),((z(¢)),z(g)), i.e. the case where
h+(y0,z0,0) > 0.

a) The map P. Note, a vector v € R? with the origin (z,y,2) € L points towards {(x,y,2) :
H(y,z) >0}, if (0, VH(y,z))v > 0. Therefore, the vector field of the “4”-subsystem of (2) points

o{(z,y,2): H(y,z) > 0} at (z(c),((2(¢)), z(¢)), if
VH(((2(€)), 2(¢)) ( h+(é(§(€ )’l(—;f;(g) > >0, (24)

which follows from (10).

b) The map P . Here we have to check that the vector field of the “-”-subsystem of (2) points
towards {(z,y,2) : H(y,z) < 0} at (z(¢),((z(¢)), z(¢)). Equivalently, we have to establish that

VH(C(e(e). 266 ( T5EE) H ) <o (29

which follows from (11).

Case 2: The trajectory with the initial condition at (Z(e),((Z(¢)),Z(e)), i.e. the case where
h*(yo, 20,0) < 0. Considering (Z(¢),z(¢)) in place of (z(g),z(g)) will just flip the sign in the



respective expressions (24)-(25), which validity will still follow from (10)-(11) because the sign
of h*(yo, 20,0) flips as well. Therefore, the vector field of the “+”-subsystem of (2) points to
{(z,y,2) : H(y,z) > 0} at (z(e),((Z(¢)),Zz(¢)) and the vector field of the “”-subsystem of (2)
points to {(z,y,2) : H(y, z) <0} at (Z(e),{(Z(¢)), z(¢)), if conditions (10)-(11) hold.

Auxiliary relations:

Eo= K- (g(wo,50) + g'(0)),

ey

i Ui
7 1 (Y0, 20, 0)”
h’i(y()aanO)’
¥ R
hz(y()az(bo),
. 1 . .
ct = ify(ﬂﬁo,yo)(g(xo, Yo) +9'(0))y".
i L, i ; 1, , i
B = ify(xo,yo)(g(ﬂfo,yo)Jrg(0))77 +(6]}(360,yo)gy(xo,yo)(g(xo,yo)+g(0))+

+éf§,;(xo, yo0)(9(z0,10) + ¢'(0))* + éf;(iﬁo, Y0)9, (w0, %0) (9 (0, yo) + gi(o))) (8)° +

(0,00, oo, )+ 5 o o) oo, o) + 900D + 5y o) ) 556 +
1, b \?
+§fyy(x0ay0) <(I—|—b> )

The proof of the theorem is complete.

Simulations. We implement simulations with the following parameters
b=1.75, a=1.05 by =15, by =5, ¢=0.03, T, =5 T =1, TT =0, by =0, by =0.
Using Mathematica software we conclude that condition (4) holds for system (1), if either
wo = 531.915, ng = —4.52983, & = —7.84772, T.F = —7.17737,

or
wo = —2.49476, ny = 0.65411, & = 0.446575, T = —5.13619,

or
wy = —5.44116, 0y = 0.563218, & = 0.301148, T = —5.17198.

Considering the case of T." = —5.13619 and e = 0.01, formula (13) yields 7" = 0.61744, while sim-
ulations show T" ~ 0.82. Taking € = 0.000001, formula (13) returns 7" = 0.0061744 and simulations
show T ~ 0.006.



