
1 Introduction

A switched system is a system of differential equations with discontinuous or impulsive
right-hand-terms. Automatic switchers are often used in control because of simplicity of
implementation. One can think of a water tank. The simplest way to operate the tank would
be to switch the water on when h crosses h1 and to switch the water off when h crosses h2

([1, 2]), see Fig. 1.1(Left). Same type of so-called relay switching operates anti-lock braking
systems [3, 4], electric power converters [22, 23], therapy alternation in medicine [6, 7],
harvesting control in population dynamics [5], etc. Some discontinuities are integral parts
of physical processes. Consider, for example, the simplest bipedal robot of Fig. 1.1(Right)
standing on a gentle slope. Here we have two legs connected with a joint in the top whose
masses m are lumped in the middle of each leg. Perhaps surprisingly, if we push this double
pendulum down the slope successfully, it will walk alternating support legs periodically
[19, 20] (see movie [21]). As a result, we will have a motion where each leg collides with
the ground periodically. These collisions bring impulsive discontinuity in the differential
equations of the motion. Similar discontinuities (called resets) are found in neuroscience
[8, 9, 10]. We will consider some of these and other models in details during the course. A
comprehensive list of applications of switched systems can be found in my survey [11].
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Figure 1.1: Left: water tank with switching control of water level. Right: bipedal passive walker.

To summarize, 1) discontinuities appear in physical devices because of simplicity of practical
implementation, 2) discontinuities and impulses are intrinsic natural features of some physical
processes. One more reason as for why discontinuous differential equations are required in
applied sciences is because 3) they can ensure much better stability (finite-time stability or
finite-time stabilization) compared to smooth differential equations. We devote a dedicated
section to justify the latter statement.

2 Finite-time stabilization

Given a system of ordinary differential equations

ẋ = φ(t, x), φ ∈ C1(R× Rn,Rn) (2.1)

c© 2017 Oleg Makarenkov, Stability and Bifurcations of Switched Systems Page 1



and a reference trajectory x̄(t), the stabilization problem is to find a function ψ : R×Rn → R
n

(control) such that for every solution x of the perturbed system

ẋ = φ(t, x) + ψ(t, x) (2.2)

there exists t̄ such that x(t) = x̄(t) for all t ≥ t̄. In the next section we see that the problem
cannot be solved in the class g ∈ C1(R×Rn,Rn) and the most part of this chapter is devoted
to stabilization of the systems of differential equations

ẋ = f(t, x) (2.3)

with f 6∈ C1(R× Rn,Rn), where we have (2.2) in mind, as a particular case.

2.1 Insufficiency of smooth control for finite-time stabilization

The above stated problem cannot be solved in the class of ψ ∈ C1(R × R
n,Rn). Indeed,

assume the contrary. Then, given any two solutions xa and xb of (2.2) with xa(0) 6= xb(0),
there will be t̄ such that

xa(t) = x̄(t) and xb(t) = x̄(t) for all t ≥ t̄.

This implies that the initial value problem x(t̄) = x̄(t̄) for (2.2) lacks backward uniqueness,
which cannot happen to differential equations with C1 right-hand-sides.

2.2 Finite-time stabilization in the water tank example: the
problem of defining a solution

We use a water tank again to illustrate the finite-time stabilization concept. At Fig. 2.1(Left)
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Figure 2.1: Left: water tank with just one water level control sensor h̄. Right: two sample trajectories of
h(t) that start at h(0) < h̄ and h(0) > h̄ respectively.

the two sensors of Fig. 1.1(Left) are replaced by a single one h̄. Assume that the incoming
water is on for h < h̄ and is off for h > h̄. Assume further that given an initial water level
h(0) = h0, the level of the water changes according to the formula

h0 > h̄ : h(t) = h0 − t, as long as h(t) > h̄,
h0 < h̄ : h(t) = h0 + 3t, as long as h(t) < h̄.
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Starting from any initial condition h0, the function h(t) reaches h̄ in finite time or we say
that the water level stabilizes in finite time (see Fig. 2.1(Right)). The differential equation
for h can be written through the sign-function

sign(x) =


1, if x > 0,
0, if x = 0,
−1, if x < 0

as
ḣ = 1− 2sign(h− h̄), (2.4)

whose right-hand-side is discontinuous at h = h̄. This is what we paid for the phase portrait
of (2.4) to look like Fig. 2.1(Right), where each trajectory reaches h̄ in finite time. A
complication that comes with discontinuity in (2.4) (price for discontinuity) is that given
h0 < 0 the solution

h(t) =

{
h0 + t, for all 0 ≤ t < h̄− h0,
h̄, for all t ≥ h̄− h0

(2.5)

(which we get by drawing the phase space of (2.4) in Fig. 2.1(Right)) is not differentiable at
t = h̄− h0 and doesn’t satisfy (2.4) for t > h̄− h0. Indeed, we get ḣ = 0 and sign(h− h̄) = 0
for t > h̄− h0, that brings (2.4) to the wrong equality

0 = 1. (2.6)

We will call (2.5) a Filippov solution of (2.4) because, as we just concluded, h(t) doesn’t
satisfy (2.4) formally when t ≥ h̄−h0. Next section introduces the Filippov solution concept
for a general system of time-dependent differential equations with piecewise continuous
right-hand-sides. One can e.g. think of a function g(t) replacing 1 in (2.4) that would
model a tank where the carrying capacity of the outcoming water pipe changes in time.

2.3 Filippov definition of solution

Definition 1 (particular case of [12, p.49]) A function f : R× Rn → R
n is called piecewise

continuous, if it is continuous everywhere except on countably many co-dimension one smooth
surfaces, whose number is at most finite in any bounded subset of {t} × Rn for almost any
fixed t ∈ R, and if all discontinuities of f(t, x) are of the first kind.

A hyperplane of Rn given by all x ∈ Rn that satisfy a1x1 + ...+ anxn = b, where a1, ..., an, b
are constants, is the main example of a co-dimension one smooth surface that we will use in
this course.

Define the convexification K[f ] of f as

K[f ](t, x) =
⋂
δ>0

⋂
µ(J)=0

cof(t, Bδ(x)\J), (2.7)
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where Br(x) is the ball of Rn of radius r and centered at x, and coB is the closure of the
smallest convex set that contain B ([12, bottom of p. 61]), also known as convex hull.
Consult [13, Definition 7.43] for the definition of a set J of zero measure (µ(J) = 0).

The next concept uses the definition of absolute continuity of a function x : [t0, t1] 7→ R
n.

These are continuous functions which are differentiable almost everywhere (i.e. differentiable
everywhere except on a set of zero measure) with the following important property: if x is
absolutely continuous on [t0, t1], then

∫ t
t0
x′(s)ds exists (in the sense of Lebesgue) and x(t) =

x(t0) +
∫ t
t0
x′(s)ds for t ∈ [t0, t1]. The best reference to learn about absolutely continuous

functions is [14, §33.2].

Definition 2 ([12, p. 85]) An absolutely continuous function x : I → R
n is a solution of

(2.3) in the sense of Filippov (or Filippov solution), if

ẋ(t) ∈ K[f ](t, x(t)) for almost all t ∈ I. (2.8)

Here I = [t0, t1] or I = [t0,∞).

Same definition is phrased differently in [12, p. 50 (item a)], where a justification of Filippov
definition is briefly discussed. A justification of Filippov definition through a regularization
approach is proposed in [15]. The authors of [15] (and their followers) show that Filippov
solution is what one gets if first smooths the discontinuities of the right-hand-sides by
allowing for some transition dynamics on the boundary layer and then pass to the limit
as the boundary layer shrinks into a hyperplane.

Proposition 1 1 If x(t) is a piecewise differentiable function that satisfies (2.3) everywhere
on [0,∞) except in isolated moments t1, t2, ... and f is continuous at (t, x(t)) for all t ≥ 0,
t 6= ti, i ∈ N, then x(t) is a solution of (2.3) in the sense of Filippov.

Proposition 1 says that we don’t need Filippov theory, if none of solutions of (2.3) pass
through discontinuities (points of Rn+1 where f(t, x) is discontinuous) infinite number of
times in finite time. If none of solutions pass through discontinuities infinite number of times
in finite time, then we, in particular, cannot have solutions that slide along discontinuities.

Proposition 2 If x(t) is a Filippov solution of (2.3) on an interval I then, for all t ∈ I,

1) ẋi(t) exists and ẋi(t) = fi(t, x(t)), if fi is continuous in a neighborhood of (t, x(t)),

2) ẋ(t) (when exists) doesn’t necessary equal f(t, x(t)), if f is discontinuous at (t, x(t))2.

1Consider the exercise:

Exercise 1 (optional): Prove proposition 1.
2There exists a different explicitly defined differential equation ẋ = g(t, x) that x satisfies while sliding

along a discontinuity. We will touch upon this later.
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The proof needs only one of the following two properties of the convexification function, but
we formulate them both at once for further use:

(2.9)K[f ](t, x) ⊂

 K[f1](t, x)
...
K[fn](t, x)

 , for all t ∈ R, x ∈ Rn, (2.9 a)

K[f + g](t, x) ⊂ K[f ](t, x) +K[g](t, x), for all t ∈ R, x ∈ Rn, 3 4 (2.9 b)

Proof of Proposition 2. 1) Let fi be continuous at a neighborhood U of (t∗, x(t∗)) for
some i. Then K[fi](t, x) = {fi(t, x)} for all (t, x) ∈ U and by (2.9 a) one gets

ẋi(t) = fi(t, x(t)) for almost all t such that (t, x(t)) ∈ U.

Therefore, xi is differentiable in those t for which (t, x(t)) ∈ U and ẋi(t) = fi(t, x(t)) in all
such t.
2) The counter-example that justifies the second statement was given in § 2.2, see (2.6).
Alternatively, one can consult the classical time-dependent counter-example in [16, discussion
of (1.1) at p. 2] (dry friction oscillator).

Theorem 1 5 If a piecewise continuous f : R× Rn → R
n satisfies

‖f(t, x)‖ ≤ c(t)(1 + ‖x‖) for all t ∈ R, x ∈ Rn, (2.10)

where c is a continuous function, then given any x0 ∈ Rn, the initial value problem x(0) = x0

for (2.3) has a solution x on [0,∞) in the sense of Filippov.

2.4 Finite-time stabilization by sign-functions of large amplitudes

We have seen in section 2.1 that a C1 smooth g cannot solve the finite-time stabilization
problem. Then section 2.2 provided an elementary example where finite-time stabilization
of the water tank is due to the presence of the sign-function in the respective mathematical
model. In this section we show that a finite-time stabilization can be always achieved via a
vector sign-function g. Indeed, consider

ẋ = φ(t, x)−

 b1 sign(x1 − x̄1)
...
bn sign(xn − x̄n)

 =: f(t, x), (2.11)

3Consider the exercise:
Exercise 2 (optional): Prove property (2.9 a) and (2.9 b)

4If A,B ⊂ R
n, then A+B = ∪a∈A,b∈B(a+ b).

5References for the proof of Theorem 1: 1) Use [12, corollary, p. 69] to conclude that K[f ] is an upper
semicontinuous set-valued map with compact convex values. 2) Make sure that Filippov’s definition of
upper semicontinuity [12, bottom of p. 65] coincides with ε-δ-upper semicontinuity in [17, definition 1.2] or
[16, Definition 2.1.1]. Note: there is a misprint in the formula for β in [12, p. 64]. The correct formula is
β(A,B) = supα∈A ρ(a,B) (see p. 52 in the Russian original). 3) Apply [17, Theorem 5.1 and Proposition 1.1a]
or [16, Theorem 2.2.1] to complete the proof. Both the theorems assume (2.10).
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where φ ∈ C1(R× Rn,Rn) and x̄, b ∈ Rn. Our goal is to prove the following statement.

Proposition 3 Assume that

|φi(t, x)| ≤Mi, t ∈ R, x ∈ Rn, i = 1, ..., n,

for some Mi ∈ [0, bi), i = 1, ..., n. Then, given any bounded U ⊂ R
n and

t̄ = max
i=1,...,n

sup
u∈U

|ui − x̄i|
bi −Mi

,

one has
x(t) = x̄, t ∈ [t̄,∞) ,

for any Filippov solution x of (2.11) with the initial condition x(0) ∈ U.

We don’t need to compute the convexification K[f ] of f (which denotes the right-hand-side
of (2.11)) in order to prove the proposition. The proof will only rely on the fact that the
Filippov solution x of (2.11) satisfies (2.11) at those t, where (x1(t)− x̄1) · ... · (x1(t)− x̄1) 6= 0
(see Proposition 2). However, we will construct K[φ] to practice (once) with the algebraic
side of the Filippov definition.

2.4.1 Convexification of f given by (2.11)

2.4.1.1 The formula for K[sign](s)

Since sign-function acts from R, the ball Bδ(s) is now the interval (s − δ, s + δ). Fix some
s < 0 and consider the values of δ > 0 sufficiently small so that 0 6∈ (s − δ, s + δ). Since
sign(τ) = −1 for any τ ∈ (s − δ, s + δ), then the image of sign on (s − δ, s + δ) consists of
just one element −1, i.e.

sign((s− δ, s+ δ)) = {−1}.

Here {−1} is a subset of R that consists of just one element −16. No matter which set J of
zero measure one excludes from (s− δ, s+ δ), the sign-function will map (s− δ, s+ δ)\J into
−1, i.e.

sign((s− δ, s+ δ)\J) = {−1} for any δ > 0 sufficiently small and any J of measure 0.

By taking the intersection of the latter equality over all δ > 0 and µ(J) = 0 one, therefore,
gets ⋂

δ>0

⋂
µ(J)=0

co sign((s− δ, s+ δ)\J) = {−1},

where we also used co{−1} = {−1}. Analogous arguments apply when s > 0.

6The difference between −1 and {−1} is as follows: −1 ∈ R, while {−1} ⊂ R.
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Consider now s = 0. We have

sign((−δ, δ)) = {−1} ∪ {1} = {−1, 1} =⇒ sign((−δ, δ)\J) = {−1, 1}

for any δ > 0 and any J ⊂ R of zero measure. Since the minimal convex set that contains
−1 and 1 is the interval [−1, 1], we have co{−1, 1} = [−1, 1]. Consequently,⋂

δ>0

⋂
µ(J)=0

co sign((−δ, δ)\J) = [−1, 1].

In summary,

K[sign](s) = Sign(s), where Sign(s) =


1, s > 0,
[− 1, 1], s = 0,
−1, s < 0.

(2.12)

2.4.1.2 Convexification of f

Since

1) K[φ + ψ](t, x) = {φ(t, x)} + K[ψ](t, x), for any continuous φ : R × Rn → R
n and any

piecewise continuous ψ : R× Rn → R
n,

2) K [h] (t, x) =

 K[h1](t, x1)
...
K[hn](t, hn)

, for piecewise continuous h(t, x) =

 h1(t, x1)
...
hn(t, xn)

 ,

then7

K[f ](t, x) = φ(t, x)−

 b1 Sign(x1 − x̄1)
...
bnSign(xn − x̄n)

 .

2.4.1.3 Filippov solution of (2.11) revised

To conclude this subsection, a Filippov solution of (2.11) on [t0,∞) with the initial condition
x(t0) = x0 is an absolutely continuous function x that satisfies

ẋ(t) ∈ φ(t, x(t))−

 b1 Sign(x1(t)− x̄1)
...
bnSign(xn(t)− x̄n)

 , for almost all t ∈ [t0,∞), (2.13)

and x(0) = x0. Here Sign is the set-valued sign-function given by (2.12).

7Consider the exercise:

Exercise 3 Prove formulas for K[φ+ ψ] and K[h] stated as 1) and 2) at this page.
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2.4.2 Proof of Proposition 3

Fix a bounded U ⊂ R
n and consider a Filippov solution x of (2.11) with the initial condition

x(0) ∈ U. Let Ti =
|xi(0)− x̄i|
bi −Mi

.

Step 1. Here we show that there exist t̄i ∈ [0, Ti] such that xi(t̄i) = x̄i, i = 1, ..., n. Assume
the contrary, i.e. assume that there exists i such that

xi(t) 6= x̄i, for all t ∈ [0, Ti]. (2.14)

Therefore, by Proposition 2, the derivative ẋi exists on [0, Ti] and

ẋi(t) =

{
φi(t, x(t))− bi, if xi(0) > x̄i,
φi(t, x(t)) + bi, if xi(0) < x̄i,

for all t ∈ [0, Ti].

Case xi(0) > x̄i. (classroom proof) Let ¯̄xi = mint∈[0,Ti] xi(t). Since xi is continuous on [0, Ti],

ix
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Figure 2.2: The dashed region is where the solution x can exist based on (2.15) and (2.16). This rules out
the existence of the solution on the bold interval.

then ¯̄xi = xi(τ) for some τ ∈ [0, Ti], which gives

xi(t) ≥ ¯̄xi > x̄i, for all t ∈ [0, Ti]. (2.15)

On the other hand, by the Mean Value Theorem [18, p. 285], there exists c ∈ [0, Ti] such
that

xi(t) = xi(0) + xi(c)t ≤ xi(0) + (Mi − bi)t, for all t ∈ [0, Ti]. (2.16)

Combining the two estimates above, one gets

x̄i < ¯̄xi ≤ xi(0) + (Mi − bi)t, for all t ∈ [0, Ti],

see Fig. 2.2. When t = Ti this inequality reduces to

x̄i < ¯̄xi ≤ x̄i,

which can never hold.
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Case xi(0) < x̄i. (shorter, but less geometric proof) By the Mean Value Theorem there exists
c ∈ [0, Ti] such that

xi(Ti) = xi(0) + ẋi(c)Ti =

= xi(0) + (φi(c, x(c)) + bi)
|xi(0)− x̄i|
bi −Mi

≥

≥ xi(0) + (−Mi + bi)
−(xi(0)− x̄i)
bi −Mi

=

= xi(0)− (xi(0)− x̄i) =

= x̄i,

i.e. xi(0) < x̄i ≤ xi(Ti), and the Intermediate Value Theorem gives τ ∈ [0, Ti] such that
xi(τ) = x̄i again. This case leads to a contradiction with (2.14) too. The proof of Step 1 is
complete.

Step 2. Let us prove that
xi(t) = x̄i for all t > t̄i.

Assume the contrary, i.e. assume that there exists i and si > ti such that xi(si) 6= x̄i.

Case xi(si) > x̄i: Since xi is continuous, the number

τi = max {t ∈ [t̄i, si] : xi(t) = x̄i}

exists. By proposition 2, xi is differentiable on (τi, si] and

ẋi(t) = φi(t, x(t))− bi ≤M − bi < 0 for all t ∈ (τi, si]. (2.17)

On the other hand, the Mean Value Theorem ensures the existence of c ∈ (τi, si) such that

ẋi(c) =
xi(si)− xi(τi)

si − τi
=
xi(si)− x̄i
si − τi

> 0,

which contradicts (2.17). This contradiction proofs that xi(si) > x̄i cannot happen.

Case xi(si) < x̄i: Exercise.

To complete the proof of proposition 3 it remains to observe that Ti ≤ t̄ as defined in the
statement of the proposition.

2.4.3 Graphic illustration of solutions of (2.11).

The graph of the solution x is illustrated at Fig. 2.3. The part of the solution x when it
slides along a hyperplane is called a sliding mode.
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Figure 2.3: The solution x reaches a hyperplane Hi = {x ∈ Rn : xi = 0} at some ti (i.e. x(ti) = A ∈ Hj)
and then slides along Hi forever. While sliding along Hi the trajectory reaches another hyperplane Hj =
{x ∈ Rn : xj = 0} at some tj (i.e. x(tj) = B ∈ Hj) and then slide along Hi ∩Hj forever. After the solution
x reaches all the n hyperplanes H1, ...,Hn, one has x(t) = x̄ forever.

2.5 Lyapunov theory of finite-time stability

In this section we study finite-time stability of the origin in system (2.3) under the assumption
that f is continuous everywhere outside the hyperplanes

S =
n⋃
i=1

{x ∈ Rn : xi = 0}. (2.18)

2.5.1 Comparison lemma

Consider an ordinary differential equation along with the respective differential inequality

ẋ(t) = g(t, x(t)), (2.19)

v̇(t) ≤ g(t, v(t)). (2.20)

The next result is also known as a differential inequalities approach, see [24, §1.4] and [25,
Ch. III, §4] (the word ”comparison” is borrowed from [26]). We extend the standard result
by allowing absolutely continuous solutions in the inequality.

Lemma 1 Consider g ∈ C0(R×R,R). Let x ∈ C1([0, T ],R) be a solution of (2.19) on [0, T ].
Assume that x(t) is the only solution of (2.19) that originates from x(0). Let an absolutely
continuous v : [0, T ]→ R satisfies (2.20) for almost all t ∈ [0, T ]. Then

v(0) ≤ x(0) =⇒ v(t) ≤ x(t) for all t ∈ [0, T ].

Proof.8 Let xε be a solution of the initial value problem

ẋε(t) = g(t, x(t)) + ε, (2.21)

xε(0) = x(0).

8A similar result for continuous v is [27, Theorem 6.1]
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defined on [0, T ]. The theorem on continuous dependence of solutions on the parameters
ensures the existence of such a solution on [0, T ] (see [28, Theorem 4.1])9 and the convergence

xε(t)→ x(t) as ε→ 0 uniformly on [0, T ].

We will, therefore, prove that

v(t) ≤ xε(t) on [0, T ] for any ε > 0 (2.22)

and then pass to the limit as ε→ 0. Assume that (2.22) doesn’t hold. This means that there
exists ε > 0 and ¯̄t ∈ (0, T ] such that

v(¯̄t) > xε(¯̄t). (2.23)

Similar to the maneuver we used in the proof of Proposition 3, consider

τ = max
{
t ∈ [0, ¯̄t] : v(t) ≤ xε(t)

}
.

Inequality (2.23) implies that

v(τ + ∆t) > xε(τ + ∆t), for all ∆t > 0 sufficiently small (2.24)

and we are going to show that (2.24) can never happen, see Fig. 2.4. Indeed, by the Mean
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Figure 2.4: Graph of xε (solid curve) and a part of the graph of v (dotted curve).

Value Theorem, we have

xε(τ + ∆t) = xε(τ) + ẋε(c1)∆t
by (2.21)

======= xε(τ) + (g(c1, xε(c1)) + ε)∆t,

where c1 ∈ [τ, τ+∆t]. Since v 6∈ C1((τ, τ+∆t),R), a different approach is required to expand
v(τ + ∆t). The Mean Value Theorem for Integrals helps instead [18, p. 452] (and we also
use (2.20) when writing the inequality):

v(τ + ∆t)
see p. 4

====== v(τ) +

∫ τ+∆t

τ

v̇(t)dt ≤ v(τ) +

∫ τ+∆t

τ

g(t, v(t))dt = v(τ) + g(c2, v(c2))∆t,

9Note, the continuous dependence holds without assuming g ∈ C1(R × R,R) or g ∈ C1(R × R\{0},R).
We only need the uniqueness of the solution of the original initial value problem that we assumed in the
statement of the Lemma.
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where c2 ∈ [τ, τ + ∆t]. Substituting the expansions for xε(τ + ∆t) and v(τ + ∆t) into (2.24),
one gets

v(τ) + g(c2, v(c2))∆t > xε(τ) + (g(c1, xε(c1)) + ε)∆t.

By the definition of τ , xε(τ) = v(τ) and we get

g(c2, v(c2)) > g(c1, xε(c1)) + ε,

where c1, c2 ∈ [τ, τ + ∆t]. By passing to the limit as ∆t→ 0, one finally gets

0 ≥ ε,

which is a contradiction when ε is chosen positive. Inequality (2.22), therefore, holds for all
ε > 0 and we get the required result by passing to the limit in (2.22) as ε > 0 approaches 0.

Note: The proof of this lemma demonstrates how the Mean Value Theorem for Integrals
replaces the Mean Value Theorem for continuously differentiable functions when the function
under consideration is only absolutely continuous.

2.5.2 Finite-time reachability of 0 for any absolutely continuous solution of
v̇ ≤ −kvα, with k > 0, α ∈ [0, 1), and v(0) > 0

Since, for any positive initial condition x(0), the solution of the differential equation

ẋ = −kxα (2.25)

is given by the formula10

x(t) =

(
(−α + 1)

(
−kt+

x(0)−α+1

−α + 1

)) 1
−α+1

,

we have the following corollary from lemma 1

Corollary 1 11 If an absolutely continuous function v : [0,∞)→ R satisfies

v̇ ≤ −kvα, for almost all t ≥ 0,

where k > 0 and α ∈ [0, 1), then there exists a positive t̄ ≤ v(0)−α+1

(−α + 1)k
such that v(t̄) = 0.

10This formula is achieved by the method of separation of variables, see e.g. [35, §2.2]. Consider the
exercise:

Exercise 4 Find the solution of (2.25) when x(0) < 0. Note: equation (2.25) has to be understood as
ẋ = k|x|α for negative x (i.e. (2.25) can be formulated as ẋ = −ksign(x)|x|α for arbitrary x).

11Consider the exercise:

Exercise 5 Suggest an analogue of Corollary 1 for the case where k is a function of time (that, say, also
vanishes from time to time).

c© 2017 Oleg Makarenkov, Stability and Bifurcations of Switched Systems Page 12



2.5.3 Piecewise continuous systems with only trivial sliding solutions

In what follows, S is the union of hyperplanes (2.18), where f may have discontinuities.

Definition 3 (hyperplane crossing in dimension n) Let f : R × R
n → R

n be continuous
outside (R\J)× S, where J is a countable set. Consider (t, x) ∈ R× S. Let I0 ⊂ {1, 2, ..., n}
be the set of indexes of the vanishing components of x, i.e.

xi = 0 for all i ∈ I0, xi 6= 0 for all i 6∈ I0.

For i ∈ I0, we say that the vector field f crosses the hyperplane xi = 0 at the point (t, x), if
there exists |a| = 1 such that

sign

 lim
b0(τ − t)→ 0+

bjξj → 0+, j ∈ I0
ξj = xj , j 6∈ I0

fi(τ, ξ)

 = a

regardless of the choice of |bj| = 1, j ∈ {0}∪ I0. In this case we also say that (t, x) is a point
of hyperplane crossing.

Definition 5 and definition 6 below are the versions of Definition 3 in dimension 2 and 3
respectively (where the limiting relation simplifies significantly).

Definition 4 (crossing in dimension n) In the settings of Definition 3, if the vector-field f
crosses each of the hyperplanes xi = 0, i ∈ I0, at the point (t, x), then we say that (t, x) is a
point of crossing.

Definition 4 has a simple geometric meaning: if (t, ξ) ∈ S is a point of crossing for (2.3) then
any Filippov solution x of (2.3) that happen to reach ξ at time t, leaves S immediately.

Proposition 4 12 If x is a Filippov solution of (2.3) and the vector field f crosses the
hyperplane xi = 0 at (t∗, x(t∗)) ∈ R× S, then there exists δ > 0 such that

xi(t) 6= 0, for all t ∈ [t∗ − δ, t∗) ∪ (t∗, t∗ + δ].

If the right-hand-side in (2.3) doesn’t depend on t then (t∗, x∗) is a point of crossing if and
only if (t, x∗) is a point of crossing for any t. We say that x∗ is a point of crossing in such a
case.

12Consider the exercise:

Exercise 6 Prove proposition 4.
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Theorem 2 13 Let f : R × R
n → R

n be continuous on (R\J) × (Rn\S), where J is a
countable set. Let every elements of R × ((S\{0}) ∩ U) be either a point of crossing or a
point of continuity for (2.3), where U ⊂ R

n is some neighborhood of the origin. Assume that
there exists a function V : Rn → R such that

1) V ∈ C0(Rn,R) ∩ C1(Rn\S,R),

2) V (x) > 0 for all x 6= 0,

3) V (0) = 0,

4) there exist k > 0 and λ ∈ [0, 1), such that for any Filippov solution x of (2.3) with
x(0) ∈ U the function v(t) = V (x(t)) verifies the inequality

v̇(t) + k(v(t))α ≤ 0 for all t ≥ 0 such that x(t) 6∈ S. (2.26)

Then the origin is a finite-time stable equilibrium for (2.3).14

Proof. Step 1. Let us show that v(t) reaches 0 on [0, T̄ ], where T̄ =
v(0)−α+1

(−α + 1)k
. Assume

the contrary. Since V (x) = 0 if and only if x = 0, we have that x(t) 6= 0 for t ∈ [0, T̄ ]. This
means that x(t) ∈ S if and only if x(t) is a point of crossing. Therefore, by Proposition 4,
the set {t ∈ [0, T̄ ] : x(t) ∈ S} is countable (as a set of isolated elements). This means that
inequality (2.26) holds for almost all t ∈ [0, T̄ ] (it holds in points of continuity of (2.3) by
continuity) and we get a contradiction with the conclusion of Corollary 1. Thus, we proved
that there exists t̄ ∈ [0, T̄ ] such that v(t̄) = 0.

Step 2. Here we show that v(t) = 0 for all t ≥ t̄. Assume the contrary, i.e. assume that

v(¯̄t) > 0 for some ¯̄t > t̄. (2.27)

Let τ = max
{
t ∈ [t̄, ¯̄t] : v(t) = 0

}
. Same arguments as in Step 1 apply to conclude that the

inequality (2.26) holds for almost all t ∈ [t̄, ¯̄t]. By the Mean Value Theorem for Integrals
there exists c ∈ (τ, ¯̄t) such that

v(¯̄t)− v(τ) =

∫ ¯̄t

τ

v̇(t)dt ≤
∫ ¯̄t

τ

(−k(v(t))α)dt = −k(v(c))α < 0.

Since, by definition, v(τ) = 0, the latter inequality contradicts (2.27). The proof of the
theorem is complete.

13Theorem 2 is a combination of results from [29, 30, 31]
14Consider the exercise:

Exercise 7 Assume that 0 ∈ U ⊂ R
n is bounded. Use the estimate from Corollary 1 to derive an upper

bound for the time, by when each solution of (2.3) with the initial condition in U reaches the origin in the
settings of Theorem 2.
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By analyzing the proof of Theorem 2, we see that the only solution of (2.3) that develops
along S for positive time intervals is the solution that sticks to the origin forever. The
crossing assumption rules out all other possibilities. Thus the title of the section 2.5.3.

Example 1 Prove finite-time stability of the origin in the following system

ẋ = −signx+ 2signy =: f1(t, x, y),
ẏ = −2signx− signy =: f2(t, x, y).

(2.28)

Let us first reformulate Definition 3 for the case of dimension 2.

Definition 5 (crossing in dimension 2) Consider a time-independent f(t, x, y) which is
continuous at any (x, y) 6∈ S = (R × {0}) ∪ ({0} × R). We say that the vector field f(t, ·)
crosses the line y = 0 at the point (x, 0), if

sign lim
y→0−

f2(t, x, y) = sign lim
y→0+

f2(t, x, y) 6= 0.

The crossing condition for (0, y) is defined by analogy.

Solution of Example 1. The right-hand-side is continuous outside S = (R×{0})∪({0}×R).
Furthermore,

x = 0, y 6= 0 =⇒ sign limx→0− f1(x, y) = sign(1 + 2signy) = signy,
sign limx→0+ f1(x, y) = sign(−1 + 2signy) = signy,

and

x 6= 0, y = 0 =⇒ sign limy→0− f2(x, y) = sign(−2signx+ 1) = −signx,
sign limy→0+ f2(x, y) = sign(−2signx− 1) = −signx.

Therefore, all points of S\{0} are points of crossing for (2.28). Consider

V (x, y) = |x|+ |y|

and define v : [0,∞) → R as v(t) = V (x(t), y(t)), where (x, y) is a solution of (2.28). For
those t ≥ 0 where x(t) 6= 0 and y(t) 6= 0 one has

v̇(t) = sign(x(t))ẋ(t) + sign(y(t))ẏ(t) = sign(x(t)) · (−sign(x(t)) +���
���2sign(y(t))) +

+sign(y(t)) · ((((((
((−2sign(x(t))− sign(y(t))) = −(sign(x(t)))2 − (sign(y(t)))2 = −2.

Therefore, the finite-time stability of the origin in (2.28) follows from Theorem 2, whose
assumptions hold with k = 2 and α = 0. Fig. 2.5 illustrates the vector field (2.28) in
different quadrants and shows a sample trajectory of (2.28).

An important application of Theorem 2 is to a one-link manipulator, see [32]. Further results
on finite-time stability of the one-link manipulator are obtained in [33].

The following corollary from Theorem 2 holds when f ∈ C0(R× Rn,Rn).
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Figure 2.5: Equations of (2.28) for different quadrants and a part of the solution of (2.28) with the initial
condition (x(0), y(0)) = (9, 0).

Theorem 3 Let f ∈ C0(R× Rn,Rn). Assume that there exists a function V : Rn → R such
that

1) V ∈ C1(Rn,R),

2) V (x) > 0 for all x 6= 0,

3) V (0) = 0,

4) there exist k > 0 and λ ∈ [0, 1), such that for any solution x of (2.3) with x(0) ∈ U
the function v(t) = V (x(t)) verifies the inequality

v̇(t) + k(v(t))α ≤ 0, for all t ≥ 0. (2.29)

Then the origin is a terminal attractor (finite-time stable equilibrium) for (2.3). If

v̇(t)− k(v(t))α ≤ 0, for all t ≤ 0,

then the origin is a terminal repeller for (2.3).

Theorem 3 allows to establish local finite-time stability of the following normal form
continuous system:

ẋ = a1x
α1(1 + f(x, y)) + a2y

α2 ,
ẏ = a3x

α3 + a4y
α4(1 + g(x, y)),

(2.30)

where, by definition, xαi = sign(x)|x|αi and yαi = sign(y)|y|αi .

Proposition 5 Assume that α1, α4 ∈ (0, 1), α2, α3 ≥ 0, and let f, g be continuous functions.
The following statements take place in the domain {(x, y) ∈ R2 : f(x, y) > −1, g(x, y) > −1} ,
if it contains the origin.

1) If a1, a4 < 0 and a2a3 < 0, then the origin is a terminal attractor of (2.30).

2) If a1, a4 > 0 and a2a3 < 0, then the origin is a terminal repeller of (2.30).
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3) If a2a3 > 0 and a1a4 < 0, then any solution of (2.30) with initial condition in

S =
{

(x, y) ∈ R2 : sign(a4)
(
(1 + α3)a2|x|1+α3 − (1 + α2)a3|y|1−α2

)
> 0
}

approaches R2\S in finite time.

Proof. The proof is carried out by showing that the function

V (x, y) = p|x(t)|1+α3 + q|y(t)|1+α2

satisfies the conditions of Theorem 3 for suitable p, q ∈ R, k > 0 and α ∈ [0, 1).

Computing V̇ one gets

V̇ (x, y) = p(1+α3)xα3 [a1x
α1(1 + f(x, y)) + a2y

α2 ]+q(1+α2)yα2 [a3x
α3 + a4y

α4(1 + g(x, y))] ,

which leads to

V̇ (x, y) = p(1 + α3)a1|x|α1+α3(1 + f(x, y)) + q(1 + α2)a4|y|α2+α4(1 + g(x, y)),

if p, q ∈ R are selected such that

p(1 + α3)a2 = −q(1 + α2)a3. (2.31)

Since
V (x, y)α =

(
p|x|1+α3 + q|y|1+α2

)α ≤ |p|α|x|α(1+α3) + |q|α|y|α(1+α2),

we get

V̇ + kV α ≤ −k
(
−1

k
pa1(1 + α3)|x|α3+α1(1 + f(x, y))− |p|α|x|α(1+α3)

)
−

−k
(
−1

k
qa4(1 + α2)|y|α2+α4(1 + g(x, y))− |q|α|y|α(1+α2)

) (2.32)

and

V̇ − kV α ≥ k

(
1

k
pa1(1 + α3)|x|α3+α1(1 + f(x, y)) + |p|α|x|α(1+α3)

)
+

+k

(
1

k
qa4(1 + α2)|y|α2+α4(1 + g(x, y)) + |q|α|y|α(1+α2)

)
.

(2.33)

From now on we fix α ∈ [0, 1) such that

α3 + α1 < α(1 + α3) and α2 + α4 < α(1 + α2),

which is possible because α1, α4 ∈ [0, 1) by assumption.

c© 2017 Oleg Makarenkov, Stability and Bifurcations of Switched Systems Page 17



Case 1: a1, a4 < 0 and a2a3 < 0. Fix any p, q > 0 that satisfy (2.31). Choose k > 0 small
enough to verify

−1

k
pa1(1 + α3)(1 + f(0, 0)) > |p|α and − 1

k
qa4(1 + α2)(1 + g(0, 0)) > |q|α.

Then (2.32) implies V̇ + kV α ≤ 0.

Case 2: a1, a4 > 0 and a2a3 < 0. Following the lines of Step 1 we again fix any p, q > 0 that
satisfy (2.31). If we now choose k > 0 small enough to verify

1

k
pa1(1 + α3)(1 + f(0, 0)) > |p|α and

1

k
qa4(1 + α2)(1 + g(0, 0)) > |q|α.

then (2.33) will imply V̇ − kV α ≥ 0.

Case 3: a2a3 > 0 and a1a4 < 0. Let a1 < 0 and a4 > 0. Select any p > 0 and q < 0 that
satisfy (2.31). Then selecting k > 0 as in Step 1, we conclude V̇ + kV α ≤ 0. However, in
contrast to Step 1, the function V is no longer positive definite. By following the lines of
the proof of Theorem 3 we see that the convergence of v(t) = V (x(t), y(t) to zero will take
place only if V (x(t), y(t)) > 0, which is equivalent to saying (x(t), y(t)) ∈ S.
The case a1 < 0 and a4 > 0 can be considered by analogy. The coefficient sign(a4) appears
(see the formula for S) because one now considers p < 0 and q > 0 to execute the proof of
Step 1.

The proof of the proposition is complete.

Another powerful application of Theorem 3 is the design of a so-called super twisting control
u(x, y) which drives the system

ẋ = y,
ẏ = u(x, y)

(2.34)

to the origin in finite time. Indeed, the following lemma is due to Bhat-Bernstein [29], which
found further applications in designing control for bipedal robot locomotion [34].

Proposition 6 (see [29, Proposition 1]) The origin of (2.34) is globally finite-time stable
under the control law

u(x, y) = −y1/2 − φ(x, y)1/3, φ(x, y) = x+ (3/2)y3/2

Here, by definition, hβ = sign(h)|h|β.

Proof. ([29]) Consider the Lyapunov function

V (x, y) =
3

5
|φ(x, y)|5/3 +

1

2
yφ(x, y) +

4

5
|y|5/2

and put v(t) = V (x(t), y(t)), where (x(t), y(t)) is any solution of (2.34). Then

v̇(t) = V ′x(x(t), y(t))ẋ(t) + V ′y(x(t), y(t))ẏ(t) = V ′x(x(t), y(t))y(t) + V ′y(x(t), y(t))u(x(t), y(t)).
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The latter expression will be denoted by V̇ (x(t), y(t)). According to [29],

V̇ (x, y) = −2y2−1

2
|φ(x, y)|4/3−|y|1/2|φ(x, y)|−1

2
φ(x, y)y1/2−5

2
sign(yφ(x, y))|y|3/2|φ(x, y)|1/3.
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Figure 2.6: (a) The level curve (2.35); (b) graphs of the functions w(s) = −2s2 − 1

2
− 1

2
|s|1/2 +

5

2
|s|3/2

(solid curve) and w(s) = −2− 1

2
|s|4/3 − 1

2
|s|+ 5

2
|s|1/3 (dashed curve); (c) the set V.

Step 1. Let us prove that V (x, y) > 0 and V̇ (x, y) < 0 on the level curve (see Fig. 2.6a)

max {|φ(x, y)|, |y|} = 1. (2.35)

When |φ(x, y)| = 1 and |y| ≤ 1, we have

V (x, y) =
3

5
+

1

2
yφ(x, y) +

2r

5
|y|5/2 ≥ 3

5
− 1

2
=

1

10
,

V̇ (x, y) ≤ −2y2 − 1

2
− |y|1/2 +

1

2
|y|1/2 +

5

2
|y|3/2 < 0 (see Fig. 2.6b).

When |φ(x, y)| ≤ 1 and |y| = 1, we have

V (x, y) ≥ 3

5
· 0− 1

2
+

4

5
=

3

10
,

V̇ (x, y) ≤ −2− 1

2
|φ(x, y)|4/3 − |φ(x, y)|+ 1

2
φ(x, y)y1/2 +

5

2
|φ(x, y)|1/3 < 0 (see Fig. 2.6b).

Step 2. Since the functions V (x, y) and V̇ (x, y) verify the homogeneity properties

V (k3/2x, ky) = k5/2V (x, y),

V̇ (k3/2x, ky) = k2V̇ (x, y), k > 0, (x, y) ∈ R2,
(2.36)

the estimates V (x, y) > 0 and V̇ (x, y) < 0 extend from (2.35) to the entire R2.

Step 3. Since V = {(x, y) : V (x, y) = 1} is a compact set (see Fig. 2.35c), the minimum
c = min{−V̇ (x, y) : (x, y) ∈ V} > 0 exists. Considering (x, y) ∈ V and using (2.36), we have

V̇ (k3/2x, ky) = k2V̇ (x, y) ≥ −k2c = −
(
V (k3/2x, ky)2/5

)2
c = −cV (k3/2x, ky)4/5.

Therefore, V̇ (x, y) ≥ −cV (x, y)4/5 for all (x, y) ∈ R2 and global finite-time stability of the
origin follows by applying Theorem 3.
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2.5.4 Piecewise continuous systems with nontrivial sliding solutions

Next theorem is a version of Theorem 2 for

V (x) = |x1|+ ...+ |xn| (2.37)

and α = 0 in the case where not all of the elements of S\{0} are points of crossing for
(2.3). Basically, the theorem simply says that all possible derivatives ẋ(t) have to be taken
into account when examining the validity of (2.26). And all these possibilities are given by
the convexification K[f ](t, x(t)), see section 2.3 for definition. Theorem 4 is a simplified
combination of [47, Theorem 8], [31, Theorem 2], [48, Theorem 3.1].

Theorem 4 15 Let f : R×Rn → R
n be continuous on R× (Rn\S) and 0 ∈ U ⊂ Rn. Assume

that there exists k > 0 such that

V̇ =
n∑
i=1

sign(xi)ξi ≤ −k < 0 for all ξ ∈ K[f ](t, x), t ≥ 0, x ∈ U\{0},

excluding those (t, x) ∈ [0,∞)× S, which are points of hyperplane crossing for (2.3). Then
the origin is a finite-time stable equilibrium for (2.3). Furthermore, if r > 0 is such that
W={x ∈ Rn : |x1| + ... + |xn| < r} ⊂ U , then any Filippov solution of (2.3) with the initial
condition in W approaches the origin in finite time.16

In this statement, V̇ is not a derivative, but just a notation for the sum to shorten notations
in examples. This sum is what we indeed get for the derivative of the Lyapunov function
(2.37) in the proof, thus our choice for the notation. For systems (2.2) with continuous
right-hand-sides, the symbol V̇ can be defined as a function V̇ (t, x) because all K[f ](t, x)
are singletons (sets of single element) for continuous f . In this case V̇ is called the derivative
of V with respect to the system (2.3), see [35, p. 557]. In particular, the conditions (2.26)
and (2.29) of Theorems 2 and 3 can be shortened as

V̇ (x) + k(V (x))α ≤ 0,

15Consider the exercises:

Exercise 8 Theorem 4 is a version of Theorem 2 for the case where not all the elements of S are points of
crossing. Such a version is obtained from Theorem 2 by considering V (x) = |x1|+ ...+ |xn|. Formulate and
prove an analogous version of Theorem 2 when V (x) is a linear combination (with positive multipliers) of
functions of the form maxi∈I gi(x). Here I is a finite set of indexes and gi : Rn → R are smooth functions.
The function V so defined is called a max-function. The absolute value function is a particular example of
a max-function. Your theorem will, therefore, be a generalization of Theorem 4.

Exercise 9 Suggest an estimate for the settling time (i.e. the time by when all the solutions of (2.3) that
originate from U reach the origin) in Theorem 4.

16To prove the latter statement of Theorem 4, one can notice that the Filippov solution x(t) of (2.3) with
the initial condition in W never leaves W , because of the property v̇(t) ≤ −k that we establish while proving
the former statement.
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by saying that ”V̇ is the derivative of V with respect to the system (2.3)”. Shall we define
V̇ as a function of (t, x) for discontinuous f , the values of V̇ (t, x) would be the sets

V̇ (t, x) =
⋃

ξ∈K[f ](t,x)

sign(xi)ξi.

The proof of the theorem is based on the following lemma, which is a corollary of a result
by Clarke (also known as the Chain Rule for regular Lipschitz functions), see [36, Theorem
2.3.9-(iii)].

Lemma 2 Assume that b : R → R is differentiable at t∗ and b(t∗) = 0. If the function
a(t) = |b(t)| is differentiable at t∗, then a′(t∗) = b′(t∗) = 0.

Proof. If a′(t∗) exits, then

a′(t∗) = lim
∆t→0−

a(t∗ + ∆t)

∆t
= lim

∆t→0+

a(t∗ + ∆t)

∆t
, (2.38)

where we used that a(t∗) = 0. Computing the one-sided limits one gets

lim
∆t→0−

a(t∗ + ∆t)

∆t
= lim

∆t→0−

|b(t∗ + ∆t)|
∆t

= lim
∆t→0−

∣∣∣∣b(t∗ + ∆t)

∆t

∣∣∣∣ sign∆t = |b′(t∗)| · (−1)

and, analogously,

lim
∆t→0+

a(t∗ + ∆t)

∆t
= |b′(t∗)| · (+1).

Substituting these values of the one-sided limits to (2.38) gives |b′(t∗)| · (−1) = |b′(t∗)| · (+1),
which is only possible when b′(t∗) = 0. The proof of the lemma is complete.

Proof of Theorem 4. Let x be a Filippov solution of (2.3) with the initial condition
x(0) ∈ U. Consider

v(t) = V (x(t)) = v1(t) + ...+ vn(t), where vi(t) = |xi(t)|, i = 1, ..., n.

Since a composition of a Lipschitz function and an absolutely continuous function is an
absolutely continuous function17, we have that there exists a zero measure set Ji such that
v̇i(t) exists for any t ∈ R\Ji. By applying Lemma 2 we can now conclude that

if t ∈ R\Ji, then either [xi(t) = 0 and v̇i(t) = 0] or xi(t) 6= 0. (2.39)

17Consider the exercise

Exercise 10 Let c : R→ R be a Lipschitz function and let b : R→ R be an absolutely continuous function.
Prove that the function a(t) = c(b(t)) is absolutely continuous.
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Let Ii be such a zero measure set that ẋi(t) exists for all t ∈ [0,∞)\Ii. Since for xi(t) 6= 0,
such that ẋi(t) exists, one has v̇i(t) = sign(xi(t))ẋi(t), then (2.39) implies:

if t ∈ [0,∞)\(Ii∪Ji), then either [xi(t) = 0 and v̇i(t) = 0] or [xi(t) 6= 0 and v̇i(t) = sign(xi(t))ẋi(t)] ,

which compact formulation is

if t ∈ [0,∞)\(Ii ∪ Ji), then v̇i(t) = sign(xi(t))ẋi(t).

Summing this up from 1 to n and denoting I = I1 ∪ ... ∪ In, J = J1 ∪ ... ∪ Jn, we get

v̇(t) =
n∑
i=1

sign(xi(t))ẋi(t), for any t ∈ [0,∞)\(I ∪ J).

Since ẋi ∈ K[f ](t, x(t)) for almost all t ∈ [0,∞), then there exists H ∈ [0,∞) of measure
zero such that

v̇(t) =
n∑
i=1

sign(xi(t))ξi, for some ξ ∈ K[f ](t, x(t)) and any t ∈ [0,∞)\(I ∪ J ∪H),

Using the assumption of the theorem we conclude

v̇(t) ≤ −k for any t ∈ [0,∞)\(I ∪ J ∪H)

excluding a subset C of [0,∞) for which (t, x(t)) is a point of hyperplane crossing for (2.3)
and excluding those t ∈ [0,∞) for which x(t) = 0. Proposition 4 says that C is countable
and, therefore, the measure of C is zero (along with I, J and H). Thus, we finally get

v̇(t) ≤ −k, for almost all t ∈ [0,∞) such that x(t) 6= 0. (2.40)

The rest of the proof is similar to Steps 1 and 2 of the proof of Theorem 2. Let T̄ =
v(0)

k
and assume that x(t) doesn’t reach 0 on

[
0, T̄

]
. Therefore, the inequality (2.40) holds for

almost all t ∈
[
0, T̄

]
. Integrating (2.40) from 0 to

v(0)

k
one gets

v
(
T̄
)
− v(0) ≤ −k · T̄ ,

which implies that v(T̄ ) = x
(
T̄
)

= 0. This contradiction proves that x(t) reaches 0 at some
t̄ ∈
[
0, T̄

]
.

If v(¯̄t) > 0 at some ¯̄t > t̄, then inequality (2.40) holds on (τ, ¯̄t), where τ = max{t ∈ [t̄, ¯̄t] :
v(t) = 0}. This again implies v(¯̄t)− v(τ) ≤ −k(¯̄t− τ) < 0 which contradicts v(¯̄t) = 0.

The proof of the theorem is complete.

A good use of Theorem 4 is for finite-time stability of a two-degree-of-freedom manipulator,
see [31]18

18Consider the exercise:
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Theorem 4 is a generalization of the ideas of Proposition 3. As a consequence, Theorem 4
is capable to establish finite-time stability of system (2.11), the Proposition 3 was for. Next
example implements this statement.

Example 2 Let x̄ = 0 ∈ Rn. Under the conditions of Proposition 3, the origin is a finite-time
stable equilibrium of (2.11).

Solution. From the formula for the convexification of the right-hand-side of (2.11) (see Sec.
2.4.1.2), we have

xi 6= 0 =⇒ ξi = φ(t, x)− bisign(xi) for any ξ ∈ K[f ](t, x). (2.41)

To satisfy the assumption of theorem 4 it is, therefore, sufficient to show that∑
i:xi 6=0

sign(xi)(φ(t, x)− bisign(xi)) ≤ −k for all t ≥ 0 and all x ∈ U\{0}, (2.42)

for some k > 0. Let x ∈ U\{0}. Then there exists i such that xi 6= 0, for which we have

sign(xi)(φ(t, x)− bisign(xi)) = sign(xi)φ(t, x)− bi ≤Mi − bi = −(bi −Mi).

Therefore, (2.42) holds with k = min
i=1,...,n

(bi−Mi) and finite-time stability of the origin follows

from Theorem 4.

Example 3 Prove finite-time stability of the origin in the following system

ẋ = −signx =: f1(t, x, y),
ẏ = −2signy − signx =: f2(t, x, y)

Solution. The right-hand-side is discontinuous on S = {(x, y) ∈ R2 : xy = 0}. One can also
check that there are points on S which are not points of hyperplane crossing. Therefore,
Theorem 2 is not applicable and Theorem 4 is the only option to attempt. Consider xy 6= 0

and

(
a
b

)
∈ K[f ](t, x, y). We have to show that

Exercise 11 Attempt to follow the Example A from [31], where Theorem 4 is applied to a
two-degree-of-freedom manipulator. You may make sure first that Theorem 2 doesn’t apply, i.e. discover
that some points of S\{0} are not points of crossing. The authors of [31] do not check that and just apply
Theorem 4. However, applying Theorem 4 is harder as you have to compute some convexifications. If you
can prove that some points from S\{0} are points of crossing, then you don’t need to compute convexification
in those points. The authors of [31] state in the introduction that intersection of certain hyperplanes is
formed by points which are not points of crossing, but they don’t show that explicitly. Forgot to mention:
in order to apply Theorem 4 in the context of example A from [31], you will have to reformulate Theorem 4
in such a way that the new theorem ensures finite-time stability of a given x̄ ∈ Rn, which is not necessary
the origin (as the target in [31] is not the origin).
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V̇ = sign(x)a+ sign(y)b ≤ −k (2.43)

for some k > 0 that doesn’t depend on x, y, a and b. According to properties (2.9 a) and
(2.9 b) of the convexification, it suffices to prove (2.43) for

a ∈ −Sign(x),
b ∈ −2Sign(y)− Sign(x).

Here Sign is the convexification of the sign-function, see (2.12).

x 6= 0 and y = 0: V̇ = −sign(x)sign(x) = −1.

x 6= 0 and y 6= 0: V̇ = −sign(x)sign(x) + sign(y)(−2signy − signx) ≤ −2.

x = 0 and y 6= 0: V̇ = sign(y)(−2sign(y)− x̃), where x̃ ∈ Sign(0). Therefore, V̇ ≤ −1.

In summary, the condition of Theorem 4 holds with k = 1 for any (x, y) 6= 0 and finite-time
stability of the origin follows by applying that theorem.

The next example somewhat combines the examples 1 and 3 in dimension 3. Some points
of S will appear to be the points of crossing and they need to be identified and excluded for
the condition of Theorem 4 to hold.

Example 4 Prove finite-time stability of the origin in the following system

ẋ = −signx+ 3signy =: f1(t, x, y, z),
ẏ = −3signx− signy + signz =: f2(t, x, y, z),
ż = −2signz − signy =: f3(t, x, y, z).

(2.44)

Before proceeding to the solution, it is convenient to formulate the definition 3 of hyperplane
crossing in the dimension 3.

Definition 6 (hyperplane crossing in dimension 3) Consider a time-independent f(t, x, y, z)
which is continuous outside S = {(x, y, z) ∈ R3 : xyz = 0}. The vector field f(t, ·) crosses
the hyperplane x = 0 at the point (0, y, z) ∈ S with yz 6= 0, if

sign lim
x→0−

f1(t, x, y, z) = sign lim
x→0+

f1(t, x, y, z) 6= 0.

The vector field f(t, ·) crosses the hyperplane x = 0 at the point (0, 0, z) ∈ S with z 6= 0, if

sign lim
x→ 0−

y → 0−

f1(t, x, y, z) = sign lim
x→ 0−

y → 0−

f1(x, y, z) = sign lim
x→ 0−

y → 0+

f1(x, y, z) = sign lim
x→ 0+

y → 0−

f1(x, y, z) 6= 0.

The hyperplane crossing conditions for (x, 0, z), (x, y, 0), (0, y, 0), (x, 0, 0) ∈ S are defined
by analogy.
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Solution of example 4. Let (x, y, z) ∈ S\{0} and (a, b, c) ∈ R3 satisfy

a ∈ −Signx+ 3Signy,
b ∈ −3Signx− Signy + Signz,
c ∈ −2Signz − Signy,

where Sign is the convexification of the sign-function, see (2.12). We will show that there
exists k > 0 such that

V̇ = sign(x)a+ sign(y)b+ sign(z)c ≤ −k (2.45)

regardless of the particular choice of (x, y, z) and (a, b, c). We now go through the different
cases that can occur when (x, y, z) 6= 0:
x 6= 0, y 6= 0, z 6= 0 : Canceling same terms we canceled out in the solution of Example 1,

V̇ = −2 + sign(y)sign(z) + sign(z)c = −2 + sign(y)sign(z)− 2− sign(z)sign(y) ≤ −4.

x 6= 0, y 6= 0, z = 0 : V̇ = −2 + sign(y)z̃, where z̃ ∈ Sign(0). Therefore, V̇ ≤ −1.

x = 0, y = 0, z 6= 0 : V̇ = sign(z)c = −2− sign(z)ỹ, where ỹ ∈ Sign(0). Thus, V̇ ≤ −1.

x = 0, y 6= 0, z ∈ (−∞,∞) : selecting −1 ∈ Sign(0) leads to V̇ > 0 and this point
makes theorem 4 inapplicable, if (0, y, z) is not a point of hyperplane crossing. Fortunately,
f does cross x = 0 at (0, y, z) because the following limits don’t vanish and coincide:

sign lim
x→ 0−

s→ z

f1(t, x, y, s) = sign(1+3sign(y)), sign lim
x→ 0+

s→ z

f1(t, x, y, s) = sign(−1+3sign(y)).

x 6= 0, y = 0, z ∈ R : V̇ can exceed 0 in this case and the only chance to apply Theorem 4
is if we can show that (x, 0, z) is a point of hyperplane crossing.

x 6= 0, y = 0, z 6= 0 : f crosses y = 0 at this point as the signs of the one-sided limits
coincide and don’t vanish:

sign lim
y → 0±

f2(t, x, y, z) = sign(−3signx− (±1) + signz) = −signx.

x 6= 0, y = 0, z = 0 : f does cross y = 0 at this point too, however, per definition 6, four
one-sided limits have to coincide and not vanish in this case, that we conclude to be true:

sign lim
y → 0±

z → 0
±

f2(t, x, y, z) = sign(−3signx− (±1) + ± 1) = −signx.

Inequality (2.45), therefore, holds with k = 1, for all (x, y, z) ∈ R
3\{0} except on the

hyperplanes x = 0 and y = 0, whose points turned out to be points of hyperplane crossing.
The finite-time stability of the origin follows by applying Theorem 4.
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There are two scenarios as for how the solutions in Example 4 behave: 1) the solution z(t)
first sticks to 0 and the solution (x(t), y(t), z(t)) develops in the hyperplane z = 0 similar to
Fig. 2.5 since then, 2) the solution (x(t), y(t)), making a maneuver of Fig. 2.5, first sticks to
0 and then (x(t), y(t), z(t)) develops in the intersection of the hyperplanes x = 0 and y = 0
until it finally reaches the origin.

Example 5 Find the region W ⊂ R
3 such that each Filippov solution of

ẋ = −signx+ 3signy =: f1(t, x, y, z),
ẏ = −3signx− signy + signz =: f2(t, x, y, z),
ż = −2signz − signy + x+ 0.5 =: f3(t, x, y, z).

(2.46)

with the initial condition in W approaches the origin in finite time.

Solution. Following the lines of the solution of Example 4, one gets

V̇ ≤ −1 + |x|+ 0.5 ≤ −0.5 + |x|.

If r ∈ (0, 0.5), then V̇ ≤ −0.5+ r for any (x, y) ∈ Wr = {(x, y) : |x|+ |y|+ |z| < r} excluding
the origin and the points of hyperplane crossing. Therefore any Filippov solution of (2.46)
with the initial condition in Wr, where 0 < r < 0.5, approaches the origin in finite time.

2.6 Pontryagin Maximum Principle and fastest stabilization

Here I just followed the book [37], pp. 9–27, focusing on Theorem 2 and Examples 1 and 2.
19

2.6.1 An example: Draw trajectories for given control signals

Here is a solution of a part of #2 from Homework 1:
http://www.utdallas.edu/˜makarenkov/Pontryagin-example.pdf

19Consider the exercise:

Exercise 12 Attempt to follow the construction in [38] and design the control u that swings up the planar
pendulum

ẋ1 = x2,
ẋ2 = sinx1 − u cosx1

in shortest time. The value of u in this paper is deemed to be the acceleration of a cart on which the pendulum
is installed, see [39] for the equations of the cart-pendulum system as a whole. To implement the control
from [38] in practice, one, of course, also needs that the control stabilizes the cart itself. The paper [38]
doesn’t address this issue. Finite-time stabilization of the cart-pendulum system is addressed in [32] using a
different control strategy (see Exercise ??). Here [40] is the movie of what one gets ultimately.

c© 2017 Oleg Makarenkov, Stability and Bifurcations of Switched Systems Page 26

http://www.utdallas.edu/~makarenkov/Pontryagin-example.pdf


2.7 Differential equations of sliding motion

Consider (t, x) ∈ R × Rn. If the vector field f doesn’t cross the hyperplane xi = 0 at the
point (t, x), then the solution that reaches xi = 0 at the point (t, x) has a chance to slide
along xi = 0.

Definition 7 (hyperplane sliding in dimension n) Let f : R×Rn → R
n be continuous outside

(R\J)× S, where J is a countable set. Consider (t, x) ∈ R× S. Let I0 ⊂ {1, 2, ..., n} be the
set of indexes of the vanishing components of x, i.e.

xi = 0 for all i ∈ I0, xi 6= 0 for all i 6∈ I0.

For i ∈ I0, we say that the vector field f slides along the hyperplane xi = 0 at the point (t, x),
if the following sliding condition holds

lim
b0(τ − t)→ 0+

bjξj → 0+, j ∈ I0\{i}
ξi → 0−

ξj = xj , j 6∈ I0

fi(τ, ξ) > 0 and lim
b0(τ − t)→ 0+

bjξj → 0+, j ∈ I0\{i}
ξi → 0+

ξj = xj , j 6∈ I0

fi(τ, ξ) < 0

regardless of the choice of |bj| = 1, j ∈ {0}∪ I0. In this case we also say that (t, x) is a point
of hyperplane crossing.

Note, the particular signs in Definition 7 are important (positive for the limit from the left
and negative for the limit from the right). The reversed signs don’t give sliding, but lead to
so-called escaping instead.

Proposition 7 20 If x is a Filippov solution of (2.3) and the vector field f slides along the
hyperplane xi = 0 at (t∗, x(t∗)) ∈ R× S, then there exists δ > 0 such that

xi(t) = 0, for all t ∈ [t∗ − δ, t∗) ∪ (t∗, t∗ + δ].

2.7.1 (n –1)-dimensional differential equations of sliding along a single
discontinuity hyperplane

Proposition 8 21 If xi is the only component of (t, x) that vanishes, then K[f ](t, x) =
co{fL, fR}, where

fL = lim
s→0−

f(t, x1, ..., xi−1, s, xi+1, ..., xn),

fR = lim
s→0+

f(t, x1, ..., xi−1, s, xi+1, ..., xn).
(2.47)

20Consider the exercise:

Exercise 13 Prove proposition 7.

21Consider the exercise:

Exercise 14 Prove proposition 8. Hint: If a, b ∈ Rn, then co{a, b} =
⋃

λ∈[0,1]
(λa+ (1− λ)b).
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If, in addition, f slides along xi = 0 at the point (t, x), then there exists a unique λ ∈ (0, 1)
such that

K[f ](t, x) ∩ {x ∈ Rn : xi = 0} = {λfL + (1− λ)fR}.

Note, the vectors fL, fR as well as the number λ ∈ (0, 1) depend on the point (t, x), so that
we write fL(t, x), fR(t, x) and λ(t, x) in what follows.

 0:)]([ ixxxfK 
 

xi = 0 

f R 

f L 

x 

f R(t, x) 

f L(t, x) 

= K [ f ](x)  

Figure 2.7: Illustration of the sliding vector K[f ](t, x) ∩ {x ∈ Rn : xi = 0}.

Propositions 7 and 8 allow to introduce the following definition.

Corollary 2 Let x be a Filippov solution of (2.3). Assume that the vector field f slides along
the hyperplane xi = 0 at (t∗, x(t∗)) ∈ R×S. If xi(t∗) is the only component of (t∗, x(t∗)) that
vanishes, then there exists δ > 0 such that

ẋ1(t) = λ(t, x(t)) · fL1 (t, x(t)) + (1− λ(t, x(t))) · fR1 (t, x(t)),
· · ·

ẋi−1(t) = λ(t, x(t)) · fLi−1(t, x(t)) + (1− λ(t, x(t))) · fRi−1(t, x(t)),
ẋi+1(t) = λ(t, x(t)) · fLi+1(t, x(t)) + (1− λ(t, x(t))) · fRi+1(t, x(t)),

· · ·
ẋn(t) = λ(t, x(t)) · fLn (t, x(t)) + (1− λ(t, x(t))) · fRn (t, x(t)),

for any t ∈ [t∗ − δ, t∗ + δ], where fL and fR are given by (2.47) and λ(t, x(t)) ∈ (0, 1) is
found from

0 = λ(t, x(t)) · fLi (t, x(t)) + (1− λ(t, x(t))) · fRi (t, x(t)).

Definition 8 The equations of Corollary 2 are called the equations of sliding motion for a
solution x(t) that slides along a single discontinuity hyperplane xi = 0 (i.e. satisfies xj(t) 6= 0
for i 6= j.

Simple 2-dimensional example and brief justification of the Fillipov solution
concept
http://www.utdallas.edu/˜makarenkov/sliding-2d-example.pdf

Example 6 Show that the vector field of example 4 slides along z = 0 in all points (x, y, z)
with xy 6= 0, z = 0. Find the equation of sliding motion in those points.
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For convenience, let us formulate the equations of sliding defined in Corollary 2 in the
settings of Example 6. We formulate this equations for the case where the x = 0 is the
sliding hyperplane of interest to ease the comparison of this definition with an analogous of
3d-hyperplane crossing (see Definition 6).

Definition 9 (sliding along a single hyperplane in dimension 3) Consider a
time-independent f(t, x, y, z) which is continuous outside S = {(x, y, z) ∈ R

3 : xyz = 0}.
The vector field f slides along x = 0 at the point (0, y, z) with yz 6= 0, if the following sliding
condition holds

lim
x→0−

f1(t, x, y, z) > 0 and lim
x→0+

f1(t, x, y, z) < 0. (2.48)

If this sliding condition holds, then the Filippov solution (x(t), y(t), z(t)) of (2.3) that passes
through the point (0, y, z) at time instance t is differentiable at t and the derivatives satisfy
the sliding equations

ẏ = λ(y, z)fL2 (0, y, z) + (1− λ(y, z))fR2 (0, y, z),

ż = λ(y, z)fL3 (0, y, z) + (1− λ(y, z))fR3 (0, y, z),

where
fL(0, y, z) = lim

x→0−
f(t, x, y, z) and fR(0, y, z) = lim

x→0+
f(t, x, y, z),

and λ(y, z) is the unique constant from the interval (0, 1) that satisfies

0 = λ(y, z)fL1 (0, y, z) + (1− λ(y, z))fR1 (0, y, z).

Conditions for sliding in y = 0 and z = 0 and the respective sliding equations are defined by
analogy.

Solution of Example 6. We follow Definition 9 (swapping the roles of z in x) in each of
the four quadrants where xy 6= 0.
x > 0, y > 0 : limz→0− f3(t, x, y, z) = 1, limz→0+ f3(t, x, y, z) = −3 =⇒ f slides along
z = 0. To find the equation of sliding motion we first compute

fL(x, y, 0) =

 2
−5
1

 , fR(x, y, 0) =

 2
−3
−3

 .

Then we find λ from

0 = λfL3 (x, y, 0) + (1− λ)fR3 (x, y, 0) ⇐⇒ 0 = λ · 1 + (1− λ) · (−3) ⇐⇒ λ =
3

4
.

Finally, this value of λ is used to write up the equations of sliding as

ẋ = λfL1 (x, y, 0) + (1− λ)fR1 (x, y, 0) =
3

4
· 2 +

(
1− 3

4

)
· 2 = 2,

ẏ = λfL2 (x, y, 0) + (1− λ)fR2 (x, y, 0) =
3

4
· (−5) +

(
1− 3

4

)
· (−3) = −4.5.
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Figure 2.8: The vector field in the two cubes corresponding x > 0, y > 0, z < 0 and x > 0, y > 0, z < 0
respectively. Illustration of how the numbers (2,−4.5) in the equation of the sliding motion occur from the
vectors (2,−3,−3) and (2,−5, 1).

Figure 2.8 illustrates the computations just performed.

x > 0, y < 0 : fL(x, y, 0) =

 −4
−3
3

 , fR(x, y, 0) =

 −4
−1
−1

 , in particular

limz→0− f3(t, x, y, z) = 3, limz→0+ f3(t, x, y, z) = −1, i.e. f slides along z = 0. Computing λ,

0 = λfL3 (x, y, 0) + (1−λ)fR3 (x, y, 0) ⇐⇒ 0 = λ · 3 + (1−λ) · (−1) ⇐⇒ λ =
1

4
=⇒

ẋ =
1

4
· (−4) +

(
1− 1

4

)
· (−4) = −4, ẏ =

1

4
· (−3) +

(
1− 1

4

)
· (−1) = −1.5.

x < 0, y > 0 : do by analogy.
x < 0, y < 0 : do by analogy.

An important observation that one can make by analyzing the solution of Example 6 is that
the equation

ẋ = 2,
ẏ = −4.5,

that we obtained for the Filippov solution (x(t), y(t), z(t)) of (2.44) when it slides in
{(x, y, z) : x > 0, y > 0, z = 0} is different from

ẋ = 2,
ẏ = −4,

which one gets by simply plugging z = 0 to (2.44).
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Example 7 Find the region of {(x, y, z) ∈ R3 : xy 6= 0, z = 0} where the vector field of

ẋ = −signx+ 3signy =: f1(t, x, y, z),
ẏ = −3signx− signy + signz =: f2(t, x, y, z),
ż = −2signz − signy + 2y + 2x+ 1 =: f3(t, x, y, z)

(2.49)

slides along z = 0. Find the equation of sliding motion in the region that you obtain.

Solution. x > 0, y > 0 : The one-sided limits take the form

lim
z→0−

f3(t, x, y, z) = 1 + 2y + 2x+ 1 and lim
z→0+

f3(t, x, y, z) = −3 + 2y + 2x+ 1.

The sliding condition (see Definition 9) requires that

1 + 2y + 2x+ 1 > 0 and − 3 + 2y + 2x+ 1 < 0 =⇒ y > −x− 1 and y < −x+ 1,

see Fig. 2.9. To find the equation of the sliding motion we compute λ(x, y) as

λ(x, y) · (2 + 2y + 2x) + (1− λ(x, y)) · (−2 + 2y + 2x) = 0 =⇒ λ(x, y) =
1− y − x

2
.

The equations of the sliding motion are, therefore,

ẋ = λ(x, y) · 2 + (1− λ(x, y)) · 2 = 2,

ẏ =
1− y − x

2
· (−5) +

(
1− 1− y − x

2

)
· (−3) = −4 + x+ y.
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Figure 2.9: The sliding regions (dark gray) of (2.49) in the hyperplane z = 0 by quadrants.

x > 0, y < 0 : lim
z→0−

f3(t, x, y, z) = 3 + 2y+ 2x+ 1 and lim
z→0+

f3(t, x, y, z) = −1 + 2y+ 2x+ 1.

The sliding condition is, therefore, y > −x−2 and y < −x. Compute the equation of sliding
motion by analogy with the case x > 0, y > 0.

x < 0, y > 0 : lim
z→0−

f3(t, x, y, z) = 1 + 2y+ 2x+ 1 and lim
z→0+

f3(t, x, y, z) = −3 + 2y+ 2x+ 1.

The sliding condition is, therefore, y > −x − 1 and y < −x + 1. Compute the equation of
sliding motion by analogy with the case x > 0, y > 0.
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x < 0, y < 0 : lim
z→0−

f3(t, x, y, z) = 3 + 2y+ 2x+ 1 and lim
z→0+

f3(t, x, y, z) = −1 + 2y+ 2x+ 1.

The sliding condition is, therefore, y > −x−2 and y < −x. Compute the equation of sliding
motion by analogy with the case x > 0, y > 0.

In summary, the vector field f(t, x, y, z) given by (2.49) slides in z = 0 when

(x, y) ∈ {(x, y) : x > 0, y > 0, y < −x+ 1} ∪ {(x, y) : x > 0, y < 0,−x− 2 < y < −x} ∪
∪{(x, y) : x < 0, y > 0,−x− 1 < y < −x+ 1} ∪ {(x, y) : x < 0, y < 0, y > −x− 2},

see Fig. 2.9.

2.7.2 Sliding along an arbitrary n − 1-dimensional plane of an n-dimensional
space

http://www.utdallas.edu/˜makarenkov/sliding-plane.pdf

2.7.3 Lack of (n –k)-dimensional differential equations for sliding along an
intersection of k discontinuity hyperplanes

Sliding along an intersection of switching hyperplanes is usual for switched control systems,
see [47], [31], [44], [45], [46], [1, Ch.2, § 10]. In this section I give a simple 3-dimensional
example that features sliding along the hyperplanes y2 = 0 and y3 = 0, i.e. we know that
the dynamics develops along the y1-axis. However, I will show that, for the Filippov solution
y(t), the first component y1(t) cannot be described by a single differential equation.

Example 8 Find the equation of sliding motion along the y1-axis in the system

ẏ1 = sign(y2)(sign(y3) + 1) =: f1(y1, y2, y3),
ẏ2 = −2sign(y2) + sign(y3) =: f2(y1, y2, y3),
ẏ3 = −sign(y3) =: f3(y1, y2, y3).

(2.50)

The solution uses the following property of the convex hull of a finite number of vectors
ξ1, ..., ξm ∈ Rn (also known as a simplex)

co(ξ1, ..., ξm) =
⋃

λ1+...+λm=1

(λ1ξ1 + ...+ λmξm) , (2.51)

see [14, §14.5].

Solution. Any Filippov solution y of (2.50) converges to the y1-axis in finite time because
for V (y) = |y2|+ |y3| we have

d

dt
V̇ (y(t)) ≤ −1,

for any t ≥ 0 such that y2(t)y3(t) 6= 0. According to Filippov definition,

ẏ1(t) ∈ K1[f ]((y1(t), 0, 0)T ), for almost all t ≥ 0. (2.52)
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Here, for a set A ∈ R
3, we define the first component A1 as A1 =

⋃
a∈A
{a1}. Accordingly,

K1[f ](y) is the first component of the set K[f ](y). We cannot use Proposition 8 to conclude
that K1[f ](y) with y = (y1(t), 0, 0)T is a singleton because Proposition 8 requires that only
one component of y vanishes. In what follows, we compute K1[f ]((y1(t), 0, 0)T ) exactly.
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Figure 2.10: (a) The points A(0, 1, 1), B(0,−3, 1), C(2,−1,−1), D(−2, 3,−1); (b) projection of the triangle
∆ABC to the y2 = 0 plane; (c) projection of the triangle ∆ABD to the y2 = 0 plane.

When y2 ·y3 6= 0 approach zero, the vector f(y) takes one of the four different values depicted
at Fig 2.10a. Therefore,

f(Bδ((y1(t), 0, 0)T )\J) = {A,B,C,D} , δ > 0, µ(J) = 0,

where A = (0, 1, 1), B = (0,−3, 1), C = (2,−1,−1), D = (−2, 3,−1). From the property
(2.51) we have

co(A,B,C) ⊂ co(A,B,C,D) and co(A,B,D) ⊂ co(A,B,C,D).

The triangle co(A,B,C) intersects the y1-axis at the point y1 = 1 (see Fig. 2.10(b),(c)). The
triangle co(A,B,D) intersects the y1-axis at the point y1 = −1 (see Fig. 2.10(b),(d)). When
one changes γ from 0 to 1 the set

Λγ =
⋃

λ1+λ2+λ3=1

(λ1A+ λ2B + γλ3C + (1− γ)λ3D)

changes from co(A,B,C) to co(A,B,D) continuously and overlaps the hyperplanes (A,B,C)
and (A,B,D) along the line (A,B) only. Since

⋃
γ∈[0,1]

Λγ = co(A,B,C,D), we get

co(A,B,C,D) = [−1, 1] =⇒ K1[f ]((y1(t), 0, 0)T ) = [−1, 1], t ≥ 0
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and (2.52) takes the form
ẏ1(t) ∈ [−1, 1], (2.53)

This is the answer. In contrast to Sec. 2.7.1, the Filippov definition now leads to a differential
inclusion for y1, rather than to a differential equation.

Note: Differential inclusion (2.53) is still different from ẏ1 ∈ f1(R3) = [−2, 2], which can be
one’s immediate guess.

The lack of differential equation for the equation of motion can be illustrated through a
system of coupled dry friction oscillators, see footnote 22.

22 A system of form (2.50) can be obtained from the following mechanical setup
 

c1 

k2 

m1 = 1 

x1 x2 

c2 

m2 = 1 

Assuming that the coefficient of the Coulomb dry friction between the bodies m1 and m2 equals d1 and that
the coefficient of the Coulomb dry friction between the body m2 and the ground is d2, the equations of the
displacements x1 and x2 of the bodies read as (see [49])

m1ẍ1 + c1(ẋ1 − ẋ2) + d1sign(ẋ1 − ẋ2) = 0,
m2ẍ2 − c1(ẋ1 − ẋ2)− d1sign(ẋ1 − ẋ2) + d2sign(ẋ2) + k2x2 + c2ẋ2 = 0.

The change of the variables
y1 = x2, y2 = ẋ2, y3 = ẋ1 − ẋ2

brings the system to the form

ẏ1 = y2 + u,
ẏ2 = d1signy3 − d2signy2 − c1y3 − k2y1 − c2y2,
ẏ3 = −2d1signy3 + d2signy2 − c1y3 + c1y3 + k2y1 + c2y2

(*)

with u = 0. When d1 < d2, d2 < 2d1 and ‖y‖ is small, the hyperplanes y2 = 0 and y3 = 0 are hyperplanes
of sliding. If we regard u as a control (invasion into the velocity vector field is used in control in the context
of super-twisting controllers, see [50]), then defining

u = sign(y2)(sign(y3) + 1),

one gets a system that exhibits the properties of system (2.50).

Exercise 15 Follow the approach that we developed in Example 8 and find the analogue of (2.53), i.e. the
differential inclusion of sliding motion, for y1 in system (*) near y = 0. It will now depend on phase variables.
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2.8 Examples of finite-time stable limit cycles

2.8.1 Terminal limit cycles in polar coordinates

If (r, θ) are polar coordinates of a point (x, y), then the solution of the system

ṙ = rsign(R− r)|R− r|0.5,
θ̇ = ω,

where R,ω > 0, is a cycle of radius R that attracts all other solutions (excluding a
neighborhood of the origin) in finite time, see [51, §2.4].

2.8.2 Finite-time stability of stick-slip limit cycles in dry friction oscillators

The equation of the coordinate x of a mass m placed on the moving (frictional) belt and
attached to an immovable wall through a spring is governed by the dry friction oscillator

ẋ = y =: f1(x, y),
ẏ = −x− cy − F (y − V ) =: f2(x, y),

(2.54)

see Fig. 2.11. Here F is the friction law that describes the dry friction between the mass and

 

m = 1 

x 

V = 1 

c 

k = 1  

Figure 2.11: Dry friction oscillator on a moving belt.

the ground. This law is continuously differentiable everywhere besides y = 0 and it verifies

lim
y→0−

F (y) = −1 and lim
y→0+

F (y) = 1

at y = 0. As a consequence, the right-hand-side f is continuously differentiable everywhere
besides y = V.
In accordance with Definition 9 (that we now use in dimension 2), define

fL(x, V ) = lim
y→V −

f(x, y) =

(
1
−x− c+ 1

)
, fR(x, V ) = lim

y→V +
f(x, y) =

(
1
−x− c− 1

)
,

see Fig. 2.12, and find that the points (x, V ) with

fL2 (x, V ) = −x− c+ 1 > 0 and fR2 (x, V ) = −x− c− 1 < 0,
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Figure 2.12: Vector fields fL and fR along the line y = V .

are points of sliding. This leads to the following interval and equation of sliding motion (see
Definition 9)

ẋ(t) = V, for all t ≥ 0 such that x(t) ∈ (−1− c, 1− c).

Proposition 9 Let (x(t), y(t)) be a Filippov solution of (2.54) with the initial condition
(x(0), y(0)) = (1− c, V ). If

x(t̄) ∈ (−1− c, 1− c) and y(t̄) = V

for some t̄ > 0, then (x(t), y(t)) is a finite-time stable limit cycle of (2.54).

The proof is a combination of 3 facts: 1) any solution of (2.54) with the initial condition in
(−1−c, 1−c)×{V } reaches the point (1−c, V ); 2) without loss of generality we can assume
that y(t) < V, t ∈ (0, t̄), and (x(t), y(t)) is the unique solution of (2.54) on the interval (0, t̄);
3) the solution (x(t), y(t)) reaches y = V at t = t̄ transversally and so the solutions of (2.54)
that originate near (x(0), y(0)) do reach y = V too.

2.8.2.1 The case of Coulomb dry friction

In this case F (y) = sign(y) and (2.54) takes the form

ẋ = y,
ẏ = −x− cy − 1,

if y > V, (2.55)

ẋ = y,
ẏ = −x− cy + 1,

if y < V. (2.56)

In this case the equilibrium (1, 0) of (2.56) is stable and, therefore, the solution (x(t), y(t))
of (2.56) with the initial condition (x(0), y(0)) = (1 − c, V ) intersects the y > 0 part of the
line −x − cy + 1 = 0 at those t > 0 for which y(t) ∈ (0, V ), see Fig. 2.13(b). Indeed, if we
assume that (x(t), y(t)) intersects the y > 0 part of the line −x− cy + 1 = 0 at those t > 0
for which y(t) > V, then this contradicts the stability of (1, 0) (in this case we will construct
a second trajectory that spirals towards (1, 0) and conclude the existence of a limit cycle
for (2.56), which cannot happen). Therefore, system (2.55)-(2.56) doesn’t have close orbits
passing through the sliding region (−1− c, 1− c)× {V }.
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Figure 2.13: (a) The trajectories of (2.55)-(2.56) with c = 0; (b) the solutions (x, y) of (2.56) (smaller
loop) and (2.57) (larger loop) with the initial condition (x(0), y(0)) = (1− c, V ).

2.8.2.2 The case of Coulomb dry friction and Stribeck effect

In this section we consider the following dry friction law

F (y) = sign(y)

(
1− α

1 + γ|y|
+ α + βy2

)
,

which is a possible way to account for so-called Stribeck effect, see [52, §4.1-4.2]. This friction
characteristics is utilized in [54, 55, 53, 56]. We have

ẋ = y =: fL1 (x, y),

ẏ = −x− cy +
1− α

1− γ(y − V )
+ α + β(y − V )2 =: fL2 (x, y),

if y < V. (2.57)

The equilibrium of this system is (x0, 0) =

(
1− α

1 + γV
+ α + βV 2, 0

)
, which is unstable if

−c+
γ(1− α)

(1 + γV )2
− 2βV > 0.

Denote by L the y > 0 part of the line through (x0, 0) and (1−c, 1). If the parameters c ≥ 0,
α ≥ 0, β ≥ 0, γ ≥ 0 are small enough, then the solution (x(t), y(t)) of equation (2.57) with
the initial condition (x(0), y(0)) = (1 − c, 1) will intersect the y > 0 part of line L at some
time moment τ > 0 again. Assume that τ > 0 is the first time moment when (x(t), y(t))
intersects the y > 0 part of L. There are two cases to consider:
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y(τ ) ≤ 1 : Since the equilibrium (x0, 0) is unstable, then there is an orbit (x̂(t), ŷ(t)) with
the initial condition on L and close to (x0, 0) such that for the next intersection (x̂(t̂), ŷ(t̂))
of this orbit with L we have ŷ(t̂) > ŷ(0). This implies that (2.57) possesses a closed orbit
(x̃, ỹ) with the initial condition on L. Assume, in addition, that for some r > 0, we have

divfL(x, y) =
∂fL1
∂x

(x, y) +
∂fL2
∂y

(x, y) = −c+
γ(1− α)

(1− γ(y − V ))2
+ 2β(y − V ) > 0,

y ∈ [−V − r, V + r].
(2.57.1)

Then, if |c| + |γ| + |β| is small enough, then (2.57) cannot have close orbits in the stripe
y ∈ [−V − r, V + r] by the Criterion of Bendixson [57, Ch. X, §7]. In particular, the closed
orbit (x̃, ỹ) is impossible. Therefore, the case y(τ) < 1 cannot take place.

y(τ ) > 1 : If |c| + |γ| + |β| is small enough, then the solution (x, y) is close to circle of
radius V and centered at (1, 0). Therefore, the assumptions of Proposition 9 hold and (2.54)
has a finite-time stable limit cycle by applying this proposition.

Same kind of result is obtained for (2.54) in [52, Example 9.1] over measure differential
inclusions. Numeric simulations are performed in [55].

2.8.3 Electromagnetic relay model

This model is investigated in [59] and [58, Ch. II, §4.10] and it provides a natural example
of a finite-time stable limit cycle in R

3, see Fig. 2.1423.

 

Figure 2.14: Finite-time stable limit cycle in R
3.

23Consider the exercise:

Exercise 16 Design a 3-dimensional discontinuous system that exhibits the finite-time stable limit cycle of
Fig. 2.14.
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3 Asymptotic stability of switched equilibria

Consider the following version of switched system (2.3)

ẋ = f(x), f(x) =

{
fL(x), if x ∈ DL,
fR(x), if x ∈ DR,

(3.1)

where fL, fR : Rn → R
n are smooth vector fields and DL, DR ⊂ R

n are open regions such
that DL∪S ∪DR = R

n, where S is a smooth surface (that separates fL and fR). I will stick
to the case where S is a hyperplane, when it doesn’t diminish the class of applications that
I have in mind. If S is a hyperplane, then the letter L will be used in place of S.

Definition 10 A point x̄ ∈ S is a switched equilibrium of system (3.1) or, equivalently, x̄
is a switched equilibrium for the vector fields fR and fL, if fR(x̄) 6= 0 and fL(x̄) 6= 0, and
there exists λ̄ ∈ (0, 1) such that

λ̄fR(x̄) + (1− λ̄)fL(x̄) = 0. (3.2)

With this definition, we don’t require that the sets DL and DR are defined for the notion of
switched equilibrium to make sense.

3.1 Structural instability of regular equilibria lying on the
switching hyperplane

Let S = L be a hyperplane (the statement of this section remains true for surfaces). Assume
that fL(x0) = fR(x0) = 0 for some x0 ∈ L and det(fL)′(x0) · det(fR)′(x0) 6= 0. Let fLε
and fRε be the vector fields obtained from fLε and fRε by ε-small smooth perturbations. The
Implicit Function Theorem (see [13, Theorem 13.7],[60, § 8.5.4, Theorem 1]) implies that
fLε (xLε ) = fRε (xRε ) = 0 for some xLε , x

R
ε ∈ Rn that converge to x0 as ε → 0. The formula for

the derivative of the implicit function (see [60, §8.5.4, Theorem 1, p. 490])) allows to see that

if none of the vectors
(
(fL)′(x0)

)−1
(d/dε)fLε (x0)

∣∣
ε=0

and
(
(fR)′(x0)

)−1
(d/dε)fRε (x0)

∣∣
ε=0

are

parallel L, then xLε 6∈ L and xRε 6∈ L for all |ε| > 0 sufficiently small. Therefore, any
generic perturbation brings f to a vector field that doesn’t longer have an equilibrium on
the switching hyperplane L. Such a phenomenon is often accompanied by new (nonsmooth)
bifurcations whose classification was actively pursued lately, see [65, 66, 67, 68]. Next section
introduces a non-standard equilibrium for switched systems that doesn’t run away from L
under perturbations.

If system (3.1) respects a certain structure and perturbations don’t destroy this structure (the
main example is when both the vector fields in (3.1) are linear as well as the perturbations
allowed), then the equilibrium x0 may remain on the line L even in the presence of
perturbations. We refer the reader to [61, 62, 64] for the theory of stability of (3.1) in the
case where both fL and fR are matrices. In particular, one may enjoy [63, Example 3], where
the matrices fL and fR are unstable, but the origin of (3.1) appears to be asymptotically
stable.

c© 2017 Oleg Makarenkov, Stability and Bifurcations of Switched Systems Page 39



 

f 
R
 

1 

small  

perturbation 

 

 
f 

L
 

f 
R
 

f 
L
 

f 
R
 

f 
L
 

f 
R
 

f 
L
 

f 
R
 

f 
L
 

2 

3 4 

f 
R

 (  )=0 

f 
L

 (  )=0 

Figure 3.1: Response of a common equilibrium of two vector fields fL and fR to perturbations.

3.2 Structural stability of switched equilibria lying on the
switching hyperplane

Let x̄ ∈ S be a switched equilibrium and let λ̄ be the respective value of λ. Assume that S
is parameterized as S = S(s1, ..., sn−1). Consider g(λ, s) = λfR(S(s)) + (1−λ)fL(S(s)). We
have g : Rn → R

n and g(λ̄, s̄) = 0, where s̄ is such that S(s̄) = x̄. The derivative g′(λ̄, s̄) is
an n× n-matrix. Assume that

det‖g′(λ̄, s̄)‖ 6= 0. (3.3)

Introduce smooth functions fRε , fLε , such that fRε → fR and fLε → fL as ε→ 0. If g(λ, s, ε) =
λfRε (S(s)) + (1 − λ)fLε (S(s)), then the Implicit Function Theorem ensures the existence of
(λ(ε), s(ε)), such that g(λ(ε), s(ε), ε) = 0 and (λ(ε), s(ε)) → (λ̄, s̄) as ε → 0. By the other
words, condition (3.3) ensures that the perturbed system

f(x) =

{
fLε (x), if x ∈ DL,
fRε (x), if x ∈ DR

has a switched equilibrium x̄(ε) = S(s(ε)) near x̄.

Observe, that (3.3) never holds, if fR(x̄) = fL(x̄) = 0 because g′λ(λ, s̄) is a zero vector in
this case.

3.3 Reduction to the sliding switching surface

3.3.1 2-dimensional systems

Let L ⊂ R
2 be a line that splits R2 into two open regions DL and DR.

Definition 11 If x̄ ∈ L is such a point that fR(x̄) = kfL(x̄), where k < 0, then x̄ is a
switched equilibrium of (3.1).

The definition implies that the constant function x(t) = x̄, t ≥ 0, is a Fillipov solution
of (3.1), thus x̄ is indeed an ”equilibrium” of (3.1). The notion of switched equilibrium is
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common in engineering literature. The same equilibrium is termed an invisible equilibrium
in mathematics literature.

The Definition 7 of sliding can be formulated at this instance as follows.

Definition 12 A point x ∈ S = ∂DL = ∂DR is a point of sliding for system (3.1), if fL(x)
points strictly towards DR and fR(x) points strictly towards DL.

The word ”strictly” in this definition needs clarification and that is what we do in Definition
13 and Definition 14 below. As for the earlier Definition 7, the ”strict” situation was
guaranteed by strict inequalities entering the definition.

Assume that L is parameterized by a parameter s ∈ R. From now on we, therefore,
regard L as a smooth function s 7→ L(s), whose graph is the original line L (the double
sense of the letter L is not going to create a confusion). Furthermore, we assume that
the parameterization L(s) is non-singular, i.e. ‖L′(s)‖ 6= 0, s ∈ R. The function L′(s) is,
therefore, a constant vector for now. If x = L(s) is close to x̄ = L(0), then co{fL(x), fR(x)}
contains a (unique) vector ~F (s) collinear L′(s). Let F (s) =

〈
~F (s), L′(s)

〉
.

Let us fix s ∈ R and consider x = L(s). Next lemma provides a formula to express F (s) in
terms of fL(x), fR(x) and L′(s). We omit the variables s and x to shorten notations (and
to present the lemma as a purely geometrical exercise). For l ∈ R2, the vector l⊥ is defined
by (

l1
l2

)⊥
=

(
l2
−l1

)
.

 

)0(Lx 

)(sLx 
L 
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
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Figure 3.2: Illustration of the notations of this section.
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Lemma 3 Let fL, fR, l ∈ R2 be such that
〈
fL, l⊥

〉
·
〈
fR, l⊥

〉
< 0 and ‖l‖ = 1. Then, for the

constant F =

〈
co
{
fL, fR

}
∩
⋃
λ∈R

λl

〉
, the following formula holds

F =

〈
fR, l⊥

〉
·
〈
fL, l

〉
−
〈
fL, l⊥

〉
·
〈
fR, l

〉
〈fR, l⊥〉 − 〈fL, l⊥〉

.

Proof. We prove the formula for the case where all the vectors are pointing as at Fig. 3.2.
The validity of the formula for all other configurations of the vectors can be established by
analogy.

The triangles ∆OAB and ∆OCD are similar, therefore

OB

OD
=

〈
fR, l⊥

〉
−〈fL, l⊥〉

.

In addition, 〈
fR, l

〉
+OB +OD =

〈
fL, l

〉
.

Since F =
〈
fR, l

〉
+OB, the conclusion follows by solving the system of two equations with

two unknowns OB and OD.

Lemma 3 implies that the equation of the sliding motion along L can be described by the
following equation of sliding motion

ṡ = F (s), (3.4)

where

F (s) =

〈
fR(L(s)), L′(s)⊥

〉
·
〈
fL(L(s), L′(s)

〉
−
〈
fL(L(s)), L′(s)⊥

〉
·
〈
fR(L(s)), L′(s)

〉
‖L′(s)‖ · (〈fR(L(s)), L′(s)⊥〉 − 〈fL(L(s)), L′(s)⊥〉)

. (3.5)

Theorem 5 [12, p. 217-218, Lemma 3 (p. 223)] Consider fL, fR ∈ C1(R2,R2). Let L(·) ∈
C2(R,R2) be a non-singular parameterization of the switching line L that separates the open
regions DL and DR. Assume that x̄ = L(0) is a switched equilibrium of (3.1).

1) If F ′(0) 6= 0, then x̄ is structurally stable.

2) If x̄ is a point of sliding and F ′(0) < 0, then x̄ is asymptotically stable.

Proof. 1) The statement claims that for any C1-smooth ε-small perturbations of fL and
fR, the respective function Fε will have an equilibrium x̄ε and x̄ε → x̄ as ε → 0. This
statement is a consequence of the Implicit Function Theorem (see [13, Theorem 13.7],[60,
§ 8.5.4, Theorem 1]).

2) Consider ε > 0 such that all points of L([−ε, ε]) are points of sliding. Let Bδ(x̄) be
such a neighborhood of x̄ that any Filippov solution x of (3.1) with the initial condition
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in Bδ(x̄) reaches L([−ε, ε]) at some time moment t̄ ≥ 0 (which is different for different
solutions x). Fix some Filippov solution x with the initial condition in Bδ(x̄). This can be
proved by applying the Comparison Lemma (see Lemma 1)24. Thus, x(t) = L(s(t)) starting
from t = t̄ and (at least ) until x(t) escapes from L([−ε, ε]), where s(t) is a solution of
(3.4) with the initial condition s(0) ∈ [−ε, ε]. The assumption F ′(0) < 0 ensures that 0
is an asymptotically stable equilibrium of (3.4) by the linearization theorem (see e.g. [69,
Theorem 1.44]). Therefore, we can consider ε > 0 so small, that s(t) → 0 (monotonically)
as t → ∞. This implies that x(t) never escapes from L([−ε, ε]) and x(t) → x̄ as t → ∞
uniformly in x(0) ∈ Bδ(x̄).

S17 revision of Example 9:
https://www.utdallas.edu/˜makarenkov/automatic-pilot-example.pdf

Example 9 ([70, Ch. VIII, § 6, pp. 501–515]) Prove asymptotic stability of the origin in
the following model of a two-position automatic pilot with velocity correction, where β > 0,

ẋ = y =: fR1 (x, y),
ẏ = −y − 1 =: fR2 (x, y),

if x+ βy > 0,

ẋ = y =: fL1 (x, y),
ẏ = −y + 1 =: fL2 (x, y),

if x+ βy < 0.
(3.6)

 

0

Rf

Lf
l

l

0 yx 

x

y

Figure 3.3: The notations of the solution of Example 9.

It is convenient to reformulate Definition 12 for the case of systems (3.1) defined by

ẋ =

{
fL(x), if

〈
x− x̄, l⊥

〉
> 0,

fR(x), if
〈
x− x̄, l⊥

〉
< 0.

(3.7)

24Consider the exercise:

Exercise 17 1) Detail the arguments that conclude the existence of t̄ from the Comparison Lemma in the
proof of Theorem 5-2), 2) explain rigorously why for any ε > 0 the value δ > 0, that we use in the proof of
Theorem 5-2), exists.
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Definition 13 (sliding along a hyperplane in Rn) A point x ∈
{
x ∈ Rn :

〈
x− x̄, l⊥

〉
= 0
}

is
a point of sliding for the switched system (3.7), if〈

fL(x), l⊥
〉
< 0 and

〈
fR(x), l⊥

〉
> 0.

Solution. The normalized parameterization of the line x+ βy = 0 can be defined as

L(s) =
1√
β2 + 1

(
βs
−s

)
,

for which

x̄ = L(0) = 0, l = L′(s) =
1√
β2 + 1

(
β
−1

)
, l⊥ = L′(s)⊥ =

1√
β2 + 1

(
−1
−β

)
.

Accordingly, the open set DL is the part of R2 under L and DR is the part of R2 above L.
Thus, system (3.6) takes form (3.7). Testing x̄ = 0 for sliding leads to

〈
fL(0), l⊥

〉
=

〈(
0
1

)
,

1√
β2 + 1

(
−1
−β

)〉
< 0,

〈
fR(0), l⊥

〉
=

〈(
0
−1

)
,

1√
β2 + 1

(
−1
−β

)〉
> 0.

Therefore, the origin is a point of sliding for (3.6) by Definition 13.

Since

fL(L(s)) =
1√
β2 + 1

(
−s
s+

√
β2 + 1

)
, fR(L(s)) =

1√
β2 + 1

(
−s
s−

√
β2 + 1

)
,

computing the scalar products gives〈
fL(L(s)), L′(s)

〉
=

1

β2 + 1

(
−s · β + (s+

√
β2 + 1) · (−1)

)
,〈

fR(L(s)), L′(s)⊥
〉

=
1

β2 + 1

(
−s · (−1) + (s−

√
β2 + 1) · (−β)

)
,〈

fR(L(s)), L′(s)
〉

=
1

β2 + 1

(
−s · β + (s−

√
β2 + 1) · (−1)

)
,〈

fL(L(s)), L′(s)⊥
〉

=
1

β2 + 1

(
−s · (−1) + (s+

√
β2 + 1) · (−β)

)
and

F (s) = − s
β
.

The origin is asymptotically stable for any β > 0 by Theorem 5.
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Note: It follows from the solution that the equation of sliding motion (3.4) for (3.6) is given
by

ṡ = − 1

β
s, (3.8)

which agrees with [70, p. 507].

Remark 1 Formula (3.5) and Theorem 5 remain valid when L(·) ∈ C1(R,R2). Items 1)
and 2) of Theorem 5 can be replaced by

1) If F is strictly monotone at 0, then x̄ persists.

2) If the exists r > 0 such that the points of L([−r, 0) ∪ (0, r]) are points of sliding and
s = 0 is a finite-time stable equilibrium of the equation of sliding motion (3.4), then x̄
is finite-time stable switched equilibrium of (3.1).

The following clarification of Definition 12 is required to test points of S = ∂DL = ∂DR for
sliding when L is a curve (Fig. 3.4 illustrates the construction of the function F in the case
where L is a curve).

 

)0(Lx 

)(sLx 

L 

B 

O 
D 

C 

A 

Lf

Rf

)(sF


 )(sL

)(sL

Figure 3.4: Illustration of notations for the case where L is an arbitrary smooth curve.

Definition 14 (sliding along a curve in R2) Assume that a non-singular curve L ∈ C1(R,R2)
parameterizes the set S = ∂DL = ∂DR. If L′(s)⊥ points towards DL then L(s) is a point of
sliding for (3.1) provided that〈

fL(L(s)), L′(s)⊥
〉
< 0 and

〈
fR(L(s)), L′(s)⊥

〉
> 0.

If L′(s)⊥ points towards DR then L(s) is a point of sliding for (3.1) provided that〈
fL(L(s)), L′(s)⊥

〉
> 0 and

〈
fR(L(s)), L′(s)⊥

〉
< 0.
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The Kaveh’s solution of #2b of Homework 2 suggested two questions whose answers are
unknown to me25.

3.3.1.1 Return to the (x, y)-coordinates

One-dimensional formulas (3.4)-(3.5) are convenient for analyzing the stability of the
switched equilibrium x̄. Sometimes it is of interest to plot the trajectory in the original
coordinates. The formulas (3.4)-(3.5) can be then turned into

ẋi = G(xi), where G(xi) =

[
F (s)

L′(s)

‖L′(s)‖

]
i

∣∣∣∣
s=L−1(xi)

, i = 1, 2.

25Consider the exercises.

Exercise 18 (5 pts) Let (x, y) be a Filippov solution of

(
ẋ
ẏ

)
=


(
y
1

)
, if x+ bsign(y)y2 < 0,(

y
−1

)
, if x+ bsign(y)y2 > 0.

(F)

Assume that 0 < b <
1

2
. As Kaveh observed, the solution t 7→ (x(t), y(t)) crosses the curve x+bsign(y)y2 = 0

as long as (x(t), y(t)) 6= 0. Let {ti}∞i=1 be the increasing sequence of the respective times of crossing. Examine

whether or not the series
∞∑
i=1

(ti+1 − ti) converges. The convergence corresponds to finite-time stability of

the origin. That would be an acceptable solution even if you just observe the convergence/divergence of the
series on the computer (I can then do the proof myself).

Exercise 19 (10 pts) Consider the switched system(
ẋ
ẏ

)
= f(x, y), where f(x, y) =

{
fL(x, y), if x+ bsign(y)y2 < 0,
fR(x, y), if x+ bsign(y)y2 > 0.

(FF)

The vector

(
2bsign(y)
−1

)
is tangent to the switching curve x+ bsign(y)y2 = 0. Therefore, the vector

F (x, y) ∈ K[f ](x, y)
⋂(⋃

k∈R

k

(
2bsign(y)
−1

))

is tangent to x+ bsign(y)y2 = 0 in all those points of this curve, which are points of sliding. Kaveh noticed
that if (FF) is (F), then the following Fact holds: the solution of the initial value problem(

ẋ
ẏ

)
= F (x, y),

x(0) + bsign(y(0))y(0)2 = 0

doesn’t leave the curve x + bsign(y)y2 = 0 as long as all points of x + bsign(y)y2 = 0 are points of sliding.
Does this fact hold for any switched system (FF) with smooth fL and fR? Construct a counter-example,
if not.
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In particular, one can check that equation (3.8) of Example 9 leads to

ẋ = − 1

β
x,

for the x-coordinate of the sliding solution.

Note, there is a more direct approach of obtaining the solution of (3.1) in the original
coordinates, that doesn’t involve F (s). We don’t consider that approach here because our
focus is on stability, where construction of F (s) or similar reduction in original coordinates
is always required.

3.3.2 3-dimensional systems

3.3.2.1 Switched equilibrium inside the sliding region

Lemma 4 Let l1, l2, l
⊥ ∈ R

3 be orthogonal unit vectors and let fL, fR ∈ R
3 be

such that
〈
fL, l⊥

〉
·
〈
fR, l⊥

〉
< 0. Then, for the two-dimensional vector F =〈

co
{
fL, fR

}
∩

⋃
λ1,λ2∈R

λ1l1 + λ2l2

〉
, the following formula holds

Fi =

〈
fR, l⊥

〉
·
〈
fL, li

〉
−
〈
fL, l⊥

〉
·
〈
fR, li

〉
〈fR, l⊥〉 − 〈fL, l⊥〉

in the coordinates (l1, l2).

Proof. As in the proof of Lemma 3, we fix particular directions of all vectors and establish
Lemma 4 for those specific directions. One can verify that the formula of Lemma 4 remains
valid for all other directions of the vectors.

Step 1. Consider the notations of Fig. 3.5. Similar to the proof of Lemma 3, we have

OB

OD
=

〈
fR, l⊥

〉
−〈fL, l⊥〉

.

This is the only information that gain from the 3d drawing of Fig. 3.5(Left). All the further
computations refer to the planar drawing of Fig. 3.5(Right).

Step 2. Here we compute ON and BN .

DQ = PK + PL = −
〈
fR, l1

〉
+
〈
fL, l1

〉
,

DM = DQ−ON,
DM

ON
=

OD

OB

=⇒ ON =
−
〈
fR, l1

〉
+
〈
fL, l1

〉
1 +
−
〈
fL, l⊥

〉
〈fR, l⊥〉
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Figure 3.5: Illustration of notations of Lemma 4:

Left and Right: PA = ‖fR‖, AB = ‖
〈
fR, l⊥

〉
‖, PC = ‖fL‖, CD = ‖

〈
fL, l⊥

〉
‖, PO = ‖F‖, ~PO = ~F ,

Right: PK = ‖
〈
fR, l1

〉
‖, KB = ‖

〈
fR, l2

〉
‖, PL = ‖

〈
fL, l1

〉
‖, LD = ‖

〈
fL, l2

〉
‖.

BQ = LD −KB =
〈
fL, l2

〉
−
〈
fR, l2

〉
,

OM = BQ−BN,
OM

BN
=

OD

OB

=⇒ BN =
−
〈
fR, l2

〉
+
〈
fL, l2

〉
1 +
−
〈
fL, l⊥

〉
〈fR, l⊥〉

Step 3. We finally compute the projections of the vector F on both l1 and l2 as

F1 = −(PK −ON) and F2 = KB +BN,

that leads to the required formula.

Let x̄ be a switched equilibrium for the vector fields fL and fR. Fix two arbitrary
linearly-independent vectors l1, l2 ∈ R3, such that〈

l⊥, l1
〉

= 0,
〈
l⊥, l2

〉
= 0, 〈l1, l2〉 = 0 (3.9)

and parameterize the switching hyperplane as

L(s1, s2) = (x̄, ȳ, z̄)T + s1l1 + s2l2. (3.10)

Lemma 4 suggests that if F ∈ C1(R2,R2) is defined as

F1(s1, s2) =

〈
fR(L(s1, s2)), l⊥

〉
·
〈
fL(L(s1, s2)), l1

〉
−
〈
fL(L(s1, s2)), l⊥

〉
·
〈
fR(L(s1, s2)), l1

〉
‖l1‖ · (〈fR(L(s1, s2)), l⊥〉 − 〈fL(L(s1, s2)), l⊥〉)

,

F2(s1, s2) =

〈
fR(L(s1, s2)), l⊥

〉
·
〈
fL(L(s1, s2)), l2

〉
−
〈
fL(L(s1, s2)), l⊥

〉
·
〈
fR(L(s1, s2)), l2

〉
‖l2‖ · (〈fR(L(s1, s2)), l⊥〉 − 〈fL(L(s1, s2)), l⊥〉)

,
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Figure 3.6: Left: a switched equilibrium x̄ in R
2 in the case where both fL(x̄) and fR(x̄) are parallel to

the switching surface S (which is a line in this example); Right: the response of this switched equilibrium
to a small perturbation.

then
ṡ1 = F1(s1, s2),
ṡ2 = F2(s1, s2)

(3.11)

are the equations of sliding motion along the switching hyperplane〈
(x− x̄, y − ȳ, z − z̄)T , l⊥

〉
= 0. Then, the origin is a regular equilibrium of (3.11)

and the following analogue of Theorem 5 can be proposed.

Theorem 6 Consider fL, fR ∈ C1(R3,R3). Let x̄ be a switched equilibrium for fL and fR.
Define DL and DR as

DL =
〈
(x− x̄, y − ȳ, z − z̄)T , l⊥

〉
< 0, DR =

〈
(x− x̄, y − ȳ, z − z̄)T , l⊥

〉
> 0,

where l⊥ ∈ R3 is an arbitrary vector. Let l1, l2 ∈ R3 be any two vectors that, when combined
with l⊥, form an orthogonal basis of R3, i.e. (3.9) holds. Let L(s1, s2) be the parameterization
(3.10) of the hyperplane

{
(x, y, z) ∈ R3 :

〈
(x− x̄, y − ȳ, z − z̄)T , l⊥

〉}
induced by the vectors

l1, l2.

1) If det‖F ′(0)‖ 6= 0, then x̄ is a structurally stable switched equilibrium of (3.1).

2) If x̄ is a point of sliding and the real parts of the eigenvalues of F ′(0) are negative,
then x̄ is an asymptotically stable switched equilibrium of (3.1).

3.3.2.2 Switched equilibrium on the boundary of the sliding region

If x̄ is a switched equilibrium of a 2-dimensional switched system (3.1) then condition (3.3)
ensures that this switched equilibrium persists under perturbations (in the sense of § 3.2).
However, the situation where both fL(x̄) and fR(x̄) are tangent to the switching surface S
is structurally unstable in R2. The vector fields (generically) don’t feature same property at
the perturbed switched equilibrium, see Fig. 3.6 However, the situation where both fL(x̄)
and fR(x̄) are tangent to the switching surface S is structurally stable in the space R3. This
leads to a new type of stable equilibria in 3-dimensional switched systems, not found in
dimension 2.

To have a brief idea as for why the above-mentioned tangent situation persists, assume that
the switching hyperplane is given by S = {(x, y, z) ∈ R3 : z = 0} and both fL and fR are
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Figure 3.7: Directions of the vector fields fL, fR (left figure) and fLε , fRε (right figure) against the curves
hL, hR (left figure) and hLε , hRε (right figure). The solid trajectories with arrows are governed by fR and
they correspond to z > 0. The dashed trajectories with arrows are governed by fL and they correspond to
z < 0. The gray regions are regions of sliding on the both figures.

tangent to S at the origin. This means that fL3 (0) = fR3 (0) = 0. If now
∂fL

∂y
(0) 6= 0, then by

the Implicit Function Theorem, there is a curve hL(x) such that fL3 (x, hL(x), 0) = 0 for all |x|
sufficiently small. Analogously, if a suitable derivative is different from zero, then there will
be a curve hR(x) such that fR3 (x, hR(x), 0) = 0 for all |x| sufficiently small. The two curves
will generically (i.e. if a suitable derivative is different from zero) intersect transversally.
This implies that small ε-perturbations of the vector fields fL and fR will not destroy the
transversal intersection of the curves hL and hR. The intersection of the perturbed curves
hLε and hRε will give a new point (x̄ε, ȳε, z̄ε) near the origin, where the perturbed vector fields
fLε and fRε will still be tangent to S, see Fig. 3.7.

In this example, the curves hL and hR split the (x, y)-plane into four regions, see Fig. 3.7 for
the directions of the vector fields fR and fL against the two curves. One of these regions
is a region of sliding (gray region at Fig. 3.7). It is possible to impose the conditions that
ensure that each Filippov solution that reaches the sliding region, sticks to the sliding region
forever while approaching the origin asymptotically. One of the four regions will be a region
of escaping. The remaining two regions are regions of crossing. Teixeira proposed conditions
that ensure that any Filippov solution that crosses the regions of crossing multiple number of
times will finally lend to the region of sliding. This allowed Teixeira [81] to obtain conditions
for asymptotic stability of the point of the intersection of hL and hR. This point is termed
U-singularity or Teixeira singularity. We refer the reader to [81] and [12, § 22].

A prototypic example (normal form) of Teixeira singularity is given by the system

(ẋ, ẏ, ż)T = F (x, y, z) + sign(z) ·G(x, y, z), (3.12)

c© 2017 Oleg Makarenkov, Stability and Bifurcations of Switched Systems Page 50



where

F (x, y, z) =
1

2
(a1 + b1, a2 + b2, x+ y), G(x, y, z) =

1

2
(a1 − b1, a2 − b2, x− y).

The curves that divide the (x, y)-plane in four regions are here the lines x = 0 and y = 0.
The result in [81, p. 29] states that 0 is an asymptotically stable point of (3.12), if

b1 < a2, 2a1b2 < a2b1 < a1b2 < 0.

I don’t devote much time to the analysis of Teixeira singularity because, despite of its
mathematical beauty, I know only one paper on an application of this singularity, see [82] (I
would be happy to learn more applications).

3.4 Design of switching surfaces using Lyapunov theory

Let x̄ be a switched equilibrium for the vector fields fL, fR, i.e.

λ̄fL(x̄) + (1− λ̄)fR(x̄) = 0 (3.13)

for some λ̄ ∈ (0, 1). In this section we will design the sets DL, DR and the respective
switching surface S that make x̄ an asymptotically stable switched equilibrium of (3.1).

Because of (3.13), the point x̄ is an equilibrium for

ẋ = λ̄fL(x) + (1− λ̄)fR(x). (3.14)

The whole analysis will be based on the assumption that x̄ is an asymptotically stable
equilibrium of (3.14). Asymptotic stability of x̄ is equivalent (see Theorem 34.1 and Theorem
51.1 in [83]) to the existence of a (Lyapunov) function V ∈ C1(Rn,R) such that

V (x) > 0, x 6= x̄, V (x̄) = 0,
V ′(x)

(
λ̄fL(x) + (1− λ̄)fR(x)

)
< 0 for all x 6= x̄.

(3.15)

Introduce two open sets
ΩL =

{
x : V ′(x)fL(x) < 0

}
,

ΩR =
{
x : V ′(x)fR(x) < 0

}
.

Lemma 5 Let x̄ be a switched equilibrium for the vector fields fL and fR, i.e. (3.13) holds.
Assume that the equilibrium x̄ of system (3.14) is asymptotically stable and consider the
respective (Lyapunov) function V ∈ C1(Rn,R) that satisfies (3.15). Then, the sets ΩL and
ΩR satisfy the properties:

1) ΩL ∪ ΩR ∪ {x̄} = R
n, ΩL ∪ ΩR = R

n,

2) ∂ΩL\{x̄} ⊂ ΩR, ∂ΩR\{x̄} ⊂ ΩL,
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Figure 3.8: Relative locations of sets ΩL and ΩR.

3) x̄ ∈ ∂ΩL, x̄ ∈ ∂ΩR.

Figure 3.8 illustrates the conclusion of Lemma 5. In particular, I cannot see that ΩL ∩ ΩR

always includes a hyperplane passing through x̄. The role of this note will be clear after one
gets through § 3.4.1.4 and § 3.4.1.6.

Proof. 1) The first part follows from (3.15) directly. The first part implies that either
x̄ ∈ ΩL or x̄ ∈ ΩR, thus the second part holds.

2) Consider x ∈ ∂ΩL. Then x 6∈ ΩL because ΩL is open. Then x ∈ ΩR by 1). The property
∂ΩR ⊂ ΩL can be proved by analogy.

3) It is sufficient to show that V ′(x̄) = 0. To observe this, consider the vector ξj ∈ Rn defined
as ξji = 0, i 6= j, and ξjj = 1. Since V (x) > 0, x 6= x̄, we have

0 < V (x̄+ αξj)− V (x̄) = V ′(x̄+ α∗ξ
j)ξj · α =

∂V

∂xj
(x̄+ α∗ξ

j)α,

0 < V (x̄− αξj)− V (x̄) = −V ′(x̄− α∗∗ξj)ξj · α = − ∂V
∂xj

(x̄− α∗∗ξj)α,
for all α > 0.

This can happen only if
∂V

∂xj
(x̄) = 0. Since j ∈ 1, n is chosen arbitrary, one gets V ′(x̄) = 0.

The proof of the lemma is complete.

3.4.1 State feedback switching rule

3.4.1.1 Lyapunov stability theorem for smooth Lyapunov functions

Theorem 7 (similar to [48, Theorem 3.1], [73, Theorem 2.3]) Let x̄ ∈ S, where S is a smooth
surface that separates DL and DR. Assume that V ∈ C1(Rn,R) is such that V (x) > 0, x 6= x̄,
and V (x̄) = 0. Let Wr be an open neighborhood of x̄ defined by Wr = {x ∈ Rn : V (x) < r},
where r is some positive constant. Consider a piecewise continuous function w : Rn → R

such that for any ρ > 0 there exists ε > 0 for which w(x) ≥ ε as long as x ∈ Wr\Bρ(x̄). If

V ′(x)ξ ≤ −w(x) for any ξ ∈ K[f ](x), and any x ∈ Wr\{x̄},
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where w ∈ C0(Rn,R) is strictly positive for all x 6= x̄, then x̄ is an asymptotically stable point
of (3.1), which attracts all Filippov solutions of (3.1) that originate in Wr.

Proof. Let x be a Filippov solution of (3.1) that originates in Wr. We pick any 0 < ρ < r
such that x(0) 6∈ Wρ and prove that x(t) ∈ Wρ beginning from some t = tρ.

Step 1. Let us prove that x(t) ∈ Wr for all t > 0. We prove by contradiction, i.e. assume
that x(0) ∈ ∂Wr, but x(τ) 6∈ Wr for some τ > 0. Without loss of generality we can assume
that x([0, τ ]) ⊂ W, where W is an open neighborhood of Wr, such that w(x) is strictly
positive in W\{0}. For the function

v(t) = V (x(t))

we have
v(0) = r and v(τ) ≥ r. (3.16)

Step 1.1 We claim that v(t) > r/2 for all t ∈ [0, τ ]. Indeed, if the latter is wrong, then
defining

s = max {t ∈ [0, τ ] : v(t) ≤ r/2} ,
one gets

v(s) = r/2, v(τ) = r, v(t) ∈ [r/2, r] , for any t ∈ [s, τ ]. (3.17)

In particular, x(t) 6= x̄ for all t ∈ [s, τ ] and, therefore,

v′(t) = V ′(x(t))ξ < 0, for some ξ ∈ K[f ](x(t)) and almost any t ∈ [s, τ ],

This contradicts (3.17) and proves that v(t) > r/2 for all t ∈ [0, τ ].

Step 1.2 Step 1.1 implies that

x(t) 6= 0, for any t ∈ [0, τ ], and, as a consequence, v′(t) < 0, for any t ∈ [0, τ ].

This contradicts (3.16) and completes the proof of the fact that x(t) ∈ Wr for all t > 0.

Step 2. Let us show that x(t) reaches Wρ at some time moment. Assume that x(t) never
reaches Wρ. Then

v′(t) = V ′(x(t))ξ < −w(x(t)), for some ξ ∈ K[f ](x(t)) and almost any t > 0.

The definition of function w implies that

wmin = min{w(x), x ∈ Wr\Wρ} > 0.

Therefore,

v(t) = v(0) +

∫ t

0

v′(t)dt < v(0)− wmint

and v(t) becomes negative, if x(t) never reaches Wρ. Since ρ ∈ (0, r) was chosen arbitrary,
our conclusion implies that x(t)→ x̄ as t→∞.
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Figure 3.9: Implicitly defined surface H(x) = 0 along with its tangent hyperplane constructed at x = x̄.

3.4.1.2 The gradient of a surface

Lemma 6 Let H ∈ C2(Rn,R) and x̄ ∈ Rn. If H ′(x̄) 6= (0, ..., 0), then

1) the hyperplane {x ∈ Rn : 〈x− x̄, H ′(x̄)〉 = 0} is tangent to the surface H(x) = 0.

2) the vector H ′(x̄) points to the positive side of H(x) = 0, i.e. H(αH ′(x̄)) > 0 for all
α > 0 sufficiently small.

Fig. 3.9 illustrates the notations of Lemma 6.

Proof. 1) By the assumption of the lemma there exists i ∈ 1, .., n such that
∂H

∂xi
(x̄) 6= 0. To

shorten notations we consider the case where i = 1 (the cases i = 2, ..., n can be considered
by analogy). By the Implicit Function Theorem, there exists h(x2, ..., xn) such that

H(h(x2, ..., xn), x2, ..., xn) = 0, for all (x2, ..., xn) close to (x̄2, ..., x̄n) and h(x̄2, ..., x̄n) = x̄1.

By taking the derivative of this equality with respect to xi at (x̄2, ..., x̄n), one gets

H ′(x̄)li = 0, i = 2, ..., n, (3.18)

where

li =

(
∂h

∂xi
(x̄2, ..., x̄n), 0, ..., 0, 1, 0, ..., 0

)T
and ”1” is the value of the i− th component.

The linearly independent vectors l2, ..., ln form a basis of the tangent hyperplane to H(x) = 0
at x̄. Therefore, by (3.18), H ′(x̄) is normal to this hyperplane.

2) Given α > 0, we have H(αH ′(x̄)) − H(x̄) = H ′(α∗H
′(x̄))H ′(x̄), which converges to

H ′(x̄)H ′(x̄) > 0 as α → 0. The latter can happen only if H(αH ′(x̄)) > 0 for all α > 0
sufficiently small.
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3.4.1.3 Lyapunov functions for linear systems

Consider
V (x) = xTPx = 〈x, Px〉 ,

where P is a symmetric matrix.

Fact 1: The matrix P has real eigenvalues. The function V is positive for all x 6= 0 if and
only if all eigenvalues of P are positive.

Proof. See [76, Theorem 5.3.6] for the fact that the eigenvalues of P are real. [76,
Theorem 7.2.1] then says that P has an orthonormal basis U = (u1, ..., un) of eigenvectors
corresponding to the eigenvalues λ1, ..., λn. The diagonal matrix with the eigenvalues
λ1, ..., λn will be denoted by Λ. By the definition of the orthonormal basis, UTU = I.
Since U diagonalizes P to Λ (see [76, Theorem 5.2.1]) we have Λ = UTPU . Therefore,

〈x, Px〉 =
〈
x, UΛUTx

〉
=
〈
UTx,ΛUTx

〉
=

n∑
i=1

λi
〈
UTx, UTx

〉
=

n∑
i=1

λi
〈
x, UUTx

〉
=

n∑
i=1

λi‖x‖,

from which the statement follows.

Consider a linear system of differential equations

ẋ = Ax, (3.19)

where A is an n× n-matrix.

Fact 2: For any x, ξ ∈ Rn we have V ′(x)ξ = ξTPx+xTPξ. In particular, V ′(x)Ax = −xTQx,
where

−Q = ATP + PA (3.20)

is a symmetric matrix and, therefore, V ′(x)Ax < 0 for all x 6= 0 if and only if all the
eigenvalues of Q are positive.

Proof. If α ∈ R, then
d

dα
V (x+ αξ) = V ′(x+ αξ)ξ and so

d

dα
V (x+ αξ)

∣∣∣∣
α=0

= V ′(x)ξ. On

the other hand,

d

dα
〈x+ αξ, P (x+ αξ)〉

∣∣∣∣
α=0

= 〈ξ, P (x+ αξ)〉|α=0 + 〈x+ αξ, Pξ〉|α=0 = ξTPx+ xTPξ.

The matrix Q is symmetric because (ATP + PA)T = P TA + ATP = PA + ATP. And the
proof of the fact about eigenvalues follows the lines of the proof of Fact 1.

Fact 3: If the real parts of all eigenvalues of A are negative, then, given any symmetric
matrix Q with positive eigenvalues, the equation Q = ATP +PA can always be solved for P .
This solution P is unique and has positive eigenvalues.

Proof. See [77, Sec 5.4, Theorem 42, p. 199] or [78, Theorem 3.6, p. 127].

c© 2017 Oleg Makarenkov, Stability and Bifurcations of Switched Systems Page 55



Example 10 (an analogue of [78, Example 3.13, p. 128]) Find a Lyapunov function V for

linear system (3.19) with A =

(
0 1
−1 −c

)
.

Solution. Solving (3.20) with Q =

(
−1 0
0 −1

)
in P one finds P =


2 + c2

2c

1

2

1

2

1

c

. This

matrix P allows to define a Lyapunov function as V (x) = xTPx.

Fact 4: If H(x) = V ′(x)ξ, where ξ ∈ Rn, then

H ′(x) = V ′′(x)ξ = 2(Pξ)T .

Proof. Use the formula for V ′(x)ξ of Fact 2, replace x by x + αζ, then differentiate in α
and plug α = 0. This leads to H ′(x)ζ = 2 〈ξ, Pζ〉 for any ζ ∈ Rn, that coincides with the
statement.

3.4.1.4 Linear state feedback switching rule

For this switching rule we need to assume that (3.15) holds in a stronger sense. Specifically,
we need that x̄ is an asymptotically stable equilibrium for each of the two systems

ẋ = fL(x)− fL(x̄) and ẋ = fR(x)− fR(x̄) (3.21)

and, moreover, we assume that there exists a common (Lyapunov) function V ∈ C2(Rn,R),
which verifies

V (x) = (x− x̄)TP (x− x̄), where P is symmetric with positive eigenvalues,
V ′(x)

(
fL(x)− fL(x̄)

)
≤ −α‖x− x̄‖2,

V ′(x)
(
fR(x)− fR(x̄)

)
≤ −α‖x− x̄‖2, where α > 0 is a fixed constant.

(3.22)

Given a vector l⊥ ∈ Rn, define the open regions DL and DR as

DL =
{
x ∈ Rn :

〈
x− x̄, l⊥

〉
< 0
}
, DR =

{
x ∈ Rn :

〈
x− x̄, l⊥

〉
> 0
}
, (3.23)

so that system (3.1) takes the form

ẋ =

{
fL(x), if

〈
x− x̄, l⊥

〉
< 0,

fR(x), if
〈
x− x̄, l⊥

〉
> 0.

(system (3.1) in settings of Theorem 8)

Theorem 8 (ideas of [80], [79], [61, §3.4.1] refined and rephrased for nonlinear systems) Let
x̄ be a switched equilibrium for the vector fields fL and fR, i.e. (3.13) holds. Assume that the
common equilibrium x̄ of systems (3.21) is asymptotically stable for each of the two systems.
Assume that systems (3.21) admit a common quadratic Lyapunov function V ∈ C2(Rn,R),
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i.e. (3.22) holds. Then x̄ is an asymptotically stable switched equilibrium of switched system
(3.1) with DL, DR given by (3.23) and with l⊥ defined by

(l⊥)T = V ′′(x̄)fL(x̄).

Specifically, the point x̄ asymptotically attracts all Filippov solutions of (3.1) that originate
in W =

⋃
r>0

{x ∈ Rn : V (x) < r} .

Introduce two open sets

ΩL
α =

{
x ∈ Rn : −α‖x− x̄‖2 + V ′(x)fL(x̄) < 0

}
,

ΩR
α =

{
x ∈ Rn : −α‖x− x̄‖2 + V ′(x)fR(x̄) < 0

}
.

Lemma 7 Consider fL, fR ∈ C1(Rn,Rn). Let x̄ be a switched equilibrium for the vector
fields fL and fR, i.e. (3.13) holds. Assume that systems (3.21) admit a common quadratic
Lyapunov function V ∈ C2(Rn,R) that satisfies (3.22) with some α > 0. Then ΩL

α and ΩR
α

verify the following properties:

1) ΩL ⊃ ΩL
α, ΩR ⊃ ΩR

α ,

2) x̄ ∈ ∂ΩL
α, x̄ ∈ ∂ΩR

α ,

3) both ∂ΩL
α and ∂ΩR

α are ellipsoids,

4) the hyperplane
{
x :
〈
x− x̄, l⊥

〉
= 0
}

is tangent to both ΩL
α and ΩR

α at x̄,

5) ΩL
α ⊂

{
x :
〈
x− x̄, l⊥

〉
< 0
}
, ΩR

α ⊂
{
x :
〈
x− x̄, l⊥

〉
> 0
}
.

The notations and statements of Lemma 7 are illustrated at Fig. 3.10.
Proof. 1) Let x ∈ ΩL

α. Then

V ′(x)fL(x) = V ′(x)(fL(x)− fL(x̄)) + V ′(x)fL(x̄) ≤
≤ −α‖x− x̄‖2 + V ′(x)fL(x̄) < 0.

Therefore, x ∈ ΩL. The proof for ΩR
α and ΩR

α is analogous.

2) In the proof of item 3) of Lemma 5 we established that V ′(x̄) = 0. This implies 2).

3) We execute the proof for x̄ = 0. The proof in the general case doesn’t differ. The change
of the coordinates y = x−∆ transforms the equation

−α‖x− x̄‖2 + V ′(x)fL(x̄) = 0

into
−α‖y‖2 − 2α 〈∆, y〉+ 2

〈
PfL(0), y

〉
− α‖∆‖2 + 2

〈
∆, PfL(0)

〉
= 0.
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Figure 3.10: The sets ΩL, ΩLα (left figure) and ΩR, ΩRα (right figure) relative to the hyperplane{
x :
〈
x− x̄, l⊥

〉
= 0
}

. At this figure:

Left and Right: The straight line = the hyperplane
{
x :
〈
x− x̄, l⊥

〉
= 0
}

,
Left: The inner dotted line = ∂ΩL. The exterior of the inner dotted line = ΩL.
Left: The outer dotted line = ∂ΩLα. The exterior of the outer dotted line = ΩLα.
Right: The inner dotted line = ∂ΩR. The exterior of the inner dotted line = ΩR.
Right: The outer dotted line = ∂ΩRα . The exterior of the outer dotted line = ΩRα .

If ∆ =
PfL(0)

α
, then we further get

−α‖y‖2 − 1

α
‖PfL(0)‖2 +

2

α
‖PfL(0)‖2 = 0,

which is the equation of ellipsoid centered at 0 and radius
1

α2
‖PfL(0)‖2.

The proof for ∂ΩR
α is analogous.

4) This follows from the equality

d

dx

(
−α‖x− x̄‖2 + V ′(x)fL(x̄)

)∣∣∣∣
x=x̄

= l⊥.

and the property (3.13) of switched equilibrium.

5) Let H(x) = −α‖x − x̄‖2 + V ′(x)fL(x̄). The interior of the ellipsoid ∂ΩL
α corresponds to

H(x) > 0. Therefore, the exterior of the ellipsoid ∂ΩL
α (which, by definition, coincides with

the set ΩL
α) is where H(x) < 0. Analogously for ΩR

α .

The proof of the lemma is complete.

Remark: The sets ΩL
α and ΩR

α are introduced because ∂ΩL and ∂ΩR are not necessary
ellipsoids. I don’t see that ∂ΩL and ∂ΩR are ellipsoids even in R

2 because the ”quadratic”
parts in the definition of V L and V R are defined over fully nonlinear functions V ′(x)(fL(x)−
fL(x̄)) and V ′(x)(fR(x)− fR(x̄))).
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Proof of Theorem 8. We will show that the conditions of Theorem 7 hold with

w(x) =


−V ′(x)fL(x), x ∈ DL,
−max{V ′(x)fL(x), V ′(x)fR(x)}, x ∈ S,
−V ′(x)fR(x), x ∈ DR.

If x ∈ DL\{x̄}, then x ∈ ΩL
α ⊂ ΩL by items 5) and 1) of Lemma 7, which implies w(x) < 0.

Analogously, w(x) > 0, if x ∈ DR\{x̄}. This implies that max
x∈∂Bρ(x̄)

w(x) is a positive function

that approaches 0 as ρ → 0. Since K[f ](x) = {fL(x)}, when x ∈ DL, and K[f ](x) =
{fR(x)}, when x ∈ DR, then condition V ′(x)ξ ≤ −w(x) of Theorem 7 holds for DL ∪DR.

Consider
〈
x− x̄, l⊥

〉
= 0. Then each ξ ∈ K[f ](x) has the form ξ = λfL(x) + (1− λ)fR(x),

where λ is a constant from the interval [0, 1]. We have

V ′(x)ξ = λV ′(x)fL(x) + (1− λ)V ′(x)fR(x) ≤ max{V ′(x)fL(x), V ′(x)fR(x)} = −w(x),

that completes the proof of the theorem.

3.4.1.5 Example

S17 revision of Example 11:
http://www.utdallas.edu/˜makarenkov/switching-line-design-example.pdf

Example 11 For the vector fields fL and fR given, propose a state feedback linear switching
strategy that stabilizes the switched equilibrium x̄ = 0. By the other words, find the vector
l⊥, such that x̄ is a globally asymptotically stable switched equilibrium of the system

ẋ =

{
fL(x), if

〈
x, l⊥

〉
> 0,

fR(x), if
〈
x, l⊥

〉
< 0.

fL(x) = ALx+ aL, AL = A =

(
0 1
−1 −1

)
, aL =

(
0
L

)
, where L < 0,

fR(x) = ARx+ aR, AR = A =

(
0 1
−1 −1

)
, aR =

(
0
R

)
, where R > 0.

Note, the system of Example 11 can be rewritten as

ẋ = Ax+

(
0
u(x)

)
, where u(x) =

{
L, if l⊥1 x1 + l⊥2 x2 > 0,
R, if l⊥1 x1 + l⊥2 x2 < 0

(3.24)

i.e. u(x) switches between L and R when the Filippov solution x crosses the line l⊥1 x1+l⊥2 x2 =
0. The whole problem is about finding the line, i.e. the vector l⊥ that renders x̄ = 0 a globally
asymptotically stable switched equilibrium of (3.24).
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Solution. The point x̄ = 0 is a switched equilibrium because the vectors aL and aR are
opposite each other. Systems (3.21) both reduce to

ẋ = Ax,

whose Lyapunov function can be taken (see § 3.4.1.3) as

V (x) = xTPx with P =


3

2

1

2

1

2
1

 .

Based on Fact 4 of § 3.4.1.3, we compute l⊥ as

(l⊥)T = V ′′(0)fR(0) = V ′′(0)

(
0
R

)
= 2

(
P

(
0
R

))T
= (R, 2R)

(Here we used the fact that fR of this example corresponds to fL of Theorem 8). Plugging
this value of l⊥ into (3.24), one gets

u(x) =

{
L, if R · x1 + 2R · x2 > 0,
R, if R · x1 + 2R · x2 < 0

or u(x) =

{
L, if x1 + 2x2 > 0,
R, if x1 + 2x2 < 0.

The asymptotic stability of switched equilibrium x̄ = 0 of (3.24) follows by applying
Theorem 8.

The point x̄ = 0 attracts all Filippov solutions of (3.24) because for the set Wr (defined in
Theorem 8) one has

⋃
r>0

Wr = R
2\{0}, i.e. the level sets of the Lyapunov function V fill in

the whole space.

3.4.1.6 Nonlinear state feedback switching rule

If x̄ is not an asymptotically stable equilibrium for each of the systems (3.21), then I am not
aware of sufficient conditions to ensure that ∂ΩL and ∂ΩR are separated by a hyperplane
(which would play a role of the switching hyperplane, if exists), i.e. to ensure that option
2 of Fig. 3.8 takes place. However, the following approach can always be used to design
a (nonlinear) switching surface S (i.e. to design the sets DL and DR) that renders x̄
asymptotically stable.

Proposition 10 (ideas of [80], [79], [61, §3.4.1]) Let x̄ be a switched equilibrium for the
vector fields fL and fR, i.e. (3.13) holds. Assume that the equilibrium x̄ of system (3.14)
is asymptotically stable and consider the respective (Lyapunov) function V ∈ C1(Rn,R) that
satisfies (3.15). Let Ω0 ⊂ R

n be an arbitrary open set such that

1) x̄ ∈ ∂Ω0,
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Figure 3.11: Relative locations of sets Ω0 (striped light gray), ΩR (all light gray, i.e. the union of solid
light gray and striped light gray), ΩL (dark gray).

2) Ω0\{x̄} ⊂ ΩR,

3) (Rn\Ω0) \{x̄} ⊂ ΩL.

Then x̄ is an asymptotically stable switched equilibrium of switched system (3.1) with DL

and DR defined by
DL = R

n\Ω0, DR = Ω0.

Specifically, the point x̄ asymptotically attracts all Filippov solutions of (3.1) that originate
in W =

⋃
r>0

{x ∈ Rn : V (x) < r} .

The proof of the Proposition follows the lines of the proof of Theorem 8. The notations and
possible location of the set Ω0 relative to ΩR and ΩL are illustrated in Fig. 3.11.

3.4.2 Hybrid Feedback Switching Rule

I am still about to put a precise definition of solution and a suitable version of the Lyapunov
stability theorem here. And I will of course type the scans. Please refer to the scans
meanwhile:

http://www.utdallas.edu/ m̃akarenkov/hybrid switching scan.pdf

This material follows the ideas of [80], [79], [61, §3.4.1].

3.5 Time-dependent switching. Dwell time

3.5.1 Global convergence

Consider a switched system
ẋ = fu(t)(x), (3.25)

where fu ∈ C1(Rn,Rn) and u : [t0,∞) 7→ R is a piecewise constant right-continuous control
signal. Assume that for each fixed u ∈ R the system

ẋ = fu(x)
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admits a unique equilibrium xu ∈ Rn. Let Vu be the Lyapunov function of equilibrium xu
which verifies the following two conditions

αu(‖x− xu‖) ≤ Vu(x) ≤ βu(‖x− xu‖), x ∈ Rn, (3.26)

(Vu)
′(x)fu(x) ≤ −kuVu(x), x ∈ Rn, (3.27)

where α, β are strictly monotonically increasing functions with αu(0) = βu(0), and ku ∈ R.
Note, we don’t assume that ku > 0, so we don’t assume that xu are stable equilibria.

Let t1 < t2 < t3... be the points of discontinuity of the function t 7→ u(t).

Definition 15 The control signal t 7→ u(t) has an average weighted dwell time τaw, if for
any i ∈ N, there exists Ni ∈ N such that

1

Ni

(
ku(ti)(ti+1 − ti) + ku(ti+1)(ti+2 − ti+1) + ...+ ku(ti+Ni−1)(ti+Ni − ti+Ni−1)

)
≥ τaw. (3.28)

The inequality of Definition 15 can be reformulated as∫ ti+Ni

ti

ku(s)ds ≥ τaw.

For a given ε > 0 let the neighborhood N ε
u of the equilibrium xu be defined as

N ε
u = {x : Vu(x) ≤ ε} .

Theorem 9 Let ε > 0 be a given constant and let u : [t0,∞) 7→ R be a piecewise constant
right-continuous control. Assume that there exists µ > 0 such that

Vu(ti+1)(x)

Vu(ti)(x)
≤ µ, x ∈ Rn \N ε

u(ti)
, i ∈ N. (3.29)

If the average weighted dwell time τaw of the control signal t 7→ u(t) satisfies

τaw > lnµ,

then, for any solution solution x of switched system (3.25), there exists i ∈ N such that
x(ti) ∈ N ε

u(ti)
.

The proof of the theorem follows the ideas of [90] and it is based base on the following lemma
about the rate of convergence of quadratic Lyapunov functions to zero.

Lemma 8 If f ∈ C1(Rn,Rn) and V ∈ C1(Rn,R) satisfy

V ′(x)f(x) ≤ −kV (x)

for some constant k ∈ R and any x ∈ W ⊂ R
n, then

V (x(τ)) ≤ e−k(τ−s)V (x(s)), (3.30)

for any solution t 7→ x(t) of ẋ = f(x) and any τ > s such that x([s, τ ]) ⊂ W.
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Proof. The assumption of the theorem implies that

v̇(t) ≤ −kv(t), t ∈ [s, τ ]

for v(t) = V (x(t)). By the comparison lemma (lemma 1) we have

v(t) ≤ w(t), t ∈ [s, τ ], (3.31)

where w is the solution of
ẇ(t) = −kw(t)

with the initial condition w(τ) = x(τ). Inequality (3.31) coincides with the required (3.30).
The proof is complete.

Proof of Theorem 9. Using inequalities (3.29) and (3.30), one concludes

Vu(ti+1)(x(ti+1)) ≤ µVu(ti)(x(ti+1)) ≤ µe−ku(ti)(ti+1−ti)Vu(ti)(x(ti)), if x(ti+1) 6∈ N ε
u(ti+1). (3.32)

Assume that the statement of the theorem doesn’t hold. Therefore

x(ti+1) 6∈ N ε
u(ti+1), for all i ∈ N, (3.33)

and so inequality (3.32) holds for all i ∈ N. By applying inequality (3.32) successively Ni

times we get

Vu(ti+Ni )
(x(ti+Ni)) ≤ µNi e

(
−ku(ti)(ti+1−ti)−ku(ti+1)

(ti+2−ti+1)−...−ku(ti+Ni−1)
(ti+Ni−ti+Ni−1)

)
Vu(ti)(x(ti))

and taking into account (3.28),

Vu(ti+Ni )
(x(ti+Ni)) ≤ µNi e

−τawNiVu(ti)(x(ti)) =
(
µe−τaw

)Ni Vu(ti)(x(ti)), i ∈ N.

Applying same process to Vu(t1+N1
)(x(t1+N1)) we obtain

Vu(t1+N1+Ñ1
)(x(t1+N1+Ñ1

)) ≤
(
µe−τaw

)N1+Ñ1 Vu(t1)(x(t1)).

Repeating iteratively, we will get a sequence of increasing time instances in the left-hand-side
and a sequence of increasing exponents in the right-hand-side. Since µe−τaw < 1 we have
Vu(t1+k)(x(t1+k))→ 0 as k →∞, which implies that x(t1+k) ∈ N ε

u(t1+k) for some k ∈ N. This

contradicts (3.33) and completes the proof.

Example 12 For a right-continuous u : R→ Z, consider the system

ẋ =

(
−1 −1
1 −1

)
x+

(
1
−1

)
u(t), if u(t) is even,

ẋ = −
(
−1 −1
1 −1

)
x−

(
1
−1

)
u(t), if u(t) is odd,

(3.34)
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whose unique equilibrium for each u(t) ∈ Z is given by

xu(t) =

(
u(t)

0

)
.

Let ε = 0.04 and Vu(x) = ‖x − xu‖2. Find the average dwell time τaw such that if t 7→ u(t)
satisfies |u(ti−1) − u(ti)| = 1, i ∈ N, and has average weighted dwell time τaw, then any
solution x of (3.34) verifies x(ti) ∈ N ε

u(ti)
= {x ∈ R2 : ‖x− xu(ti)‖2 ≤ ε} for some i ∈ N.

Solution. We are simply supposed to find the constant µ for which the condition (3.29) of
Theorem 9 holds. Denoting xi = xu(ti), we have

Vu(ti+1)(x)

Vu(ti)(x)
=
‖x− xi+1‖2

‖x− xi‖2
≤ (‖x− xi‖+ ‖xi − xi+1‖)2

‖x− xi‖2
.

Since the scalar function f(t) =
(t+ c)2

t2
decreases on t > 0 for each fixed c > 0,

(‖x− xi‖+ ‖xi − xi+1‖)2

‖x− xi‖2
≤ max

y:‖y−xi‖2=ε

(‖y − xi‖+ ‖xi − xi+1‖)2

‖y − xi‖2
=

=
(
√
ε+ ‖xi − xi+1‖)

2

ε
, for all x ∈ R2\N ε

u(i).

Since the control signal t 7→ u(t) is chosen such that |u(ti−1)− u(ti)| = 1, we have

‖xi − xi+1‖ =

∥∥∥∥( u(ti)− u(ti−1)
0

)∥∥∥∥ = |u(ti)− u(ti−1)| = 1. (3.35)

Finally,
Vu(ti+1)(x)

Vu(ti)(x)
≤ (0.2 + 1)2

0.04
= 36. (3.36)

Therefore, µ can be taken as µ = 36, whose natural logarithm is lnµ ≈ 3.583.
Answer: τaw ≥ 3.59.

There is big step to go from knowing the average weighted dwell time τaw to knowing the
specific control signals t 7→ u(t).

Example 13 Consider the switched system of Example 12. Find the conditions for Tstab > 0
and Tunstab > 0 such that the control signal

u(t) =

{
m, if t ∈ [0, Tstab) +mT for some m ∈ Z,
m+ 1, if t ∈ [Tstab, T ) +mT for some m ∈ Z, (3.37)

where T = Tstab + Tunstab, has the average weighted dwell time τaw = 3.59.
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Solution. When u(ti) is even the Lyapunov function Vu(ti) verifies the inequality

d

dt
Vu(ti)(x(t)) ≤ −2Vu(ti)(x(t)).

Therefore, When u(ti) is odd one has

d

dt
Vu(ti)(x(t)) ≤ 2Vu(ti)(x(t)).

Therefore, ku(ti) = 2 or ku(ti) = −2 according to whether u(ti) is even or odd. To fulfill the
requirement of Definition 15 we consider N = 2. Since, any two successive constant phases
of control (3.37) always include an even and an odd value, inequality (3.28) takes the form

1

2

(
ku(ti)(ti+1 − ti) + ku(ti+1)(ti+2 − ti+1)

)
=

1

2
(2Tstab − 2Tunstab) ≥ 3.59.

Answer: Tstab − Tunstab ≥ 3.59.

Combining Examples 12 and 13 we conclude that if Tstab − Tunstab ≥ τaw, where τaw = 3.59,
then any solution x of (3.34) verifies x(ti) ∈ {x ∈ R2 : ‖x− xu(ti)‖ ≤ 0.2} for some i ∈ N.

Example 14 Consider the switched system (3.34) with a right-continuous control u : R →
{0, 1, 2, 3}. Let ε = 0.04 and Vu(x) = ‖x− xu‖2.

1) Find τaw such that if t 7→ u(t) has an average weighted dwell time τaw, then any solution
x of (3.34) satisfies x(ti) ∈ N ε

0 ∪N ε
1 ∪N ε

2 ∪N ε
3 for some i ∈ N.

2) Assume, that for each i ∈ N such that u(ti) is odd, we have the following:

(i) both u(ti+1) and u(ti+2) are even,

(ii) ti+1 − ti ≤ T1, ti+2 − ti+1 ≥ T2, ti+3 − ti+2 ≥ T3,
where T1 > 0, T2 > 0, and T3 > 0 don’t depend on i.

Find a relationship for T1, T2, and T3 such that the control signal t 7→ u(t) has an
average weighted dwell time τaw.

Solution. 1) The solution follows the lines of Example 12 with the only difference that
|u(ti)−u(ti−1)| in (3.35) can now be as large as |u(ti)−u(ti−1)| ≤ 3. Thus, (3.36) changes to

Vu(ti+1)(x)

Vu(ti)(x)
≤ (0.2 + 3)2

0.04
= 256.

Since ln(256) ≈ 5.545, an average weighted dwell time τaw can be taken as τaw ≥ 5.55.

2) We will seek for T1, T2, and T3 such that Definition 15 holds with N = 3. We have

1

3

(
ku(ti)(ti+1 − ti) + ku(ti+1)(ti+2 − ti+1) + ku(ti+2)(ti+3 − ti+2)

)
=

=
1

3
(−2(ti+1 − ti) + 2(ti+2 − ti+1) + 2(ti+3 − ti+2)) ≥ 1

3
(−2T1 + 2T2 + 2T3) .
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The left-hand-side of this inequality will be greater than τaw, if
1

3
(−2T1 + 2T2 + 2T3) ≥ τaw,

which gives
1

3
(−2T1 + 2T2 + 2T3) ≥ 5.55, or −T1 + T2 + T3 ≥ 16.65.

Answer: τaw ≥ 5.55, −T1 + T2 + T3 ≥ 16.65.

When ku(ti) = ku(ti−1), i ∈ N, the inequality (3.28) reduces to

k

N
(ti+N − ti) ≥ τaw.

Definition 16 The control signal t 7→ u(t) has an average dwell time τa, if, for any i ∈ N,
there exists Ni ∈ N such that

1

Ni

(ti+Ni − ti) ≥ τa. (3.38)

Corollary 3 (Alpcan-Basar [90]) Let ε > 0 be a given constant and let u : [t0,∞) 7→ R be a
piecewise constant right-continuous control. Assume that there exists µ > 0 and k > 0 such
that both (3.29) and

ku(ti) ≥ k, i ∈ N
hold. If the average dwell time τa of the control signal t 7→ u(t) satisfies

τa >
lnµ

k
,

then, for any solution solution x of switched system (3.25), there exists i ∈ N such that
x(ti) ∈ N ε

u(ti)
.

Example 15 Consider the switched system (3.34) with a right-continuous control u : R →
{0, 2, 4}. Let ε = 0.04 and Vu(x) = ‖x− xu‖2.

1) Find an average dwell time τa for the control signal t 7→ u(t) such that any solution x
of (3.34) reaches N ε

0 ∪N ε
2 ∪N ε

4 at some time.

2) Estimate the maximal number of switchings allowed over any time-interval of 10 units
for which the control signal t 7→ u(t) has an average dwell time τa.

Solution. 1) Following the solution of Example 12, we find

µ =
(0.2 + 4)2

0.04
= 441, lnµ ≈ 6.09, τa ≥ 3.05.

2) From formula (3.38)
1

N
· 10 ≥ 3.05, N ≤ 10

3.05
≈ 3.28.

Answer: τa = 3.05, N = 3.

Note, Corollary 3 cannot be applied to Examples 13 and 14 because some of the ku(ti) in
those examples are negative.
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Definition 17 The control signal t 7→ u(t) has a dwell time τd, if

ti+1 − ti ≥ τd, i ∈ N. (3.39)

A dwell time τd of control input t 7→ u(t) is also its average dwell time τa, but the converse

is not. In particular, τa >
lnµ

k
doesn’t imply τd >

lnµ

k
. For example, a 10-periodic control

u(t) =


0, t ∈ [0, 1),
2, t ∈ [1, 2),
4, t ∈ [2, 10),

has an average dwell time τa =
1

3
(t3 − t0) ≈ 3.33, which satisfies the condition τa ≥ 3.05

obtained in Example 15. At the same time, the dwell time τd of the same control signal is
at most τd = 1, which fails the condition τd ≥ 3.05.

For a right-continuous piecewise constant control u : [t0,∞) 7→ R, let Tstab(t) and Tunstab(t)
be the total activation times of stable (ku(t) > 0) and unstable (ku(t) < 0) subsystems of
switched system (3.25) on the time interval [t0, t], i.e.

Ts(t1, t2) =

∫ t2

t1

1s:u(s)>0(τ)dτ, Tu(t1, t2) =

∫ t2

t1

1s:u(s)<0(τ)dτ,

where 1A(x) =

{
1, if x ∈ A,
0, otherwise

is the indicator function of set A ⊂ R.

The next corollary extends the result of Zhai et al [101] by providing an explicit formula for
the coefficient k.

Corollary 4 Let ε > 0 be a given constant and let u : [t0,∞) 7→ R be a piecewise constant
right-continuous control. Assume that there exists µ > 0 such that (3.29) holds. Assume
that there exist ku < 0 and ks > 0 such that, for any t ≥ t0,

ku ≤ ku(t), if ku(t) < 0, and ks ≤ ku(t), if ku(t) > 0.

Finally, assume that for any t1 ≥ t0 there exists t2 ≥ t1 such that

−kuTu(t1, t)
ksTs(t1, t)

≤ λ < 1, t ≥ t2, (3.40)

If the average dwell time τa of the control signal t 7→ u(t) satisfies

τa >
lnµ

k
, where k = −kuks(1− λ)

−ku + λks

then, for any solution solution x of switched system (3.25), there exists i ∈ N such that
x(ti) ∈ N ε

u(ti)
.
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Proof. The goal of the proof is to show that τaw ≥ lnµ. One can check that if −kuTu
ksTs

≤ λ

then
−ksTs − kuTu

Ts + Tu
≤ −k and so

−ksTs − kuTu ≤ −k (Ts + Tu) .

Take an arbitrary i ∈ N. According to (3.40), there exists N0 ∈ N such that

−kuTu(ti, ti+N)

ksTs(ti, ti+N)
≤ λ, for any N ≥ N0.

Note that the constant N ∈ N in the definition of the average dwell time can be taken

arbitrary large. Indeed, if
1

N
(ti+N − ti) ≥ τa, then we can always obtain N1 ∈ N such that

1

N1

(ti+N+N1 − ti+N) ≥ τa, from where
1

N +N1

(ti+N+N1 − ti) ≥ τa. Therefore, there exists

N ≥ N0 such that
1

N
(ti+N − ti) ≥ τa.

We now use the three inequalities established above to show that τaw can be taken as τaw =
lnµ. We have

ku(ti)(ti+1 − ti) + ...+ ku(ti+N−1)(ti+N − ti+N−1) ≥
≥ kuTu(ti, ti+N) + ksTs(ti, ti+N) ≥
≥ k(Tu(ti, ti+N) + Ts(ti, ti+N)) = k(ti+N − ti) ≥

≥ kNτa ≥ kN
lnµ

k
= lnµ.

Therefore, the conclusion of the corollary follows by applying Theorem 9.

3.5.2 Local dynamics

http://www.utdallas.edu/˜makarenkov/dwell time scan.pdf

4 Orbital asymptotic stability of limit cycles

4.1 The method of Poincaré section for systems with impacts

A differential equation with impact is a smooth differential equation

ẋ = f(x), x ∈ Rn, (4.1)

coupled with an impact map ∆ : L→ R
n which creates jumps in any solution x that happen

to reach a region L of a hyperplane of Rn. Specifically, if for a solution x of (4.1) reaches L
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at some t ∈ R in the sense that x(t−) = lim
s→t−0

x(s) ∈ L, then ∆ applies instantaneously and

moves the point x(t) to the position ∆(x(t−)). The solution x continuous its way along the
flow of (4.1) then until it reaches L again. This rule can be formulated as

ẋ = f(x),
x(t+) = ∆(x(t−)), if x(t−) ∈ L. (4.2)

Let us denote by t → X(t, ξ) the solution x(t) of (4.1) with the initial condition x(0) = ξ.
The map t→ X(t, ξ) is know as the general solution of (4.1).

Definition 18 Let L be a region of a hyperplane of Rn. A Poincaré map P of smooth system
(4.1) induced by L maps a point of ξ ∈ L to the point P (ξ), where t→ X(t, ξ) intersects L
again. By the other words,

P (ξ) = X(T (ξ), ξ),

where T (ξ) is the minimum of {t > 0 : X(t, ξ) ∈ L}.

Two assumptions are required to make this definition correct. First of all, the set {t > 0 :
X(t, ξ) ∈ L} has to be nonempty, i.e. t 7→ X(t, ξ) does reach L again. Secondly, we need
that min{t > 0 : X(t, ξ) ∈ L} > 0, i.e. the solution of (4.1) that originates at ξ ∈ L must
leave L immediately. Furthermore, P is not required to be defined at all points of L.

 
 

 

() 

zero time jump 

P() 

t  X(t,()) 

) 

time T(() 

) 

 

 
 

() 
() 

periodic orbit 

(option 1) 

 

periodic orbit 

(option 2) 

 

Figure 4.1: Illustration of the notations of this section.

Definition 19 If L is the impact surface from (4.2) then the Poincaré map P of (4.2)
induced by L is

P (ξ) = X(T (∆(ξ)),∆(ξ)),

where the function T (ξ) = min{t > 0 : X(t, ξ) ∈ L} is known as time to impact, see Fig. 4.1.
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Impact system (4.2) doesn’t require that ∆ is defined outside L, however, the later property
can, in principle, hold. If ∆ is defined outside L, then the Poincaré map is formally defined
outside L. However, only points of L are mapped back to L over the action of P. If ξ0 is a
fixed point of P (i.e. P (ξ0) = ξ0) then ξ0 ∈ L.

Each fixed point of P is the initial condition of a periodic orbit x of (4.2). The orbit x is
attractive, if the P is a contraction in a neighborhood of x(0) of L.

Theorem 10 If P is defined in a closed convex set C̃ ⊂ L and P (C̃) ⊂ C̃, then C̃ contains
a fixed point ξ0 of P , i.e. P (ξ0) = ξ0. In particular, the orbit x of (4.2) with the initial
condition x(0) = ξ0 is periodic. If, in addition,

‖P (ξ1)− P (ξ2)‖ ≤ ρ‖ξ1 − ξ2‖, for all ξ1, ξ2 ∈ C̃,

for a fixed ρ ∈ [0, 1) and some norm ‖ · ‖, then the graph of x attracts all other solution of
(4.2) that originate in C̃.

The existence part is the Brouwer theorem (see [92, Theorem 3.1]). The stability part is a
version of [24, Lemma 9.2], see also [34, Theorem 1].

When a fixed point ξ0 of P is known, the stability of the respective periodic solution can
be analyzed via the linearization approach. For the next theorem to hold (specifically, for
the derivative P ′(ξ0) to be defined), the Poincaré map P needs to be defined in a little
n-dimensional ball Bδ(ξ0) near ξ0. That is equivalent to saying that the jump ∆ has to
be artificially defined in the whole Bδ(ξ0) (i.e. slightly outside L), which is often the case
in applications. However, the way how ∆ is defined on Bδ(ξ0)\L doesn’t influence the
eigenvalues that Theorem 11 is talking about (see Remark 2 that follows Theorem 11). We
get rid of this assumption in Theorem 12 by reducing the dimension of P explicitly.

Let the cross-section L be given by

L = {x ∈ C : cTx+ d = 0},

where C is a bounded set of Rn and c ∈ Rn, d ∈ R.

Theorem 11 Consider f ∈ C1(Rn,Rn) and ∆ ∈ C1(L,Rn). Consider a T -periodic orbit x
of (4.2) such that x(T−) ∈ L and x(t) 6∈ L, t ∈ (0, T ), see Fig. 4.1. Assume that ∆ is defined
in a small ball Bδ(x(T−)) of Rn centered at x(T−) and

∆ ∈ C1(Bδ(x(T−)),Rn). (4.3)

Assume that 〈
f(x(T−)), c

〉
6= 0, (4.4)

so that P is defined near x(T−). If the real parts of all the eigenvalues of the n × n-matrix
P ′(x(T−)) are inside the unit circle, then x is an orbitally asymptotically stable limit cycle.
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A limit cycle x is orbital asymptotic stable, if the graph of x asymptotically attracts all
solutions from its neighborhood, see [83]. This theorem will follow from Theorem 12.

Remark 2 The way how ∆ is defined on Bδ(ξ0)\L doesn’t influence the eigenvalues of
P ′(x(T−)). Indeed, the definition of ∆ outside L doesn’t influence the values of P on L.
That means that n − 1 eigenvalues of P ′(x(T−)) that correspond to the n − 1-dimensional
eigenspace of P ′(x(T−)) in L do not depend on the definition of ∆ in Bδ(ξ0)\L. The one
eigenvalue of P ′(x(T−)) that remains is always zero regardless the definition of ∆. Next
proposition is a proof of this fact.

Proposition 11 Let ξ0 ∈ L be a fixed point of the Poincaré map P and the assumptions
(4.3)-(4.4) of Theorem 11 hold (x(0) = ξ0). Then, generically, there exists v ∦ L (i.e.
〈v, c〉 6= 0) such that P ′(ξ0)v = 0. Specifically, if

the matrix ∆′(ξ0) is invertible,

then v ∈ Rn satisfying P ′(ξ0)v = 0 exists. If, in addition,〈
∆′(ξ0)−1f(∆(ξ0)), c

〉
6= 0,

then 〈v, c〉 6= 0.

Proof. We are going to show that, if ∆′(ξ0) is invertible, then a function ξ(δ) is defined
near 0, such that P (ξ(δ)) = ξ0 for all |δ| sufficiently small.

Step 1. In this step we show that finding ξ(δ) that vanishes the function

F (δ, ξ) = X(−T0 − δ, ξ0)−∆(ξ)

is sufficient for the proof. Here T0 is the period of the cycle of (4.2) with the initial condition
ξ0. Indeed, if F (δ, ξ) = 0, then

X(T0 + δ,X(−T0 − δ, ξ0)) = X(T0 + δ,∆(ξ)).

The left-hand-side equals ξ0 for all δ. Therefore, it remains to show that

X(T0 + δ,∆(ξ)) = X(T (∆(ξ)),∆(ξ)) (4.5)

for all ξ from a neighborhood of ξ0. Let ~L be an n × (n − 1)−matrix, whose columns are
parallel to L and linearly independent. Consider the function

G(T, v) = H(X(T, v)), where H(x) = cTx+ d (the equation of the hyperplane L).

We have G(T0,∆(ξ0)) = 0 and G′T (T0,∆(ξ0)) = 〈c, f(ξ0)〉 which is different from zero by
(4.4). Therefore, by the Implicit Function Theorem, in the neighborhood of (T0,∆(ξ0)), there
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exists only one T (v) such that X(T (v), v) ∈ L. We noticed earlier that X(T0 + δ,∆(ξ)) =
ξ0 ∈ L. In consequence, T0 + δ must coincide with T (∆(ξ)) for (4.5) to hold.

We proved that F (δ, ξ(δ)) = 0 implies that P (ξ(δ)) = ξ0. By taking the derivative of the last
relation in δ at δ = 0, we conclude P ′(ξ0)ξ′(0) = 0. So, the required v is v = ξ′(0).

Step 2. In this step we show that the function ξ(δ) that vanishes F (δ, ξ) in a neighborhood
of (0, ξ0) exists. We have F (0, ξ0) = 0 and F ′ξ(0, ξ0) = −∆′(ξ0), which is invertible by our
assumption. Thus, the required ξ(δ) exists by the Implicit Function Theorem.

Step 3. To establish the condition that ensures 〈ξ′(0), c〉 6= 0, we use the formula for the
derivative of the implicit function

ξ′(0) = −F ′ξ(0, ξ0)−1F ′δ(0, ξ0) = ∆′(ξ0)(−X ′t(−T0, ξ0)) = −∆′(ξ0)f(∆(ξ0)).

The proof of the Proposition is complete.

4.1.1 An illustrative example where the Poincaré map can be obtained in a
closed form

http://www.utdallas.edu/˜makarenkov/Poincare-map-design.pdf

4.1.2 An example where the Poincaré map can be obtained in a closed form:
the simplest clock model

The Poincaré map defined in Definition 19 maps vectors of n components into vectors of n
components. For some analytic computations it is useful to pass to an n − 1 dimensional
equivalent Poincaré map. Let L(s) : L→ R

n is a non-singular parameterization of the region
L. Then

P̃ (s) = L−1(X(T (∆(L(s))),∆(L(s)))

maps vectors of n− 1 components into vectors of n− 1 components and P̃ coincides with P
on L in the sense that

P (L(s)) = L(P̃ (s)) or P (ξ) = L(P̃ (L−1(ξ))) for all s ∈ Rn−1 and all ξ ∈ L.

The advantage of P̃ is that the contraction property can hold for P̃ in a closed convex set
of the entire space of this maps (e.g. C can be a closed ball of Rn−1), not just in a part of
the space that we restricted to in Theorem 10.

Theorem 12 Let s→ L(s) be a non-singular parameterization of L and L(0) = ξ0, where ξ0

is the initial condition of a periodic solution x of (4.2). Assume that f ∈ C2(Rn,Rn). Assume
that x0 is the only point of intersection of x and L and that the intersection is transversal.
The derivative P̃ ′(0) is then defined. Assume, that the eigenvalues of P̃ ′(0) are strictly inside
the unit circle of C. Then P̃ is a contraction in a sufficiently small neighborhood of 0. In
particular, x is an orbitally asymptotically stable limit cycle of (4.2).
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The proof of this theorem can be found in [92, Theorem 9.1].

Example 16 Prove the existence and orbital asymptotic stability of a limit cycle in the
impact system

θ̈ + bθ̇ + a2θ = 0,

θ̇(t+) = θ̇(t−) + k, if θ(t−) = 0 and θ̇(t−) > 0,

where a, b, k are given positive constant and a, b satisfy b2 < 4a2.

Solution. The respective first-order system of differential equations with impulsive effect
reads as

θ̇ = w,
ẇ = −bw − a2θ,

(4.6)

w(t+) = w(t−) + k, if (θ(t−), w(t−))T ∈ L, (4.7)

where L = {0} × (0,∞). The general solution of (4.6) is given by

X

(
t,

(
0
w0

))
=

 w0
1

ν
exp

(
−1

2
bt

)
cos
(
νt− π

2

)
−w0 exp

(
−1

2
bt

)
sin
(
νt− π

2

)
− w0

b

2ν
exp

(
−1

2
bt

)
cos
(
νt− π

2

)
 .

By defining ∆ as ∆((0, w0)T ) = (0, w0 +k)T and by noticing that it takes
2π

ν
for any solution

of (4.6) to get from L to L, one can write the following formula for the Poincaré map

P
(

(0, w0)T
)

= X
(
T
(

∆
(

(0, w0)T
))

,∆
(

(0, w0)T
))

= X

(
2π

ν
,

(
0

w0 + k

))
=

=

 0

(w0 + k) exp

(
−πb
ν

)  ,

see Fig. 16. By parameterizing L as L(w) = (0, w)T , one gets L−1
(
(0, w)T

)
= w and

P (w0) = (w0 + k) exp

(
−π b

ν

)
Solving P (w0) = w0, one gets

w0 =
k exp(−πb/ν)

1− exp(−πb/ν)
and P ′(w0) = exp(−πb/ν) < 1.

Existence and stability of a limit cycle follows by applying Theorem 12.
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Figure 4.2: Illustration of the solution of Example 16.

 

Figure 4.3: The diagram of 3-link planar bipedal robot and definitions of the angles θ1, θ2, θ3.

4.1.3 An example where the fixed points and contraction of the Poincaré
map can be established geometrically by reducing the dimension to R

2:
switched control of 3-link biped robot

The equation of motion 3-link bipedal walker of Fig. 4.3 reads as

θ̈ = F (θ, θ̇) +G(θ)u, F : R3 × R3 → R
3, G(θ) is a 3× 2−matrix, u ∈ R2 (4.8)

as long as leg θ1 contacts the ground and leg θ2 doesn’t. The two-dimensional control u
represents the two torques applied between the torso and the stance leg, and the torso and
the swing leg, respectively. The control u that we are to design makes sure that swing leg
just slide along the floor (i.e. almost touch the floor, but doesn’t touch). The controller has
two more inputs: additional motors on the legs allow to push the swing leg just slightly out
of the saggital plane during the swing phase and to pull the leg back into the saggital plane
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whenever the contact is desired. Specifically, the contact will be initiated when the angle of
the stance leg attains a desired value, θd1. This leads to the following impact event

(θ(t+), θ̇(t+)) = ∆
(

(θ(t−), θ̇(t−)T
)
, if θ1(t−) = θd1. (4.9)

The goal of the control is to maintain the angle of the torso at some constant value, say
θd3, while command the swing leg to behave as the mirror image of the stance leg, that is
θ2 = −θ1. We, therefore, want that the control u is introduced in (4.8) in such a way that
the relations

y1(t) = θ3(t)− θd3 → 0 as t→∞,
y2(t) = θ2(t) + θ1(t)→ 0 as t→∞ (4.10)

hold for a range of solutions θ of (4.8)-(4.9).

4.1.3.1 Reduction to 2-dimensional equations of Zero dynamics

Notation (4.10) can be rewritten as

(
y(t)
θ1(t)

)
= Aθ(t) + b, where A =

 0 0 1
1 1 0
1 0 0

 , b =

 −θd30
0

 (4.11)

Since the change of the variables (4.11) brings (4.8) to(
ÿ

θ̈1

)
= A

(
F

(
A−1

((
y
θ1

)
− b
)
, A−1

(
ẏ

θ̇1

))
+G

(
A−1

((
y
θ1

)
− b
))

u

)
, (4.12)

then, by assuming that

the matrix K(θ) =

(
0 0 1
1 1 0

)
G (θ) is invertible,

equation (4.12) can further be rewritten as

(
ÿ

θ̈1

)
=

 v

F1

(
A−1

((
y
θ1

)
− b
)
, A−1

(
ẏ

θ̇1

))
+G1

(
A−1

((
y
θ1

)
− b
))

U(v, y, ẏ, θ1, θ̇1)

 ,

(4.13)
where

U(v, y, ẏ, θ1, θ̇1) = K

(
A−1

((
y
θ1

)
− b
))−1(

v −
(

0 0 1
1 1 0

)
F

(
A−1

((
y
θ1

)
− b
)
, A

(
ẏ

θ̇1

)))
If we can find a control v(y) that ensures (4.10) for solutions of (4.13), then the control

u(y, ẏ, θ1, θ̇1) = U(v(y), y, ẏ, θ1, θ̇1)
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ensures (4.10) for solutions of (4.12).

For each of the double integrators ÿ1 = v1 and ÿ2 = v2, the respective controls v1(y1, ẏ1)
and v2(y2, ẏ2) can be taken as finite-time controllers of Exercise ??, see [34, formula (21)] for
the precise formula. Any solution of (4.13) with v = (v1(y1, ẏ1), v2(y2, ẏ2))T approaches the
hyperplane {0} × {0} × {0} × {0} × R× R in finite-time.

In what follows, we consider only those initial conditions Ω, for which the solution of (4.13)
reaches the hyperplane {0} × {0} × {0} × {0} × R × R (called Zero dynamics hyperplane)
transversally and before it crosses the hyperplane θ1 = θd1 (i.e. before an impulse occurs).
This set (in coordinates (θ, θ̇)) is denoted by Ŝ in [34, formula (29)]. For each initial condition
from Ω the solution converges to the Zero dynamics hyperplane in finite time. After a solution
(y, θ1) of (4.13) reaches the Zero dynamics hyperplane, the dynamics develops according to
the second-order differential equation with impacts

θ̈1 = ζ̄a(θ1) + ζ̄b(θ1)θ̇2
1,

θ1(t+) = −θ1(t−),

θ̇1(t+) = mθ̇1(t−) +m0,
if θ1(t0) = θd1,

(4.14)

see [34, formulas (52), (49), (50)]. Equation (4.14) is called equation of zero dynamics.

4.1.3.2 Phase plane analysis of the equation of Zero Dynamics

The existence of a limit cycle can be established under the following assumptions (that I
expect must be the case in [34]26):

1) Let L denotes the homoclinic orbit that originates at the origin and let v1 be the
ordinate of the intersection of L with the line θ1 = θd1. Assume that the ordinate of
the intersection of L with the line θ1 = −θd1 is smaller than mv1 +m0.

2) Assume that the constant m < 0,

3) Let L(v) denotes the ordinate of the intersection of the solution that starts at (θd1, v)

with the line θ1 = −θd1. Assume that
|v − L(v)|

v
→ 0 as v →∞.

By using Fig. 4.4 we conclude that assumption 1) implies that P (v1) > v1. Assumption 2)
implies that the difference between mv + m0 and v decreases at the rate of v. Since, by 3)
|v−L(v)| increases slower than v, then for a sufficiently large value of v (which is denote by
v2 at Fig. 4.4) one will have that L(v) > mv +m0. As seen from Fig. 4.4, the latter implies
that P ([v1, v2]) ⊂ (v1, v2).

The contracting property of P can be observed by drawing the next interation of the Poincaré
map and by establishing that P (P ([v1, v2])) ⊂ P ((v1, v2)).

26You are very welcome to conclude that from [34, formulas (49)-(50)]
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Figure 4.4: Trajectories of equation (4.14) without impact (black); solution of equation (4.14) with the
initial condition at the point (θd1 , v1) until the first intersection with θ1 = θd1 (black); solution of equation
(4.14) with the initial condition at the point (θd1 , v2) until the first intersection with θ1 = θd1 (blue). The two
vertical lines are θ = −θd1 and θ = θd1 .

4.2 The method of Poincaré section for systems with hybrid
(relay) feedback

In this section we study existence and stability of limit cycles in a switched system with
Hybrid Feedback switching rule

ẋ = f(x), f(x) :=

{
fL(x), H1(x) > 0,
fR(x), H2(x) > 0.

(4.15)

As earlier, this notation means that the system switches to fL when H1(x) > 0 and the
system switches to fR(x), if H2(x) > 0. No switchings occur when H1(x) ≤ 0 and H2(x) ≤ 0,
so that the trajectory develops along the vector field that the system switched to last time.
Such a formulation requires indication of the vector field which is active at the initial time
moment. We will often omit making this indication as it doesn’t change the analysis.
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I use strict inequalities to (4.15) to make the switched system defined also when the sets

L1 = {x : H1(x) = 0}, L2 = {x : H2(x) = 0}

coincide. In this case (4.15) is a Filippov system, where sliding motions are possible.

4.2.1 An example where the Poincaré map can be obtained in a closed form:
clock with a balance-wheel

This material just follows [70, Ch. III, §5]. The scanned page of my notes is available here:

http://www.utdallas.edu/ m̃akarenkov/clock scan.pdf

The clock model takes form (4.15) by putting

fL(x) =

(
x2

−F signx2 + 1

)
, fR(x) =

(
x2

−F signx2 − 1

)
, H1(x) = −1−x1, H2(x) = x1−1.

4.2.2 Stability of a given limit cycle in a simple impact oscillator

http://www.utdallas.edu/˜makarenkov/rotating-cross-section.pdf

4.2.3 Stability of a given limit cycle in the general nonlinear case

Definition 20 Consider ξ ∈ L1. If H1
′(ξ)fR(ξ) > 0, then the solution of (4.15) with the

initial condition x(0) = ξ can only be governed by ẋ = fL(x) right after the moment t = 0.
If, in addition to H1

′(ξ)fR(ξ) > 0, the solution x reaches L2, then we put

PL(ξ) = XL(TL(ξ), ξ), where TL(ξ) = min
{
t : XL(t, ξ) ∈ L2

}
(4.16)

and say that the point transformation PL from L1 to L2 is defined at ξ. The point
transformation PR from L2 to L1 is defined by analogy.

If the point transformation PL from L1 to L2 is defined at ξ and the point transformation
PR from L2 to L1 is defined at PL(ξ), then the map

P (ξ) = PR(PL(ξ)) (4.17)

is defined at ξ and P (ξ) ∈ L1. Map (4.17) is, therefore, the Poincaré map induced by the
cross-section L1.

Proposition 12 27 Consider a non-singular parameterization L1(s) of L. Let

P̃ (s) = (L1)−1 (P (L1(s))) .

27Consider the exercise

Exercise 20 Build upon the proof of Proposition 11 and prove Proposition 12.
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If s0 ∈ Rn−1 is a fixed point of P̃ and if all the eigenvalues of the matrix P̃ ′(s0) are strictly
inside the unit circle, then the eigenvalues of P ′(L1(s0)) are strictly inside the unit circle
too. Moreover, one of the eigenvalues of P ′(L1(s0)) equals 0.

The essential (difficult) part of the proof of Proposition 12 follows the lines of the proof of
Proposition 11.

To prove the main result of this section we need the following lemma, which can of
independent interest.

Lemma 9 If t 7→ X(t, ξ) is the general solution of a smooth system

ẋ = g(x),

then the derivative t 7→ X ′x(t, ξ) of X with respect to the second variable is the normalized
fundamental matrix solution of the linear time-dependent system

ẏ = g′x(X(t, ξ))y.

See [24, Theorem 2.1] for a proof of this lemma.

Theorem 13 Consider fL, fR ∈ C1(Rn,Rn). Assume that (4.15) admits a cycle x0 such
that system (4.15) switches exactly two times during the period T of the cycle, see Fig. 4.5.
By the other words, assume that there exist TL + TR = T , such that

ẋ0(t) = fL(x0(t)), t ∈ (0, TL),

ẋ0(t) = fR(x0(t)), t ∈ (TL, TL + TR).

Assume that the trajectory x0(t) approaches the respective switching hyperplanes
transversally, i.e.

H2
′(xR)fL(xR) ·H1

′(xL)fR(xL) 6= 0, (4.18)

where
xL = x0(0), xR = x0(TL).

Then, the point transformations PL and PR are defined in little neighborhoods of xL and xR

respectively. Moreover, the derivatives PL′(xL) and PR′(xR) exist and are given by

PL′(xL) =

(
I − fL(xR)H2

′(xR)

H2
′(xR)fL(xR)

)
exp

(∫ TL

0

fL′(x0(s))ds

)
,

PR′(xR) =

(
I − fR(xL)H1

′(xL)

H1
′(xL)fR(xL)

)
exp

(∫ TR

0

fR′(x0(s+ TL))ds

)
.

The cycle x0 is orbitally asymptotically stable, if the eigenvalues of the matrix
PR′(xR)PL′(xL) are strictly inside the unit circle.
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Figure 4.5: The cycle x0 of (4.15) and a sample trajectory with an initial condition ξ near x0(0).

Here exp
(∫ t

0
A(s)ds

)
stays for the normalized fundamental matrix solution of the linear

time-dependent system ẏ = A(t)y.

Proof. Step 1. In order to establish orbital asymptotic stability of the limit cycle x0, it is
sufficient to show that the eigenvalues of the derivative of the Poincaré map (4.17) at xL are
strictly inside the unit circle. Since

P ′(ξ) = PR′(PL(ξ))PL′(ξ) and PL(xL) = xR,

we get
P ′(xL) = PR′(xR)PL′(xL).

It, therefore, remains to prove the formulas for PR′(xR) and PL′(xL).

Step 2. By taking the derivative of (4.16) with respect to ξ and by plugging ξ = xL, one
gets

PL′(xL) = XL′
t(T

L(xL), xL)TL′(xL) +XL′
x(T

L(xL), xL),

where TL(xL) = TL by the definitions of TL(ξ) and TL,

XL′
x(T

L, xL) = exp

(∫ TL

0

fL′(x0(s))ds

)
by Lemma 9, and

XL′
t(T

L, xL) = fL(XL(TL, xL)) = fL(xR)

by the definition of xR.

Step 3. To compute TL′(xL) we view TL(ξ) as the implicit function that solves the equation

H2(XL(T, ξ)) = 0
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in T for all ξ close to xL. To see that such an implicit function exists, we apply the Implicit
Function Theorem to the function

F (T, ξ) = H2(XL(T, ξ)).

The condition F (TL, xL) = 0 holds by the definition of TL. For the derivative F ′T (TL, xL)
we have

F ′T (TL, xL) = H2
′ (XL(TL, xL)

)
XL′

t(T
L, xL) = H2

′(xR)fL(xR) 6= 0

by the transversality assumption 4.18. Therefore, the Implicit Function Theorem applies
which not only shows the existence of TL(ξ), but also allows to compute TL′(xL) as

TL′(xL) = −
(
F ′T (TL, xL)

)−1
F ′ξ(T

L, xL) = − 1

H2
′(xR)fL(xR)

H2
′(xR)XL′

x(T
L, xL).

Combining the results of Step 2 and Step 3, we get the required formula for PL′(xL). The
formula for PR′(xR) can be obtained by analogy. The proof of the theorem is complete.

4.2.4 Existence and stability of a limit cycle in the case of linear systems

The linear version of (4.15) is given by

ẋ = f(x), where f(x) :=

{
ALx+ bL, if cLx+ dL < 0,
ARx+ bR, if cRx+ dR > 0.

(4.19)

Proposition 13 Let TL > 0 and TR > 0 be two arbitrary numbers such that

the matrices D1 = I − eA
RTReA

LTL and D2 = I − eA
LTLeA

RTR are invertible.

Consider

xL = D1
−1
(

eA
RTRFL(TL) + FR(TR)

)
, xR = D2

−1
(

eA
LTLFR(TR) + FL(TL)

)
,

where

FL(t) =

∫ t

0

eA
LsbLds, FR(t) =

∫ t

0

eA
RsbRds.

Then, for any cL, dL, cR, dR ∈ R such that

cLxL + dL = 0, cRxR + dR = 0,

cL
(

eA
RtxR + FR(t)

)
+ dL > 0, for any t ∈ [0, TR), (4.20)

cR
(

eA
LtxL + FL(t)

)
+ dR < 0, for any t ∈ [0, TL), (4.21)〈

cL, fR(xL)
〉
< 0,

〈
cR, fL(xR)

〉
> 0
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the switched system (4.19) has a cycle x0 that satisfies x0(0) = xL and x0(TL) = xR. The
cycle x0 satisfies the first of the equations of (4.19) on [0, xL) and x0 satisfies the second of
the equations of (4.19) on [0, xR). If, in addition, the eigenvalues of the matrix(

I − (ARxL + bR)cL

cL(ARxL + bR)

)
eA

RTR
(
I − (ALxL + bL)cR

cR(ALxR + bL)

)
eA

LTL

are strictly inside the unit circle, then the cycle x0 is orbitally asymptotically stable.

Sketch of the proof. Proposition 13 is a corollary of Theorem 13. To draw this corollary,
one needs to notice that

H1(x) = −cLx− dL, H2(x) = cRx+ dR, H1
′(x) = −(cL)T , H2

′(x) = (cR)T ,

XL(t, ξ) = eA
Ltξ + FL(t), XR(t, ξ) = eA

Rtξ + FR(t).

Therefore,

XL(TL, xL) = xR,
XR(TR, xR) = xL

is equivalent to
eA

LTLxL + FL(TL) = xR,

eA
RTRxR + FR(TR) = xL,

from where the formulas for xL and xR are obtained.

Assumption (4.20) ensure that t = TR is the first time moment t when H2(x0(t)) = 0.
Analogously (4.21) ensure that t = TL is the first time moment t ≥ TR when H1(x0(t)) = 0.

Proposition 13 is a minor development of results [94, 95, 96]28, who addressed the linear
symmetric system (4.19) of the form

ẋ = Ax+ b(reld(cx)), where reld(y) :=

{
1, if y ≤ −d,
−1, if y ≥ d,

(4.22)

A is an n× n matrix, b, c ∈ Rn are given vectors.

4.2.5 Deriving the result of section 4.2.2 from the general theorem of
section 4.2.4

http://www.utdallas.edu/˜makarenkov/1dim-vs-2dim.pdf

28Consider the exercise

Exercise 21 The authors of [94, 95, 96] formulate theoretical results for system (4.22), but then propose
examples in terms of certain transfer functions, that I don’t have time to lean about right now. I would be
very interested to see how those examples can be reformulated in terms of system (4.22).
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4.3 The bifurcation approach

Step 3 of the proof of Theorem 13 was an introduction to the so-called perturbation approach.
We didn’t know the explicit formula for TL(ξ), but still succeeded to compute TL′(xL). That
happened because of the following two reasons:

1) we knew the dynamics (i.e. the solution t 7→ XL(t, ξ)) for ξ = xL completely,

2) we knew the derivatives of XL(t, ξ) at (t, ξ) = (TL, xL).

Implicit Function Theorem helped us to compute the derivative TL′(xL) of the implicit
function TL at xL. We will now expose this approach further in several typical situations.

4.3.1 Existence and asymptotic stability of a limit cycle in a mechanical
oscillator with state-dependent impulses: transversal case

In this section we study the occurrence of limit cycles in an impact oscillator from a cycle
which intersects the impact threshold transversally.

http://www.utdallas.edu/˜makarenkov/perturbation-transversal.pdf

4.3.2 Existence and asymptotic stability of a periodic solution in a mechanical
oscillator with time-periodic impulses

http://www.utdallas.edu/˜makarenkov/time-periodic-impulses.pdf

4.3.3 Existence and finite-time stability of a limit cycle in the dry-friction
oscillator with small friction characteristics

In section 2.8.2.2 we established the existence and finite-time stability of a cycle in the
following equation of dry friction oscillator placed on a moving belt (Fig. 2.11)

ẋ1 = x2,
ẋ2 = −x1 − cx2 − F (x2 − V ),

(2.54a)

where
F (s) is close to sign(s), and c > 0 is small, (4.23)

and
−c− F ′(x2 − V ) > 0 for a range of x2. (4.24)

In this section a bifurcation approach is used to replace (4.24) with an exact condition. To
use the perturbation approach we model (4.23) by introducing a small parameter ε that
replaces (2.54a) with

ẋ1 = x2,
ẋ2 = −x1 − εcx2 − sign(x2 − V ) + εf(x2 − V ),

(4.25)

where f is a Lipschitz function that vanishes at 0.
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Proposition 14 Let f be a Lipschitz function that vanishes at 0. If

cV π <

2π∫
0

cos τ · f(V cos τ − V )dτ, (4.26)

then, for all ε > 0 sufficiently small, the Filippov solution x of (4.25) with the initial condition
x(0) = (1 − εcV, V )T reaches the point (ξ1, V )T , where ξ1 ∈ (−1 − εcV, 1 − εcV ). As a
consequence (see Proposition 9), solution x is a finite-time stable limit cycle of (4.25).

Proof. When x2 < V , system (4.25) takes the form

ẋ = g(x, ε), where g(x, ε) =

(
x2

−x1 − εcx2 − 1 + εf(x2 − V )

)
. (4.27)

Let t 7→ X(t, ξ, ε) be the solution x of (4.27) with the initial condition x(0) = ξ. To prove
the proposition, we have to establish the existence of a function T (ε) such that

X1

(
T (ε),

(
1− εcV

V

)
, ε

)
< 1− εcV and X2

(
T (ε),

(
1− εcV

V

)
, ε

)
= V

and such that

X2

(
t,

(
1− εcV

V

)
, ε

)
< V for all t ∈ (0, T (ε)).

Since the trajectory t 7→ X

(
t,

(
1− εcV

V

)
, ε

)
approaches the circle of period 2π as ε→ 0,

we look for the solution T (ε) that approaches 2π as ε→ 0.

Step 1. Consider

F (a, ε) =
1

ε

(
X2

(
2π +

√
ε · a,

(
1− εcV

V

)
, ε

)
− V

)
29,

which is called a desingularization of the function εF (a, ε). To apply the Implicit Function
Theorem, we need to find a ∈ R such that

F (a, 0) = 0,

29Similar analysis can be execute by letting ε = aδ2 and by considering

F (δ, a) =
1

δ

(
X2

(
2π − δ,

(
1− aδ2cV
V

)
, aδ2

)
− V

)
.

c© 2017 Oleg Makarenkov, Stability and Bifurcations of Switched Systems Page 84



 
x2 

-  

 

x1 

-  

 

V 

1 

-  

 

1– cV  

-  

 

x0 (t) 

 

 

x (t) 

-  

 

 )(2   axA x2 

-  

 

x1 

-  

 

V 

1 

-  

 

1– cV  

-  

 

x0 (t) 

 

 

x (t) 

-  

 

A

x2 

-  

 

x1 

-  

 

V 

1 

-  

 

1– cV  

-  

 

x0 (t) 

 

 

x (t) 

-  

 

 )(2   axB

A

Case 1 Case 2 Case 3 

Figure 4.6: Three possible locations of solution xε with respect to x0.

where F (a, 0) = limε→0 F (a, ε) by definition. We have

F (a, 0)
L

== lim
ε→0

∂

∂ε

(
X2

(
2π +

√
ε · a,

(
1− εcV

V

)
, ε

)
− V

)
=

= lim
ε→0

(
X2
′
t ( a )

2
√
ε

a+X2
′
x1

( a ) · (−cV ) +X2
′
ε ( a )

)
=

L
==

1

2
X2
′
t
′
t

(
2π,

(
1
V

)
, 0

)
a2 − cV ·X2

′
x1

(
2π,

(
1
V

)
, 0

)
+X2

′
ε

(
2π,

(
1
V

)
, 0

)
.

Since

X2

(
2π,

(
ξ1

V

)
, 0

)
= V for any ξ1 ∈ R =⇒ X2

′
x1

(
2π,

(
1
V

)
, 0

)
= 0

the equation
F (a, 0) = 0

yields

a = ±

√√√√√√√−2 ·
X2
′
ε

(
2π,

(
1
V

)
, 0

)
X2
′
t
′
t

(
2π,

(
1
V

)
, 0

) . (4.28)

The two roots correspond to the two intersections of the solution

xε(t) = X

(
t,

(
1− εcV

V

)
, ε

)
with the line x2 = V, see Fig. 4.6 (case 3).

To check the condition
F ′a(a, 0) 6= 0

c© 2017 Oleg Makarenkov, Stability and Bifurcations of Switched Systems Page 85



of the Implicit Function Theorem, we compute

F ′a(a, ε) =

X2
′
t

(
2π +

√
ε · a,

(
1− εcV

V

)
, ε

)
√
ε

.

Therefore,

F ′a(a, 0)
L

== X2
′
t
′
t

(
2π,

(
1
V

)
, 0

)
.

Step 2. Computing X2
′
t
′
t

(
2π,

(
1
V

)
, 0

)
. By taking the derivative of

X ′t

(
t, (1, V )T , ε

)
= g

(
X
(
t, (1, V )T , ε

)
, ε
)
, (4.29)

in t, one gets

X2
′
t
′
t

(
2π, (1, V )T , 0

)
= g2

′
x

(
X
(

2π, (1, V )T , 0
)
, 0
)
X ′t

(
2π, (1, V )T , 0

)
=

= g2
′
x

(
X
(

2π, (1, V )T , 0
)
, 0
)
g
(
X
(

2π, (1, V )T , 0
)
, 0
)
.

The function t 7→ X
(
t, (1, V )T , 0

)
is the solution of the linear system

ẋ1 = x2

ẋ2 = −x1 + 1.
(4.30)

Therefore, X
(

2π, (1, V )T , 0
)

= X
(

0, (1, V )T , 0
)

= (1, V )T and

X2
′
t
′
t

(
2π,

(
1
V

)
, 0

)
= (−1, 0)

(
V
0

)
= −V.

Step 3. Computing X2
′
ε

(
2π,

(
1
V

)
, 0

)
. Let y(t) = X ′ε

(
t, (1, V )T , 0

)
. By taking the

derivative of (4.29) in ε one gets

ẏ = g′x

(
X
(
t, (1, V )T , 0

)
, 0
)
y + g′ε

(
X
(
t, (1, V )T , 0

)
, 0
)

or

ẏ =

(
0 1
−1 0

)
y +

(
0

−cX2

(
t, (1, V )T , 0

)
+ f

(
X2

(
t, (1, V )T , 0

)
− V

) )
. (4.31)

By solving (4.30),

X2

(
t, (1, V )T , 0

)
= V cos(t),
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and the method of variation of constants yields

y(t) = Z(t)y(0) + Z(t)

t∫
0

Z(−τ)

(
0
−cV cos τ + f (V cos τ − V )

)
dτ,

where Z(t) is the solution of the linear part of (4.31) given by

Z(t) =

(
cos t sin t
− sin t cos t

)
.

By noticing that y(0) = 0, we finally conclude

y2(2π) =

2π∫
0

cos τ(−cV cos τ + f (V cos τ − V ))dτ = −cV π +

2π∫
0

cos τf(V cos τ − V )dτ.

Step 4. Substituting the results of Step 2 and Step 3 into (4.28), and by using assumption
(4.26), we conclude the existence of a− < 0 and a+ > 0 such that

F (a−, 0) = F (a+, 0) = 0 and F ′a(a−, 0) · F ′a(a+, 0) 6= 0.

Therefore, by the Implicit Function Theorem, there exist

a−(ε)→ a− and a+(ε)→ a+ as ε→ 0

such that
F (a−(ε), ε) = F (a+(ε), ε) = 0 for all ε > 0 sufficiently small.

This implies

x2,ε

(
2π +

√
εa−(ε)

)
= x2,ε

(
2π +

√
εa+(ε)

)
= V for all ε > 0 sufficiently small.

The following three cases are possible now (see Fig. 4.6).

Case 1: x1,ε (2π +
√
εa−(ε)) > 1 − εcV. This case is impossible because it implies that the

solution xε crosses itself on (0, 2π +
√
εa−(ε)), which cannot happen because of

uniqueness of solutions of (4.27).

Case 2: x1,ε (2π +
√
εa−(ε)) = 1 − εcV. In this case xε is a (2π +

√
εa−(ε))-periodic solution

of (4.27) that intersects x2 = V at only one point (1 − εcV, V ). This contradicts the
existence of the second intersection (x1,ε (2π +

√
εa+(ε)) , V ) .

Case 3: x1,ε (2π +
√
εa−(ε)) < 1− εcV. This is what needed to prove.

The proof of the proposition is complete.

I just discovered that stick-slip limit cycles also occur in power electronics [93], but I didn’t
dive into details as yet.
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4.3.3.1 The analysis of fixed points of a singular map associated to the dry
friction oscillator

http://www.utdallas.edu/˜makarenkov/dry-friction-singular-map.jpg

4.3.3.2 Time map of the Poincaré map of the dry friction oscillator

http://www.utdallas.edu/˜makarenkov/T(epsilon)-grazing.pdf

4.3.4 Existence and stability of fixed points of a Poincaré map which is given
as an expansion in powers of a small parameter

http://www.utdallas.edu/˜makarenkov/singular-fixed-point-epsilon.pdf

4.3.5 Existence and asymptotic stability of a limit cycle in a mechanical
oscillator with state-dependent impulses: the grazing case

In this section we consider a prototypic system where impulsive limit cycles occur as a
bifurcation from a cycle which is just tangent to the switching threshold at the bifurcation
value of the parameter. Specifically, we consider the following modification of the system
from Section 4.3.1.

ẋ = y,
ẏ = −εby − x, (4.32)(
x(t+ 0)
y(t+ 0)

)
=

(
x(t− 0) +

√
ε · l

1− ε · h

)
, if y(t− 0) = 1, (4.33)

where b, l, h are constants.

l

 

h 

y 

x 

 

P(x) 

Figure 4.7: Illustration of the Poincare map of system (4.32)-(4.33)

Theorem 14 If l2 < bπ < 2l2, then for all ε > 0 sufficiently small, the impulsive system
(4.32)-(4.33) has an impulsive orbitally stable periodic solution (xε(t), yε(t)) which converges
to the unit circle of period 2π as ε→ 0.
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Proof. Step 1: Computing the expansion of the time map T (x, ε). Expanding

Y

(
T,

(
x

1− εh

)
, ε

)
in Taylor series in T about T = 2π one can rewrite

Y

(
t,

(
x

1− εh

)
, ε

)
= 1

as
c(x, ε) + b(x, ε)(T − 2π) + a(T, x, ε)(T − 2π)2 = 0, (4.34)

where

c(x, ε) = −1 + Y

(
2π,

(
x

1− εh

)
, ε

)
,

b(x, ε) = Y ′t

(
2π,

(
x

1− εh

)
, ε

)
,

a(T, x, ε) =
1

2

∫ 1

0

Y ′t
′
t

(
2π + λ(T − 2π),

(
x

1− εh

)
, ε

)
(1− λ)dλ.

Direct substitution shows that T = 2π is a solution of (4.34) when x = ε = 0. Our goal
is to continue this solution when v and ε deviate from 0. Since c(0, 0) = b(0, 0) = 0 and
a(2π, 0, 0) 6= 0, we expect that (4.34) has two solutions T−(x, ε) ≤ T+(x, ε) that converge to
2π when (x, ε)→ 0.

To emphasize the structure of (4.34) we expand c(x, ε) and b(x, ε) further as

c(x, ε) = εc̄(x, ε), b(x, ε) = xb̃(x, ε) + εb̄(x, ε),

where

c̄(x, ε) =

∫ 1

0

c′ε(x, λε)(1− λ)dλ,

b̃(x, ε) =

∫ 1

0

b′x(λx, λε)(1− λ)dλ, b̄(x, ε) =

∫ 1

0

b′ε(λx, λε)(1− λ)dλ,

to get

εc̄(x, ε) +
(
xb̃(x, ε) + εb̄(x, ε)

)
(T − 2π) + a(T, x, ε)(T − 2π)2 = 0. (4.35)

One way to prove solvability of (4.35) in T would be by dividing it by ε and further applying
the implicit function theorem for implicit functions that branch from the boundary of a set
(Makarenkov [102, Theorem C.1]) to the set x ≤ const ·

√
ε. We will however offer a method

which doesn’t require any advanced implicit function theorems. Indeed, focusing on

x ≥ 0, (4.36)

consider the change of the variables

x =
√
r cosφ, ε = r sinφ. (4.37)
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Then (4.35) takes the form

r¯̄c(r, φ) sinφ+
(√

r ˜̃b(r, φ) cosφ+ r ¯̄b(r, φ) sinφ
)

(T − 2π) + ˆ̂a(T, r, φ)(T − 2π)2 = 0,

where ¯̄c(r, φ) = c̄(
√
r cosφ, r sinφ), ˜̃b(r, φ) = b̃(

√
r cosφ, r sinφ), ¯̄b(r, φ) = b̄(

√
r cosφ, r sinφ),

ˆ̂a(T, r, φ) = â(T,
√
r cosφ, r sinφ). Introducing

τ =
T − 2π√

r
,

we get the equation F (τ, r, φ) = 0,

F (τ, r, φ) = ¯̄c(r, φ) sinφ+
(

˜̃b(r, φ)
√

cosφ+
√
r ¯̄b(r, φ) sinφ

)
τ + ˆ̂a(

√
r · τ + 2π, r, φ)τ 2,

which we will now solve in τ near τ = 0 for |r| > 0 sufficiently small using the standard
implicit function theorem.

The equation F (τ, 0, φ) = 0 reads as

c̄(0, 0) sinφ+ b̃(0, 0)
√

cosφ · τ + a(2π, 0, 0)τ 2 = 0,

whose smaller root is

τ̄(φ) = −b0

√
cosφ−

√
b2

0 cosφ− c0 sinφ,

if
a(2π, 0, 0) < 0. (4.38)

Here b0 = b̃(0, 0)/(2a(2π, 0, 0)) and c0 = c̄(0, 0)/a(2π, 0, 0). Furthermore, we have
F ′τ (τ̄(φ), 0, φ) 6= 0, if

b2
0 cosφ− c0 sinφ > 0. (4.39)

By the implicit function theorem we conclude that for any δ > 0 there exist r1 > 0 and τ1 > 0
such that for all (r, φ) ∈ {(r, φ) : 0 ≤ r ≤ r1, | sinφ| ≥ δ} the equation F (τ, r, φ) = 0 has a
unique solution τ(r, φ) ∈ (−τ1, τ1). Moreover, (r, φ) 7→ τ(r, φ) is continuously differentiable
on {(r, φ) : 0 ≤ r ≤ r1, | sinφ| ≥ δ}.
Expanding τ(r, φ) as

τ(r, φ) = r̄(φ) + ∆(
√
r, φ),

one can see that ∆′φ(0, φ) = 0 and, by using the formula for the derivative of the implicit
function,

∆′r(0, φ) = −¯̄b(0, φ) sinφτ̄(φ) · 1

2a(2π, 0, 0)τ̄(φ)
= −b1 sinφ,

where b1 = b̄(0, 0)/2a(2π, 0, 0). Therefore,

∆(r, φ) = −b1 sinφ · r + o(r, φ),
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where

o′φ(0, φ) = o′r(0, φ) = lim
r→0

o(r, φ)

r
= 0. (4.40)

Summing up, we obtain

T = 2π + r̄(φ)
√
r − b1 sinφ · r + o(r, φ)

√
r,

or, reversing the change of the variables (4.37),

T (x, ε) = 2π − b0x−
√
b2

0x
2 − c0ε− b1ε+ õ(x, ε),

where

õ(x, ε) = o(r(x, ε), φ(x, ε))
√
r(x, ε),

õ(x, ε)(√
x4 + ε2

)3 → 0 as (x, ε)→ 0. (4.41)

Step 2: Expanding Pε(x) = X

(
T (x, ε),

(
x

1− εh

)
, ε

)
+
√
ε · l in powers of ε. Since

X

(
T,

(
x
y

)
, ε

)
= X ′t

(
2π,

(
0
y

)
, 0

)
(T − 2π) +X ′x

(
2π,

(
0
y

)
, 0

)
x+

+d(y)ε+ ô

(
T − 2π,

(
x
y

)
, ε

)
, d(y) = X ′ε

(
2π,

(
0
y

)
, 0

)
,

we get

Pε(x) = −b0x−
√
b2

0x
2 − c0ε− b1ε+ x+ d(1− εh)ε+

√
ε · l +

+õ(x, ε) + ô

(
T (x, ε)− 2π,

(
x

1− εh

)
, ε

)
.

Step 3: Studying the dynamics of the reduced map

P̄ε(x) = −b0x−
√
b2

0x
2 − c0ε+ x+

√
ε · l.

Solving P̄ε(x) = x one gets

x̄ε =
l2 + c0

2b0l

√
ε. (4.42)

Computing (P̄ε)
′(x̄ε) gives

(P̄ε)
′(x̄ε) = 1 +

2b0l
2

c0 − l2
.

Thus the fixed point x̄ε is asymptotically stable, if

−2 <
2b0l

2

c0 − l2
< 0. (4.43)
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Step 4: Linking the map P̄ε to the map Pε. The map Pε will have a fixed point xε close to
x̄ε with the same stability property, if

õ(x̄ε, ε)√
ε
→ 0 and

õ′x(x̄ε, ε)√
ε
→ 0 as ε→ 0.

The first of these two relations follows from (4.41), so we focus on proving the second one.

We have

õ′x(x̄ε, ε)√
ε

=
1√
ε
· d
dx

[
o(r(x, ε), φ(x, ε))

√
r(x, ε)

]
=

=
(
o′r(r(x, ε), φ(x, ε))r′x(x, ε) + o′φ(r(x, ε), φ(x, ε))φ′x(x, ε)

)√r(x, ε)

ε
+

+
o(r(x, ε), φ(x, ε))

2
√
εr(x, ε)

r′x(x, ε)

and now we go over evaluating the limits of the entries of this expression.

By taking the derivatives of the two identities

x =
√
r(x, ε) cosφ(x, ε) and ε = r(x, ε) sinφ(x, ε)

in x, and solving for r′x(x, ε) and φ′x(x, ε), we conclude

r′x(x, ε) =
2x3

√
ε2 + x4

and φ′x(x, ε) = − 2εx√
ε2 + x4

,

which implies r′x(x̄ε, ε)→ 0 and r′ε(x̄ε, ε)→ 0 as ε→ 0.

For the last reminder, we have

o(r(x, ε), φ(x, ε))√
εr(x, ε)

=
o(r, φ)√
r2 sinφ

,

which converges to 0 by (4.40) and by noticing that

sinφ(x̄ε, ε)

cosφ(x̄ε, ε)
=

ε

x̄2
ε

=

(
2b0l

l2 + c0

)2

. (4.44)

Step 5: Verifying conditions (4.36), (4.38), (4.39), and (4.43).

To demonstrate (4.36) we will check that both c0 and b0 in (4.42) are positive. Denoting
ξ = (0, 1)T , we have

b̃(0, 0) = (1/2)b′x(0, 0) = (1/2)Y ′t
′
x (2π, ξ, 0) = −1/2,

a(2π, 0, 0) = (1/4)Y ′t
′
t (2π, ξ, 0) = −1/2,

c̄(0, 0) = (1/2)c′ε(0, 0) = Y ′ε (2π, ξ, 0) = −bπ/2,
b0 = b̃(0, 0)/(2a(2π, 0, 0)) = −(1/2)/(2 · (−1/2)) = 1/2,

c0 = c̄(0, 0)/a(2π, 0, 0) = −(bπ/2)/(2 · (−1/2)) = bπ/2,
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which also proves (4.38).

Using (4.44) we compute

b2
0 cosφ− c0 sinφ = b2

0 cosφ
(l2 − c0)2

(l2 + c0)2
> 0, if l2 6= c0.

Finally, (4.43) holds because (4.43) is equivalent to (1− b0)l2 < c0 < l2.

01/19/2017: Added Proposition 6.
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