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Abstract

We present a monolingual alignment system
for long, sentence- or clause-level alignments,
and demonstrate that systems designed for
word- or short phrase-based alignment are ill-
suited for these longer alignments. Our sys-
tem is capable of aligning semantically simi-
lar spans of arbitrary length. We achieve sig-
nificantly higher recall on aligning phrases of
four or more words and outperform state-of-
the-art aligners on the long alignments in the
MSR RTE corpus.

1 Introduction

Monolingual paraphrase alignment is an active
area of research, with applications in many natu-
ral language processing tasks, such as text-to-text
generation (Barzilay and Elhadad, 2003; Barzi-
lay and McKeown, 2005), natural language infer-
ence (MacCartney et al., 2008), and recognizing
textual similarity (Sultan et al., 2014b). Madnani
and Dorr (2010) identify three levels of paraphras-
ing. The first is lexical paraphrasing, where in-
dividual words are replaced by synonyms or hy-
pernyms. The second, phrasal paraphrasing, in-
volves equivalent idiomatic phrases, such as verb-
preposition combinations (eg. “take over” or “as-
sume control of”), or syntactic transformations,
such as active versus passive voice.

In this work, we focus on the third: sentential
paraphrasing. Sentential paraphrasing can trivially
be achieved by performing lexical and phrasal
paraphrasing on parts of a sentence, but Madnani
and Dorr note that more interesting paraphrases,
such as “He needed to make a quick decision in
that situation” and “The scenario required him to
make a split-second judgment,” are challenging.

Past work has focused on lexical and short
phrasal alignments, in part because most exist-
ing corpora consist of mostly word-level align-

ments. Yao et al. (2013b) report that 95% of align-
ments in the MSR RTE (Brockett, 2007) and Ed-
inburgh++ (Cohn et al., 2008) corpora are single-
token, lexical paraphrases, and phrases of four or
more words are less than 1% of MSR RTE and 3%
of Edinburgh++.

In this work, we present a monolingual aligner
for long phrasal and sentential paraphrases. Our
contributions are as follows:

• Our pointer-network-based system aligns
phrases of arbitrary length.

• Our system aligns directly at the phrase level
by composing the semantics of the words in
each phrase into a single representation of the
meaning of the entire phrase.

• We conduct experiments on aligning long
paraphrases using the summarization corpus
of Ouyang et al. (2017), the first use of this
corpus for the alignment task, as well as the
MSR RTE corpus (Brockett, 2007).

• We achieve significant increases in recall
(over 75 points) while also maintaining a
strong lead in F-measure on aligning long
paraphrases (involving phrases of four or
more words), compared with existing state-
of-the-art word- and phrase-based aligners.

2 Related Work

The development of monolingual alignment as an
independent natural language processing task be-
gan with the release of the Microsoft Research
Recognizing Textual Entailment (MSR RTE) cor-
pus (Brockett, 2007), which consists of 1600 sen-
tence pairs, divided evenly into training and test-
ing sets, annotated with alignments. To date, there
are only five phrase-based monolingual aligners in
existence, not including this work.



The first aligner developed using the MSR RTE
corpus, MANLI (MacCartney et al., 2008), set
a precedent for monolingual alignment research:
the possible alignments in the MSR RTE were
not used, following conclusions drawn in machine
translation research that training using possible
alignments does not improve the performance of
machine translation systems. As we show in Sec-
tion 4, this decision, which has been followed
by subsequent MSR RTE systems, removed from
consideration nearly all of the long alignments
(four or more words) in the corpus.

MANLI is a phrase-based system, capable of
aligning multiple source tokens to multiple target
tokens. However, MacCartney et al. found that
constraining it to align only at the word level (ie.
setting a maximum phrase length of 1) decreased
the system’s F-measure by only 0.2%, suggesting
that this early work was not yet able to represent
the meanings of multi-word phrases as well as it
could represent the meanings of single words.

Thadani and McKeown (2011) extended
MANLI by introducing syntactic constraints on
alignment, improving the system’s precision,
and used integer linear programming to perform
faster, exact decoding, rather than the slower,
approximate search used by the original system.
Thadani et al. (2012) added dependency arc edits
to MANLI’s phrase edits, again improving the
system’s performance. Interestingly, Thadani et
al. used both the sure and possible alignments
in the Edinburgh++ corpus (Cohn et al., 2008)
and showed that training on both gave better per-
formance than training only on sure alignments
on this corpus, but no subsequent monolingual
alignment systems have taken advantage of
possible alignments until we do so this work.

The current state-of-the-art phrase-based
monolingual alignment system is JacanaAlign-
phrase (Yao et al., 2013b), the phrase-based
extension of JacanaAlign-token (Yao et al.,
2013a). Yao et al. use a semi-Markov CRF to tag
each token or sequence of tokens in the source
sentence with the indices of aligned target token.
To train this system, they synthesized phrasal
alignments by merging consecutive lexical align-
ments among the MSR RTE sure alignments;
however, even after doing so, they found that
long alignments involving phrases of four or more
words still made up less than 1% of the corpus.
Yao et al. found that the phrase-based JacanaAlign

performed slightly worse than the token-based
version, likely due to the overwhelming majority
of alignments in their test set being at the token
level and the token-based annotations in the test
set penalizing their phrase-based alignments.

JacanaAlign-phrase is the fastest existing
phrase-based aligner (there are only four oth-
ers: MANLI, its two extensions, and SemA-
ligner, all described in this section), but Yao et
al. note that it is roughtly 30-60 times slower than
JacanaAlign-token. Of particular interest to us is
that the decoding time of JacanaAlign-phrase is
O
(
LsL

2
tMN2

)
, where Ls and Lt are the maxi-

mum allowed phrase lengths, and M and N are the
sentence lengths, for the source and target, respec-
tively. The longer the phrases being aligned, the
longer Jacana-Align will need to run – we avoid
this dependence on phrase length in this work.

Finally SemAligner (Maharjan et al., 2016), like
this work, chunks input sentences into phrases be-
fore alignment. However, it was designed for and
evaluated on the semantic textual similarity task,
so its published performance cannot be compared
with those of monolingual alignment systems.

3 Models

Our system first chunks the source and target sen-
tences several times, at different levels of granular-
ity, from mostly single words to phrases to whole
clauses, then computes a chunk embedding in a
distributed semantic space for each chunk (Sec-
tion 3.1). We call any segmentation of a sentence
into chunks a chunking of that sentence. We pair
each source chunking with each target chunking
and use a pointer-network (Vinyals et al., 2015)
to perform a preliminary alignment of each source
chunk to all target chunks (Section 3.2). Finally,
we combine the preliminary alignments from all
source/target chunking pairs using a voting system
to produce the final alignment from the source sen-
tence to the target sentence (Section 3.3). Imple-
mentation details for our model are given in Ap-
pendix A in the supplementary material.

3.1 Chunkings and Chunk Embeddings

We chunk the source and target sentences using
constituent parsing (Bauer, 2014). We consider
all nodes with phrase-level tags (XP) to be con-
stituents. Beginning with the leaves, we move up
the tree, deleting any node that is wholly contained
in a larger constituent but that is neither a con-



I attended a wedding which offered no dinner at the reception
Figure 1: All potential chunk boundaries.
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Figure 2: A simplified constituent tree.

stituent itself, nor the sibling of a constituent. Fig-
ure 2 shows a simplified constituent tree.

Constituents and their siblings are the smallest
possible chunks that we consider. In the example
constituent tree above, there are eight such small
chunks. We can also merge any number of consec-
utive, small chunks to form a larger chunk: “of-
fered,” “no dinner,” “at,” and “the reception,” for
instance, can be merged to form “offered no din-
ner at the reception.” In a sentence with i of these
smallest chunks, there are i − 1 potential chunk
boundaries (Figure 1). Since merging two adja-
cent chunks is equivalent to ignoring the chunk
boundary between them, there are 2i−1 unique
chunkings of the sentence. Note that each token
in the sentence is contained in only one chunk in
each chunking of that sentence.

From the example sentence above, we obtain
128 unique chunkings. The coarsest consists of a
single chunk containing the entire sentence, and
the most fine-grained has each leaf of the con-
stituent tree as a separate chunk. We do not choose
a single chunking to use, but rather represent a sen-
tence by all its possible chunkings. This allows us
to align at any level of granularity, from mostly
words to full sentences. The multiple chunk-
ings also have the practical benefit of increasing
the amount of training data available, with each
chunking providing another training instance.

To represent the meaning of a chunk as a whole,
we look to recent work in composing word em-
beddings into phrase- or sentence-level embed-
dings. Since Mitchell and Lapata (2008), there has
been a great deal of interest in learning phrase em-
beddings (Baroni and Zamparelli, 2010; Zanzotto

et al., 2010; Yessenalina and Cardie, 2011; Socher
et al., 2012; Grefenstette et al., 2013; Mikolov
et al., 2013; Yu and Dredze, 2015). In this work,
we generate chunk embeddings using the LSTM
language model of Hill et al. (2016)1. The model
is trained on dictionaries: it takes as input a dictio-
nary definition, in the form of a sequence of word
embeddings, and produces as output the embed-
ding of the word to which the definition belongs,
thus learning to compose the embeddings of the
words into a single embedding representing the
entire phrase or sentence. By representing each
chunk by a single chunk embedding, we are able
to align chunks of arbitrarily large size with only
the language model’s run time as overhead.

3.2 Preliminary Alignment
For a given source sentence chunking and tar-
get sentence chunking, we perform a prelimi-
nary alignment using a neural network aligner in-
spired by the pointer network of Vinyals et al.
(2015). Most previous work on neural network
alignment used feed-forward, recurrent, or con-
volutional neural networks to score source-target
word pairs and then fed these scores to a tradi-
tional alignment model, such as an HMM or a
greedy aligner (Yang et al., 2013; Tamura et al.,
2014; Legrand et al., 2016), rather than using the
neural network itself to predict the alignments.
This is due to the difficulty of adapting a neural
network to the alignment task directly: two input
sequences of unknown and often different lengths,
as well as an output set of unknown size.

Our neural network aligner is based on the
pointer network and learns a distribution over an
output dictionary of variable size. The flexibil-
ity of the output size makes the pointer network
well-suited to our task of aligning chunkings of
variable length. We fix a source chunk from the
source chunking under consideration and adapt the
pointer network to predict a preliminary alignment
over the entire target chunking:

aij = vT tanh(W1ei +W2cj)

where ei is the embedding for chunk i in the
source chunking, cj is the embedding for candi-

1We experimented with averaging word embeddings, but
this approach underperformed the language model.



We were expecting a buffet to be set up, but there was nothing
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Figure 3: The pointer network performing preliminary
alignment a given source chunk and target chunking.

date chunk j in the target chunking, and v, W1,
and W2 are learned parameters. (For convenience,
in subsequent sections we use ei and cj to re-
fer to both the chunk embeddings, which are vec-
tors, and to the chunks themselves, which are se-
quences of tokens.) The chunk embeddings are
generated by the LSTM language model described
in the previous section, and are fixed at training
time. For each source chunk i, the pointer network
produces a distribution over all candidate chunks
in the target chunking. Figure 3 shows the pointer
network aligning a source/target chunking pair.

3.3 Voting and Final Alignment

For a fixed source chunking and a fixed source
chunk i, the pointer network produces one pre-
liminary alignment for each unique chunking of
the target sentence. We perform this preliminary
alignment for all source chunks in all chunkings
of the source sentence. By aligning preliminary
alignments for all combinations of source and tar-
get chunkings, we are able to defer deciding the
lengths of the spans we align, instead allowing the
voting procedure to discover them.

The final output of our system is aligned token
pairs. This is due to our voting procedure, which
is described in Figure 4. Because the preliminary
alignments are performed on chunkings of differ-
ent granularities, we must vote at the level of the
smallest possible chunks (the leaves in the con-
stituent tree). Since it is not possible for the tokens
within one of these smallest possible chunks to re-
ceive different amounts of votes (to do so would
require the tokens to be in two different chunks
in some chunking), and since the standard evalua-
tion for monolingual alignment consists of preci-
sion, recall, and F-measure for token pairs – even
for phrase-based models – we simply vote on to-
ken pairs; each token pair inherits the preliminary
alignment value of the source and target chunks

Inputs
• the source sentence W
• the target sentence U
• the set of source sentence chunkings S
• the set of target sentence chunkings T

Initialize
• set score(w, u) = 0 for tokens w ∈W and u ∈ U

Repeat for ei ∈ s, for (s, t) ∈ S × T
• predict preliminary alignment ai

• add ai
j to score(w, u) for tokens w ∈ ei and u ∈ cj

Repeat for w ∈W
• sum-to-one normalize score(w, u) for u ∈ U
• sort pairs (w, u) by score(w, u) in descending or-

der: score(w, u1) > . . . > score(w, um)
• select max k such that score(w, uk) > 1/(k + 1)
• set Aw = {(w, u1), . . . , (w, uk)}

Return
⋃

w∈W Aw

Figure 4: Voting procedure for final output.

containing them. The longer aligned phrases that
correspond to these aligned token pairs can be
easily constructed: following MacCartney et al.
(2008) and Yao et al. (2013b), two tokens are
aligned if and only if the phrases containing them
are aligned.

Intuitively, only one chunk eis in a given source
chunking s contains the token w, and only one
chunk cjt in a given target chunking t contains
the token u. Here, is and jt indicate the specific
source and target chunks that contain the tokens
w and u, respectively. The token-level scores are
obtained by summing the preliminary alignment
values for all source/target chunk pairs where the
source chunk contains w and the target chunk con-
tains u:

score(w, u) =
∑
s∈S

∑
t∈T

aisjt

where S is the set of all source chunkings of the
source sentence, T is the set of all chunkings of the
target sentence, and aisjt is the preliminary align-
ment value described in the previous section.

For a fixed source token w, we normalize its
scores to produce a probability distribution over
all target tokens. We select the k highest-scoring
target tokens such that the score of each token is
greater than 1/(k + 1). If we select four target to-
kens, for example, each has a score of at least 0.2,
and the next-highest-scoring token has a score of
less than 0.167. Intuitively, we are looking for a
large gap in the target token scores at which to
cut off the selected tokens from the unselected
tokens; the sum of the scores of all unselected
tokens is less than the score of any selected to-
ken. We select the largest possible number of tar-



Very rarely do I get a “thanks” or a smile of appreciation.

I never get any thanks.
I had a sleep paralysis dream that I was abducted by aliens.

I had the alien abduction dream.
Figure 5: Examples of long alignments from Ouyang et al.’s summarization corpus.

Tilda Swinton has a prominent role as the White Witch.

Tilda Swinton plays the part of the White Witch.
Figure 6: An MSR RTE pair, slightly edited for length, with
sure alignments bolded and possible alignments italicized.

get tokens for which this requirement holds. This
flexible threshold ensures that the selected tokens
u1, . . . uk have much larger scores than the uns-
elected tokens uk+1, . . ., um while still allowing
any number of tokens to be selected. The selected
target tokens are then aligned to the source token
w to produce aligned token pairs. The final out-
put of our system is the union of the aligned token
pairs for each source token in the source sentence.

4 Data

4.1 The MSR RTE Corpus
The MSR RTE corpus (Brockett, 2007) has been
used extensively for training and evaluating align-
ment systems and consists of mostly word-level
alignments. In order to use this corpus to train a
phrase-based alignment system, Yao et al. (2013b)
created longer alignments by merging consecutive
word-level alignments in the MSR RTE training
set into larger, phrase-level alignments. They re-
ported that doing so increased the percentage of
multi-word alignments from 4% to 21%. How-
ever, even after this merging, alignments involv-
ing at least one phrase of four words or longer still
make up less than 1% of the corpus.

Examining the MSR RTE training set, we find
that it does contain some sentence pairs with
longer alignments – but these alignments are
marked as possible (approximate) rather than sure
(exact). Most aligners designed for this cor-
pus, including MANLI and some of its exten-
sions (MacCartney et al., 2008; Thadani and McK-
eown, 2011), both word- and phrase-baseed Ja-
canaAlign (Yao et al., 2013a,b), and Sultan et al.
(2014a, 2015), are trained and evaluated on the
sure alignments only2. Figure 6 shows a sen-
tence pair containing a possible alignment: if
only the sure alignments are considered, neither

2 Yao (2014) performs experiments using a different def-
inition of “sure” and “possible”: his “sure” alignments are
those with perfect agreement among the MSR RTE annota-
tors, and “possible” are those with disagreement.

of the alignments involves phrases of four or more
words, but if possible alignments are included, the
aligned phrases are much longer.

If we include possible alignments, the percent-
age of alignments in the MSR RTE training set in-
volving phrases of four or more words increases
to 27%, and if we restrict ourselves to sentence
pairs that contain a possible alignment, that per-
centage increases to 61%. Unfortunately, the MSR
RTE training set consists of 800 sentence pairs, a
very small amount of data for a neural network,
and restricting the sentence pairs to those con-
taining possible alignments reduces the amount of
data even further. Because of its relatively small
size, we do not use the MSR RTE corpus to train
our alignment model; however, we evaluate on the
subset of 406 sentence pairs in the MSR RTE test
set that contain possible alignments.

4.2 The Ouyang et al. Corpus

To train our model, we use the narrative summa-
rization corpus of Ouyang et al. (2017), which
consists of pairs of abstractive and extractive sum-
maries of online personal narratives. The abstrac-
tive summaries in the corpus were written from
scratch and aligned back to the original narra-
tives to produce extractive summaries – they are
human-written paraphrases. Figure 5 shows two
sentence-level alignments from this corpus.

The corpus contains 6173 alignments created by
workers on Amazon Mechanical Turk, who were
instructed to align “phrases from the [abstractive]
summary with phrases from the [narrative] that
effectively mean the same things.” The workers
were free to align phrases of any length, includ-
ing the full sentences shown above. Examining
these alignments, we find that just over 99% in-
volve phrases of four or more words, and the aver-
age length of aligned phrases is 11 for abstractive
summary sentences and 25 for extractive summary
sentences. This corpus contains a relatively large
amount of long alignments, precisely the type of
data we need to train our alignment model.

5 Experiments

We report the results of our experiments using
the standard alignment evaluation metrics of pre-



cision, recall, and F-measure for aligned token
pairs, where two tokens are considered aligned if
and only the phrases containing them are aligned.
As Yao et al. (2013b) argue, evaluating at the to-
ken level allows for alignment systems to receive
partial credit for phrases that are partially, but not
fully, aligned correctly. We do not report the exact
match percentage simply because that number was
close to zero for all systems we tested – getting an
exact match on a long alignment is difficult.

5.1 Baselines

We compare our aligner against three sys-
tems: Sultan et al. (2014a), a state-of-the-art word-
level aligner; JacanaAlign-phrase (Yao et al.,
2013b), a state-of-the-art phrase-based aligner,
and SemAligner (Maharjan et al., 2016). As dis-
cussed in Section 2, SemAligner has not previ-
ously been evaluated as a monolingual alignment
system, as it is designed as a textual similarity sys-
tem, but we include it as a baseline because its ap-
proach of aligning chunks is more similar to ours.
SemAligner assigns semantic relations to pairs of
chunks, so in this evaluation, we treat chunk pairs
assigned the equivalent, specification, and related
relations as aligned and the opposite relation as not
aligned. Because the evaluations are on phrase-
level alignments, for fairness, we follow Yao et al.
in converting word-level alignments into phrase-
level ones by merging consecutive single-word
alignments into larger phrase alignments.

We also evaluate a greedy baseline on Ouyang
et al., which scores each candidate chunk in the
target based on the cosine similarity between its
phrase embedding and that of the source chunk.
We calculate the score using cosine distance as fol-
lows: let e and c be the phrase embeddings for the
source and candidate chunk, respectively.

score = 1− ec

‖e‖‖c‖
+ 0.25m

where the constituent mismatch indicator m is a
binary indicator that takes the value 0 if the source
and candidate chunks are of the same constituent
type, and 1 otherwise. This penalty encourages
the greedy aligner to align constituents of the same
type, but still allows, for example, a verb phrase to
be aligned to its nominalized form. The mismatch
penalty of 0.25 was tuned on our validation set.

The greedy baseline aligns the source chunk to
the target chunk with the lowest score. If there are

System P% R% F1%

Sultan et al. 76.1 1.4 2.8
SemAligner 65.7 2.5 5.4
Jacana 59.5 3.9 7.3
greedy 51.4 27.5 35.8
pointer 54.3 79.5 64.5

Table 1: Performance on Ouyang et al. test set.

no target chunks with scores below a gap thresh-
old, the source chunk remains unaligned (we use
gap threshold of 0.6, also tuned on our validation
set). Following MacCartney et al. (2008), we con-
vert chunk-level alignments to word-level by con-
sidering two tokens to be aligned if and only if
the chunks containing them are aligned. Finally,
we take the union of all token alignments for all
chunkings of the source and target sentences.

5.2 Ouyang et al. Evaluation

Table 1 shows the performance of the pointer-
aligner on the Ouyang et al. test set, compared
with the three other systems and greedy base-
line. Our approach has an order of magnitude im-
provement in recall and F-measure over existing
aligners. The greedy baseline also dramatically
improves recall, demonstrating the importance of
phrase-level similarity, but is significantly worse
than the pointer-aligner that is key to success.

Figure 7 shows alignments from the pointer-
aligner and from Jacana, which outperformed Sul-
tan et al. and SemAligner, although it did not out-
perform the greedy baseline3. We see that Jacana
produces one longer alignment, shown in green;
the pointer-aligner aligns the longest spans, al-
though it seems to have trouble with over-aligning
and including some extra words (“which I miracu-
lously” in red) while excluding others that should
be aligned (“my boyfriend”).

5.3 MSR RTE Evaluation

We evaluate on the MSR RTE corpus, using a ma-
jority vote among the three annotators: any align-
ments that at least two annotators marked as sure
or possible are included. Of the 800 sentence pairs
in the MSR RTE test set, only 406 contain possi-
ble alignments. Because we are interested in eval-
uating the systems on long alignments, we remove
from consideration the 394 sentence pairs that do

3The alignments from the other systems are included in
Appendix B.



I saved my friend’s life from a heroin overdose, and she repaid me by hooking up with my boyfriend.

I saved my (at the time) best friend from a heroin overdose by sticking suboxone under her tongue, which I miraculously

had with me at the time. About a month later her and my boyfriend who I had been living with for two years hooked up.

(a) Ouyang et al. gold standard annotation.

I saved my friend’s life from a heroin overdose, and she repaid me by hooking up with my boyfriend.

I saved my (at the time) best friend from a heroin overdose by sticking suboxone under her tongue, which I miraculously

had with me at the time. About a month later her and my boyfriend who I had been living with for two years hooked up.

(b) Pointer-aligner alignment.

I saved my friend’s life from a heroin overdose, and she repaid me by hooking up with my boyfriend.

I saved my (at the time) best friend from a heroin overdose by sticking suboxone under her tongue, which I miraculously

had with me at the time. About a month later her and my boyfriend who I had been living with for two years hooked up.

(c) Jacana alignment.

Figure 7: Ouyang et al. alignments. Due to length restrictions, we show only the best-performing baseline, Jacana.

Botswana is a business partner of De Beers.
Production at mines operated by Debswana – Botswana’s 50-50 joint venture with De Beers – reach 33 million carats.

(a) MSR RTE gold standard annotation, with sure alignments in bold and possible alignments in italics.

Botswana is a business partner of De Beers.

Production at mines operated by Debswana – Botswana’s 50-50 joint venture with De Beers – reach 33 million carats.

(b) Pointer-aligner alignment.

Botswana is a business partner of De Beers.

Production at mines operated by Debswana – Botswana’s 50-50 joint venture with De Beers – reach 33 million carats.

(c) Jacana alignment.

Figure 8: MSR RTE alignments. Due to length restrictions, we show only the best-performing baseline, Jacana.

System P% R% F1%

Sultan et al. 6.7 3.4 4.4
SemAligner 4.1 6.8 5.1
Jacana 5.2 6.7 5.8
pointer 23.4 47.7 31.4

Table 2: Performance on MSR RTE.

not contain any possible alignments. As discussed
in Section 4, Yao et al. found that, even after merg-
ing consecutive single-word alignments, the sure
alignments of the MSR RTE consist overwhelm-
ingly of phrases fewer than four words in length.
It is not until we add in the possible alignments
that the percentage of four-word or longer phrases
grows to 24% in the MSR RTE test set; when
we look only at sentence pairs containing a least
one possible alignment, the percentage of longer
phrases grows to 44%. Thus evaluating only on
the 406 sentence pairs that contain at least one
possible requires systems not only to perform well
on longer alignments, but also to avoid sacrificing
performance on short alignments.

Figure 8 shows alignments from the pointer-

aligner and Jacana on an MSR RTE sentence pair4.
(Note that the pointer-aligner was trained only on
the Ouyang et al. data, and not on any MSR RTE
data.) This particular pair was very good for the
pointer-aligner because the gold standard align-
ment is neatly separated out from the rest of the
sentence as a parenthetical. Jacana’s alignments
shown in green and yellow suffer from the same
noisy, constituent-breaking boundaries as does the
pointer-aligner on sentence pairs less perfectly
suited to our approach.

6 Discussion and Limitations

Comparing the gold standard alignments of the
MSR RTE corpus with those in Ouyang et al., we
see that it is often the case with the Ouyang et
al. alignments that one side contains much more
information than other. While some MSR RTE
alignments have this property (eg. “prominent”
in Figure 6), not all do. This is likely a side ef-
fect of the Ouyang et al. corpus being intended
for summarization – the sentence pairs are com-
posed of an excerpt from a narrative and a human-

4The alignments from the other systems are included in
Appendix C.



written summary, which by definition compresses
the content of the narrative. Further, Ouyang et
al.’s alignments were generated by Amazon Me-
chanical Turk workers, who were instructed to
highlight aligned spans. In Figure 7a, we see
that the clause “who I had been living with for
two years” should probably not be aligned. How-
ever, the workers may have found it bothersome
to remove the clause (which would require split-
ting the alignment shown in green into two sepa-
rate alignments), so the clause remains in Ouyang
et al.’s gold standard. Being trained on this data,
the pointer-aligner seems to have learned this pref-
erence for retaining extra information contained
within a larger, more strictly aligned span, such as
the word “50-50” in Figure 8b. While it is possi-
ble for the pointer-aligner to align a single source
phrase to two non-consecutive target phrases, it
did not encounter such examples in training and
never does so in any of our experiments.

The pointer-aligner has difficulty with clean
phrase boundaries, eg. omitting “my boyfriend”
but including “which I miraculously” in Figure 7b.
Because our system considers the score of a to-
ken to be the sum of the scores of the chunks
that contain that token, it is possible for words
within a constituent to have different scores if
there is a potential chunk boundary inside the con-
stituent. In the first sentence of Figure 7, for ex-
ample, there is a potential chunk boundary be-
tween “she repaid me by hooking up with” and
“my boyfriend” (because “my boyfriend” is it-
self a constituent). Thus, there is a chunking
where “my boyfriend” is its own, separate chunk,
and in the preliminary alignment for that chunk-
ing, the pointer-network must have assigned “my
boyfriend” a lower score than it did the rest of
the chunks. While other, coarser chunkings would
have given “my boyfriend” some score, it was ap-
parently not enough to make up the difference,
and “my boyfriend” did not accumulate enough
score to be included in the final alignment. The
exclusion of “my boyfriend” is an error on the part
of our system, and it may be worth constraining
the system not to break up certain types of con-
stituents, such as prepositional phrases.

We were curious how else chunking might af-
fect our results. Our pointer-aligner aligns chunks
rather than individual words, and this may intro-
duce some noise to our alignments. For instance,
in the example in Figure 3, the phrase “offered

no dinner” is a single chunk. If the gold stan-
dard alignment had included only “no dinner” and
omitted “offered”, the preliminary alignments that
used this particular chunking would not be able to
match the gold standard alignment because they
could not align “no dinner” without also align-
ing “offered.” It is also possible that there are er-
rors in our parses, resulting in chunks that are not
syntactic constituents; the Ouyang et al. training
data consists of informal texts, which contain mis-
spellings and grammatical mistakes that can cause
errors in parsing, and thus in our chunkings.

To determine to what extent this problem might
affect our experiments, we provided three human
annotators (graduate students in our university’s
Computer Science Department) with two versions
of the Ouyang et al. summary-narrative pairs: one
with our phrase chunking boundaries marked, and
one without. We asked the annotators to align
first the unmarked version, and then the marked
version, with the constraint that they should re-
spect the marked boundaries and align either all
the words in the chunk, or none of them. Our
human annotators achieved substantial agreement
(κ = 0.729).

System P% R% F1%

Human (free) 73.5 27.1 39.6
Human (chunk) 69.4 30.6 42.5
Human (free, no punct.) 80.2 34.5 48.3
Human (chunk, no punct.) 76.3 37.6 50.3
Pointer-Aligner 54.3 79.5 64.5

Table 3: Comparison of human performance with and with-
out chunk boundaries and sentence-final punctuation.

We evaluated our annotators’ performance on
the Ouyang et al. test set (Table 3). Being con-
strained to respect chunk boundaries did lower the
humans’ precision, but increased their recall and
overall performance. Thus, we conclude that in-
correct phrase chunk boundaries is not so grave a
concern.

We also investigated the humans’ relatively low
recall, and on inspection found that many of
Ouyang et al.’s annotators preferred to align entire
clauses or sentences where possible, and tended to
be less willing to align fragments of sentences than
our three annotators were. Amusingly, Ouyang
et al.’s annotators almost always include sentence-
final punctuation as part of their alignments, while
neither our annotators nor our pointer-aligner do,



and removing such punctuation from considera-
tion results in a substantial improvement to our an-
notators’ performance.

The main limitation of our approach is that it is
computationally expensive. We expand each pair
of input sentences into multiple chunkings, and the
pointer-network runs on each pairing of a source
chunk and target chunking. The number of poten-
tial chunk boundaries in an input sentence varies
roughly with sentence length: if the source sen-
tence has length M , and the target sentence has
length N , then there are roughly M/2 potential
chunk boundaries in the source sentence and N/2
in the target. There are then 2M−1 unique chunk-
ings of the source sentence and 2N−1 of the target.
The complexity of our system is thus

O
(
(M/2 + 1) 2M−12N−1

)
= O

(
M2M+N−3)

Our approach in its current form is not an im-
provement in complexity over theO

(
LsL

2
tMN2

)
of Yao et al. (2013b). However, it is important to
note that, unlike Yao et al., our system’s complex-
ity in no way depends on the lengths of the phrases
being aligned, and it can be easily reduced. In the
current system, there is a great deal of redundancy
among chunkings. Each chunking is identical to
one other chunking but for one merge/no merge
decision at one potential chunk boundary; thus
the preliminary alignments for these chunkings are
nearly identical. If instead we fix a constant num-
ber of chunkings to align – say the most granular
chunking (the leaves of the constituent tree), the
second coarsest (the subject and predicate of the
sentence), and one more chunking at an interme-
diate granularity – we sacrifice some flexibility in
phrase length but drastically reduce complexity to
the much more manageable O (M).

7 Conclusion

We have presented a pointer-network-based sys-
tem for aligning longer paraphrases. This pointer-
aligner uses an LSTM language model to compose
the embeddings of words in a chunk into a chunk
embedding and and then aligns these chunks. It
is able to align arbitrarily long phrases, automati-
cally discovering the best phrase length, from indi-
vidual words to full sentences, at which to align a
given input sentence pair, and it significantly out-
performs existing phrase-based aligners at align-
ing long phrases with high semantic similarity but

low lexical overlap. Our system achieves high re-
call but suffers from imprecise alignment bound-
aries. In future work, we intend to refine these
alignment boundaries and to optimize the align-
ment procedure for speed. We hope that this work
will raise more interest in developing alignment
systems for longer paraphrases.
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I saved my friend’s life from a heroin overdose, and she repaid me by hooking up with my boyfriend.

I saved my (at the time) best friend from a heroin overdose by sticking suboxone under her tongue, which I miraculously

had with me at the time. About a month later her and my boyfriend who I had been living with for two years hooked up.

(a) Ouyang et al. gold standard annotation.

I saved my friend’s life from a heroin overdose, and she repaid me by hooking up with my boyfriend.

I saved my (at the time) best friend from a heroin overdose by sticking suboxone under her tongue, which I miraculously

had with me at the time. About a month later her and my boyfriend who I had been living with for two years hooked up.

(b) Pointer-aligner alignment.

I saved my friend’s life from a heroin overdose, and she repaid me by hooking up with my boyfriend.

I saved my (at the time) best friend from a heroin overdose by sticking suboxone under her tongue, which I miraculously

had with me at the time. About a month later her and my boyfriend who I had been living with for two years hooked up.

(c) Greedy baseline alignment. The source phrase “hooking up” aligned to both the green and yellow target phrases.

I saved my friend’s life from a heroin overdose, and she repaid me by hooking up with my boyfriend.

I saved my (at the time) best friend from a heroin overdose by sticking suboxone under her tongue, which I miraculously

had with me at the time. About a month later her and my boyfriend who I had been living with for two years hooked up.

(d) SemAligner alignment.

I saved my friend’s life from a heroin overdose, and she repaid me by hooking up with my boyfriend.

I saved my (at the time) best friend from a heroin overdose by sticking suboxone under her tongue, which I miraculously

had with me at the time. About a month later her and my boyfriend who I had been living with for two years hooked up.

(e) Jacana alignment.

I saved my friend’s life from a heroin overdose, and she repaid me by hooking up with my boyfriend.

I saved my (at the time) best friend from a heroin overdose by sticking suboxone under her tongue, which I miraculously

had with me at the time. About a month later her and my boyfriend who I had been living with for two years hooked up.

(f) Sultan et al. alignment.

Figure 9: All Ouyang et al. alignments.

Botswana is a business partner of De Beers.
Production at mines operated by Debswana – Botswana’s 50-50 joint venture with De Beers – reach 33 million carats.

(a) MSR RTE gold standard annotation, with sure alignments in bold and possible alignments in italics.

Botswana is a business partner of De Beers.

Production at mines operated by Debswana – Botswana’s 50-50 joint venture with De Beers – reach 33 million carats.

(b) Pointer-aligner alignment.

Botswana is a business partner of De Beers.

Production at mines operated by Debswana – Botswana’s 50-50 joint venture with De Beers – reach 33 million carats.

(c) SemAligner alignment.

Botswana is a business partner of De Beers.

Production at mines operated by Debswana – Botswana’s 50-50 joint venture with De Beers – reach 33 million carats.

(d) Jacana alignment.

Botswana is a business partner of De Beers.

Production at mines operated by Debswana – Botswana’s 50-50 joint venture with De Beers – reach 33 million carats.

(e) Sultan et al. alignment.

Figure 10: All MSR RTE alignments.

Appendices

A Implementation Details

Our phrase embedding model is implemented with
Lasagne and trained for 25 epochs using the dic-

tionary datasets and hyperparameter settings of
Hill et al. Our alignment model (hereafter pointer-
aligner) is implemented with PyTorch, using the
pointer network settings of Vinyals et al. and co-
sine distance of the predicted alignment ai from



the gold standard alignment as the loss function.
We randomly split Ouyang et al.’s summary pairs
into 511 training, 108 validation, and 423 testing
pairs, and within each subset further divided each
summary pair into sentence pairs. We trained for
16 epochs using early stopping based on validation
set performance.

B Full Ouyang et al. Example
The alignments from the pointer-aligner all base-
line systems on the example in Figure 7 in the pa-
per are shown on on the next page. While Sultan
et al. aligns at the word-level, consecutive align-
ments that we merged for evaluation are shown in
the same color here.

C Full MSR RTE Example
The alignments from the pointer-aligner all three
existing alignment systems on the example in Fig-
ure 8 in the paper are shown on the next page.
While Sultan et al. aligns at the word-level, con-
secutive alignments that we merged for evaluation
are shown in the same color here.


