
CORWA: A Citation-Oriented Related Work Annotation Dataset

Anonymous ACL submission

Abstract

Academic research is an exploratory activity001
to discover new solutions to problems. By this002
nature, academic research works perform litera-003
ture reviews to distinguish their novelties from004
prior work. In natural language processing, this005
literature review is usually conducted under the006
“Related Work” section. The task of related007
work generation aims to automatically generate008
the related work section given the rest of the009
research paper and a list of papers to cite. Prior010
work on this task has focused on the sentence as011
the basic unit of generation, neglecting the fact012
that related work sections consist of variable013
length text fragments derived from different in-014
formation sources. As a first step towards a015
linguistically-motivated related work genera-016
tion framework, we present a Citation Oriented017
Related Work Annotation (CORWA) dataset018
that labels different types of citation text frag-019
ments from different information sources. We020
train a strong baseline model that automatically021
tags the CORWA labels on massive unlabeled022
related work section texts. We further suggest023
a novel framework for human-in-the-loop, iter-024
ative, abstractive related work generation.025

1 Introduction026

Academic research is an exploratory activity to027

solve problems that have never been solved before.028

By this nature, each academic research work must029

sit at the frontier of its field and present novel contri-030

butions that have not been addressed in prior work;031

in order to convince readers of the novelty of the032

current work, the authors must compare against the033

prior work. While the format may vary among dif-034

ferent fields, in natural language processing (NLP),035

this literature review is usually conducted under036

the “Related Work” section. Since each paper must037

review the relevant prior work in its field, which038

is shared among papers on the same topic or task,039

many related work sections in a given field can040

be similar in both content and format. Therefore,041

Figure 1: An example of CORWA labels displayed using
the BRAT interface (Stenetorp et al., 2012).

it is a natural motivation to develop a system for 042

generating related work sections automatically. 043

The task of automatic related work generation 044

is that of generating the related work section of a 045

target paper given the rest of the target paper and 046

a set of papers to cite. Prior works (Hoang and 047

Kan, 2010; Hu and Wan, 2014; Chen and Zhuge, 048

2019; Wang et al., 2019; Xing et al., 2020; Ge et al., 049

2021; Luu et al., 2021; Chen et al., 2021) mostly 050

simplify related work generation as a general sum- 051

marization task, generating related work sections 052

using sentence-level models. This approach ig- 053

nores the nature of the related work section, which 054

consists of variable-length text fragments derived 055

from different information sources. These citation 056

text fragments refer to different cited papers, and 057

they range from a few words to multiple sentences. 058

There are also non-citation, supporting sentences 059

that serve various discursive roles, such as intro- 060

ducing new topics, transitioning between topics, 061

or reflecting on the current work. We argue it is 062
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necessary to distinguish these heterogeneous text063

fragments, rather than treating related work sec-064

tions as concatenations of homogeneous sentences.065

In addition to the heterogeneous information066

sources for related work section sentences, the writ-067

ing styles of these sentences is also full of variety.068

Khoo et al. (2011) classify literature reviews to be069

integrative or descriptive, depending on whether070

they focus on high-level ideas or provide more de-071

tailed information on specific studies. However,072

this document-level classification scheme was in-073

tended as a descriptive, information science study074

of related work sections, and it has not been previ-075

ously used in automatic related work generation.076

Inspired by these observations, as a first step077

towards linguistically-motivated related work gen-078

eration, we present a Citation Oriented Related079

Work Annotation (CORWA) dataset of related work080

sections from NLP papers. We distinguish text081

fragments from different information sources by082

tagging each sentence with discourse labels and083

identifying the spans of tokens belonging to each084

citation. We further distinguish citations that give085

detailed explanations of cited papers and those that086

illustrate high-level concepts.087

Our main contributions are as follows: (1) We088

collect a CORWA dataset that decomposes the re-089

lated work section with three inter-related annota-090

tion tasks — discourse tagging, citation span detec-091

tion, and citation type recognition — and demon-092

strate the significance of CORWA with analyses093

from multiple perspectives (§3). (2) We propose a094

strong baseline model that automatically tags the095

CORWA annotation scheme on massive unlabeled096

related work section texts (§4). (3) We show that097

citation spans are a better target than citation sen-098

tences with two example tasks (§5). (4) We discuss099

a novel framework for human-in-the-loop, iterative,100

abstractive related work generation (§6).101

2 Related Work102

Extractive Related Work Generation. Early re-103

lated work generation systems employed the ex-104

tractive summarization approach. Hoang and Kan105

(2010) pioneered the task, developing rules to se-106

lect sentences following a topic hierarchy tree that107

was assumed to be given as input. Hu and Wan108

(2014) grouped sentences into topic-biased clus-109

ters with PLSA, modeled sentence importance with110

SVR and applied a global optimization framework111

to select sentences. Chen and Zhuge (2019) se-112

lected sentences from papers that co-cited the same 113

cited papers as the target paper in order to cover a 114

minimum Steiner tree constructed from a paper’s 115

keywords. Wang et al. (2019) extracted Cited Text 116

Spans (CTS), the matched text spans in the cited 117

paper that are most related to a given citation. How- 118

ever, these extractive approaches aim to maximally 119

cover the citation texts with the extracted sentences, 120

thus mostly ignoring the reference type citations 121

that are concise and abstractive (§3.1.3). 122

Abstractive Related Work Generation. Re- 123

cently, Xing et al. (2020) extend the pointer- 124

generator (See et al., 2017) to take two text inputs, 125

allowing them to recover a masked citation sen- 126

tence given its neighboring context sentences. Ge 127

et al. (2021) encode the citation context, cited pa- 128

per’s abstract, and citation network and train their 129

model with multiple objectives: sentence salience 130

score regression of the cited paper’s abstract, func- 131

tional role classification of the citation sentence, 132

and citation sentence generation. Chen et al. (2021) 133

propose a relation-aware, multi-document encoder 134

to generate a related work paragraph given a set 135

of cited papers. Luu et al. (2021) fine-tune GPT2 136

(Radford et al., 2019) on scientific texts and ex- 137

plore several techniques for representing docu- 138

ments, such as using extracted named entities. 139

All of the works described above focus on the 140

generation aspect, while neglecting dataset collec- 141

tion; their datasets are mostly extracted automati- 142

cally. Moreover, the datasets are not reused, though 143

they are publicly available, because these works 144

all use slightly different problem definitions, and 145

thus the models are not directly comparable (Li 146

and Ouyang, 2022). In this work, we focus on 147

collecting a dataset that is widely applicable to var- 148

ious related work generation settings, rather than 149

proposing another incomparable approach. 150

3 CORWA Dataset 151

In this work, we limit our scope to publications 152

from the NLP domain for ease of automatically ex- 153

tracting the related work section; existing work on 154

related work generation has also focused on NLP 155

in the past. We build our dataset on top of the NLP 156

partition of the S2ORC dataset (Lo et al., 2020), a 157

large-scale corpus of scientific papers derived from 158

LATEX source code and PDF files. We extract the 159

related work section by matching the section titles. 160

Because not all papers cited in the extracted related 161

work sections are available in S2ORC dataset, we 162
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prioritize annotating related work sections where163

the majority of their cited papers are available.164

3.1 Annotation Scheme165

Our CORWA dataset decomposes the related work166

section with three inter-related annotation tasks:167

discourse tagging, citation span detection, and cita-168

tion type recognition.169

3.1.1 Discourse Tagging170

Each sentence in a related work section has a spe-171

cific role and information source. Some may be172

general topic or transition sentences; some summa-173

rize one or multiple prior works in detail, while oth-174

ers describe the general relationship among prior175

works at a high level. Our discourse tagging task176

tags the role of each related work sentence with177

one of six labels: {single_summ, multi_summ, nar-178

rative_cite, reflection, transition, other}.179

Single Document Summarization. Sin-180

gle_summ refers to sentences that summarize one181

single cited work in detail. Most typically, this182

includes sentences with explicit citation marks, as183

when a work is mentioned for the first time. We184

also include the following cases: (1) follow-up185

sentences without explicit citation marks that de-186

scribe the same paper as a preceding single_summ187

sentence, and (2) sentences containing multiple188

citations that heavily focus on one of those works.189

Multi-Document Summarization. Multi_summ190

refers to sentences that summarize multiple prior191

works of equal importance. As with single_summ,192

we include the case of follow-up sentences without193

explicit citation marks that continue describing the194

same group of prior works discussed in a preceding195

multi_summ sentence.196

Narrative Citation. In contrast to single_summ197

and multi_summ, narrative citation (narrative_cite)198

refers to citation sentences that do not summarize199

specific cited works in detail, but rather convey200

high-level observations from the authors of the cur-201

rent work. Narrative_cite sentences may contain202

general statements about the field or task, or the au-203

thors’ comments on or comparisons of prior works.204

Reflection. In addition to describing prior works,205

authors discuss how they relate to the current206

work, highlighting the authors’ novel contributions.207

These reflection sentences focus on the current208

work, instead of prior works.209

Transition. Non-citation sentences in related 210

work sections serve as topic introductions or tran- 211

sitions from one topic to another. We label these 212

supplemental sentences that do not belong to any 213

of the above cases as transition sentences. 214

Other. The related work sections in our dataset 215

are extracted automatically using heuristics based 216

on section titles, and there are occasionally some 217

errors in section boundary detection; we label those 218

sentences that are not actually part of the related 219

work section as other. 220

3.1.2 Citation Span Detection 221

In order to understand sentences that describe prior 222

work, it is crucial to recognize the token-level map- 223

ping between the citation text and the cited paper(s). 224

Our citation span detection task identifies the span 225

of text whose information is directly derived from a 226

specific cited paper. For example, if a cited paper is 227

explained with a summary, its citation span covers 228

the entire summary, which may range from part of 229

a sentence to a few consecutive sentences; if a cited 230

paper is mentioned with an explicit citation, but is 231

not described or discussed at all, then the citation 232

span is just the citation mark. 233

In constructing the dataset, we find that a single 234

citation rarely spans across paragraph boundaries 235

without a new explicit citation mark, so we require 236

our spans to be bounded by paragraph boundaries. 237

3.1.3 Citation Type Recognition 238

Our citation type recognition task indicates whether 239

a cited work is discussed in detail or used to illus- 240

trate a high-level concept. We label these types of 241

citations as dominant and reference, respectively. 242

Dominant. These citations are discussed in de- 243

tail, usually via summarization of their content, and 244

are often longer than reference citations. 245

Reference. These citations are not discussed in 246

detail. They frequently appear in narrative_cite 247

sentences, but may also appear in single_summ and 248

multi_summ sentences when they are not the main 249

focus of the sentence, and thus it is not sufficient 250

to depend on the sentence-level discourse tags to 251

distinguish them. For example, in Figure 1, line 252

5, the pointer-generator network (See et al., 2017) 253

is cited for reference as part of a longer dominant 254

citation span. Reference citations tend to be more 255

abstractive than dominant citations. 256
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3.2 Annotation Process and Agreement257

Two graduate students from our university’s Com-258

puter Science Department1, manually annotated259

927 related work sections. They first annotated 23260

related work sections from scratch, after which we261

incrementally trained a transformer-based tagging262

model (Vaswani et al., 2017) (§4) to assist the an-263

notation process, asking the annotators to correct264

the model’s predictions, rather than performing265

manual annotation from scratch. We split the 362266

annotated related work sections from papers pub-267

lished in 2019 and later as our test set and all 565268

earlier papers as the training set.269

Since each related work section is labeled by a270

single annotator, we calculate agreement by sam-271

pling 50 related work sections from the test set and272

asking the other annotator to re-annotate them from273

scratch2. We obtain strong agreement on all tasks274

(Cohen’s κ of 0.824, 0.965 and 0.878 for discourse275

tagging, citation type recognition, and citation span276

detection, respectively); citation type recognition277

and citation span detection are converted to token-278

level labels for agreement calculation.279

The automated, correction-based annotation pro-280

cess is much faster than annotating from scratch281

and allows us to collect a much larger annotated282

dataset. As a trade-off, the annotations may be bi-283

ased by the model’s predictions if the annotators284

fail to notice any incorrect predictions. This may285

explain why our model performance reported in286

§4.2 is higher than the inter-annotator agreement.287

3.3 Analysis of CORWA288

The tasks of discourse tagging, citation span detec-289

tion, and citation type recognition, capture distinct290

but overlapping perspectives of information.291

3.3.1 Relations among CORWA Subtasks292

We investigate the relationships among the293

CORWA subtasks by calculating the co-occurrence294

distributions of discourse labels and citation span295

types. A citation span is considered dominant if it296

contains any dominant citations, and reference oth-297

erwise. Figure 2 shows that dominant-type spans298

(average of 34.5 tokens) are significantly longer299

than reference-type spans (average of 8.2 tokens).300

Table 1 shows the count of each discourse label301

and the joint probability of discourse labels and302

citation span types. Single_summ with dominant303

1One of them later became the second author of this paper.
2The disagreements are adjudicated by the first author.
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Figure 2: Histogram of the length of dominant and
reference-type citation spans, excluding citation marks.
The dashed vertical lines are the means of dominant and
reference span lengths, 34.5 and 8.2, respectively.

Disc. Label (d) n(d) p(D, d) p(R, d)
single_summ 4255 36.9% 0.6%
transition 3371 0 0.1%
narrative_cite 2540 0.2% 48.9%
reflection 2489 0.1% 3.3%
multi_summ 671 8.5% 1.3%
other 510 0 0

Table 1: Distributions of discourse labels and citation
spans in CORWA. D/R: Dominant/reference type span.
n(D) = 3565, n(R) = 4228. 2927 paragraphs in total.

span, multi_summ with dominant span, and narra- 304

tive_cite with reference span are the most frequent 305

combinations3. These observations make intuitive 306

sense, since dominant-type spans describe cited pa- 307

pers in detail, often taking the form of a summary, 308

while reference-type spans are highly abstracted, 309

making them more likely to be mixed into narra- 310

tive-type sentences that discuss high-level ideas, 311

often encompassing multiple cited papers. This 312

is analogous to informative and indicative sum- 313

maries, where the former serves as a surrogate for 314

the document, and the latter characterizes what the 315

document is about (Kan et al., 2001). 316

3.3.2 Related Work Writing Styles 317

Integrative or Descriptive? As Khoo et al. 318

(2011) note, authors may describe the same cited 319

paper in two different styles: descriptive, which ex- 320

plicitly summarizes the cited paper, or integrative, 321

which describes and comments on the cited paper 322

in a narrative form. We examine the ratio of summa- 323

rization (both single_summ and multi_summ) and 324

narrative sentences (narrative_cite) in related work 325

paragraphs (Figure 3). The CORWA discourse la- 326

bels capture writing style differences among papers: 327

34.6% of related work section paragraphs only con- 328

tain summarization sentences, resembling descrip- 329

3The full distribution is given by Supplementary Table 4.
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Figure 3: Parallel plot of the proportion of summariza-
tion and narrative sentences in each paragraph. Para-
graphs with neither type of sentences are excluded.

tive literature review, while 32.1% of paragraphs330

contain only narrative sentences, resembling inte-331

grative literature reviews. Interestingly, 33.3% of332

paragraphs mix both styles and are neither purely333

descriptive nor purely integrative.334

Frequent Discourse Label Subsequences. Sci-335

entific discourse is used by paper authors to pro-336

mote their ideas (Li et al., 2021). We analyze the337

patterns of CORWA discourse labels to uncover338

how authors promote their ideas using a mix of339

sentence types. We apply the rule-based PrefixS-340

pan (Han et al., 2001) and Gap-Bide (Li and Wang,341

2008) algorithms to extract frequent discourse la-342

bel subsequences. We identify six typical subse-343

quences, shown in Supplementary Tables 8 and 9.344

For example, the pattern of single_summ followed345

by reflection compares the cited paper to the cur-346

rent work, usually without directly criticizing the347

cited paper, while single_summ followed by tran-348

sition is the more impersonal pattern for criticism349

of a cited paper, where authors tend to avoid direct350

comparison with the current work.351

4 Joint Related Work Tagger352

To help propagate our CORWA annotations to mas-353

sive unlabeled related work sections, we build a354

joint related work tagger baseline4 that is trained355

on the three annotation tasks, discourse tagging, ci-356

tation span detection, and citation type recognition,357

via multi-task learning (Caruana, 1997).358

4.1 Model Design359

Figure 4 shows the model architecture of our joint360

related work tagger. We encode related work sec-361

tions using a transformer-encoder (Vaswani et al.,362

4We will release the code for all experiments.
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Figure 4: The architecture of our joint related work tag-
ger, which performs discourse tagging (Disc), citation
type recognition (CT), and citation span detection (CS).

2017) paragraph by paragraph, as we enforce the 363

independence of paragraphs in CORWA citation 364

span annotations. We decode citation span labels 365

and citation type labels token by token, while our 366

discourse tagging task uses the paragraph-level 367

sentence tagging mechanism proposed by Li et al. 368

(2020). Because the three sub-tasks of CORWA are 369

inter-related, we use multi-task learning to jointly 370

train the tagger by sharing the encoder across tasks. 371

4.1.1 Paragraph Encoder 372

We experiment with several pre-trained 373

transformer-encoders (Devlin et al., 2018; 374

Beltagy et al., 2019; Liu et al., 2019; Beltagy et al., 375

2020), and eventually focus on SciBERT (Beltagy 376

et al., 2019), which is a variant of the BERT model 377

(Devlin et al., 2018) that is trained on a scientific 378

corpus with domain-specific tokenization schemes, 379

including NLP papers. 380

4.1.2 Task-specific Decoders 381

Citation Span Detection & Citation Type Recog- 382

nition. We use the BIO2 tagging scheme (Sang 383

and Veenstra, 1999) for the citation span detection 384

and citation type recognition tasks; we use B, I, 385

O for citation span detection and fives labels— B- 386

Dominant, I-Dominant, B-Reference, I-Reference, 387

and O — for citation type recognition. We use a 388

two-layer linear network to decode the encoded 389

paragraph-level token embeddings to the output 390

sequence of BIO2 tags. 391

Discourse Tagging. We apply Li et al. (2020)’s 392

paragraph-level sentence tagging approach for the 393

discourse labels: a simple attention mechanism is 394

used to aggregate token embeddings, sentence by 395

sentence, into sentence encodings, before decoding 396

the sentence encodings into discourse labels using 397

a two-layer multi-layer linear network. 398

5



Model Disc CT CS
SciBERT 0.898 0.959 0.930
+ Distant Dataset 0.908 0.963 0.933

Table 2: Test set micro-F1 scores of the SciBERT-based
joint related work tagger, with and without training on
distantly labeled data, on the discourse tagging (Disc),
citation type recognition (CT), and citation span detec-
tion (CS) tasks.

4.1.3 Multi-task Learning399

We use cross-entropy loss on all three CORWA sub-400

tasks. We balance the relative importance of the401

sub-tasks by taking a weighted sum of the sub-task402

losses of discourse tagging, citation span detection,403

and citation type recognition {Ld, Ls, Lt}:404

L = γdLd + γsLs + γtLt (1)405

where {γd, γs, γt} are tuned hyper-parameters;406

their values are given in Supplementary Table 5.407

4.2 Experiments408

We perform five-fold cross-validation to tune the409

model hyper-parameters. Table 2 shows the strong410

performances of the model5. We use the joint re-411

lated work tagger to automatically label the unanno-412

tated 11,465 related work sections remaining in the413

S2ORC NLP partition and then use this distantly-414

supervised data to further boost the model’s per-415

formance. For the citation span detection and ci-416

tation type recognition tasks, we use a token-level417

F1 score. Our final, distantly-supervised joint re-418

lated work tagger achieves more than 0.9 test F1419

on all three tasks, indicating the high quality of420

the model’s predictions. This model can be used421

to propagate our labels on the unannotated related422

work sections to create a very large training set for423

future work.424

5 Spans as an Alternative to Sentences425

We argue that the citation spans annotated in426

CORWA are a better alternative to the citation sen-427

tences that have previously been used for the tasks428

of ROUGE-based retrieval and citation text genera-429

tion.430

5.1 Queries for Relevant Sentence Retrieval431

Citations focus on a small portion of the content432

in cited papers, and this focus is not explicitly433

recorded in the citation network. A popular ap-434

proach for determining relevant sentences retrieves435

5Supplementary Table 6 shows the full cross-validation
and test performances.
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Figure 5: Histogram of top-1 ROUGE recall scores of
retrieved sentences from cited papers using different
queries. The dashed vertical lines are the means of
reference sentence (0.220), dominant sentence (0.293),
dominant span (0.316), and reference spans (0.449).

sentences from the cited papers by comparing the 436

similarity between the gold citation sentence and 437

candidate sentences in the cited paper (Cao et al., 438

2015; Yasunaga et al., 2017, 2019; Ge et al., 2021). 439

Figure 5 compares the distribution of the top-1 av- 440

erage of ROUGE-1 and ROUGE-2 recall scores 441

(Lin, 2004) of retrieved sentences from cited papers 442

using citation spans with those using citation sen- 443

tences6. There is no significant difference between 444

the average ROUGE scores of dominant spans and 445

sentences containing dominant citations, which is 446

reasonable because dominant spans are often full 447

sentences anyway. In contrast, the average score 448

of reference spans is significantly higher than that 449

of sentences containing reference-type citations; 450

reference spans are shorter and contain highly con- 451

centrated key information derived from their cited 452

papers. Thus, using CORWA citation spans as 453

queries for ROUGE-based cited sentence retrieval 454

is superior for reference-type citations and compa- 455

rable for dominant-type citations. 456

5.2 Span-based Related Work Generation 457

Existing neural network-based, abstractive related 458

work generation systems generate citation sen- 459

tences given the surrounding context sentences 460

(Xing et al., 2020; Ge et al., 2021; Luu et al., 2021) 461

or generate entire paragraphs containing multiple 462

citations (Chen et al., 2021). These task settings 463

neglect the fact that the citation text corresponding 464

to a cited paper is not necessarily in the form of a 465

sentence, but could be a portion of a sentence or a 466

block of multiple sentences. Our span-based anno- 467

tation scheme identifies the citation tokens that are 468

directly derived from the cited papers. 469

6Only papers included in S2ORC dataset are considered.
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Figure 6: Histogram of the ratio of between the lengths
of dominant and reference type citation spans and the
corresponding citation sentences. None of the reference
spans are longer than one sentence. 27.7%, 46.6%, and
25.7% of dominant spans are shorter than, equal to, or
longer than one sentence, respectively.

As Figure 6 shows, reference spans are not full470

sentences, while dominant spans can cover multi-471

ple sentences. For reference-type citations, using472

a full sentence as the generation target includes473

potentially unrelated tokens outside the citation474

span that do not refer to the cited paper. For domi-475

nant-type citations, using a single sentence as the476

generation target can result in 1) information loss477

when not all sentences describing the cited paper478

are included in the target, and the model never479

learns to generate them, or 2) information leak480

when sentences that actually describe the cited pa-481

per are used as context sentences instead of target482

sentences. Thus, we propose a span-level citation483

text generation task and present a pilot study using484

a Longformer-Encoder-Decoder (LED) (Beltagy485

et al., 2020) baseline model.486

5.2.1 Experimental Setting487

The common Transformer-based language models488

(Devlin et al., 2018; Liu et al., 2019; Lewis et al.,489

2019; Raffel et al., 2020) have a limited input win-490

dow size (typically 512 or 1024 tokens), which491

presents a major challenge for tasks like related492

work generation that use multiple long documents493

as inputs. LED (Beltagy et al., 2020) addresses494

this challenge by using a local self-attention mech-495

anism, rather than global self-attention, handling496

in input context windows of up to 16k tokens. We497

present an LED-based baseline model for the cita-498

tion span generation task.499

We first pretrain the LED-base model on the500

masked language modeling (MLM) task (Devlin501

et al., 2018) using related work sections from502

S2ORC papers in the computer science domain,503

as well as on the cross-document language model-504

ing (CDLM) task (Caciularu et al., 2021), which 505

aligns masked citation sentences with their context 506

sentences and the full text of their cited papers. We 507

further pretrain the LED encoder with the three 508

CORWA sub-tasks (Supplementary Table 6). All 509

pretraining strictly excludes the texts from test set. 510

For the citation span generation task, we input 511

the concatenation of {the target paper’s introduc- 512

tion (following Luu et al. (2021)), the partial related 513

work paragraph excluding the target citation span, 514

and the concatenation of {explicit citation mark, 515

title, and abstract} of each cited paper in the target 516

span7}; the generation target is the ground truth ci- 517

tation span from CORWA. We provide the explicit 518

citation mark (e.g. Devlin et al., 2018) because it 519

is simple to extract but cannot be inferred from the 520

paper text alone. Just as a human reader may re- 521

member the content of the frequently cited papers 522

or the research topics of frequently cited authors, 523

so the citation mark tokens may carry information 524

about the cited paper and its authors. 525

In addition to the CORWA training set, we use 526

the distantly supervised labels predicted by our 527

joint related work tagger (§4.2) for training. We use 528

the default hyper-parameters of the Huggingface 529

LED implementation (Wolf et al., 2020). 530

5.2.2 Experimental Results 531

As Supplementary Table 7 shows, the ROUGE 532

scores of our LED-base models for citation 533

span/sentence generation are similar to previ- 534

ous sentence-level citation text generation mod- 535

els (Xing et al., 2020; Ge et al., 2021), and our 536

pretraining improves the citation span generation 537

performance. Compared to sentence-level gener- 538

ation, span-level generation has lower scores for 539

dominant citations, but higher scores for reference 540

citations. However, because the span- and sentence- 541

level tasks have different generation targets, their 542

scores cannot be directly compared. 543

We perform a human evaluation following the 544

setting of Xing et al. (2020); Ge et al. (2021). We 545

sample 15 instances each for dominant and ref- 546

erence citations and compare their corresponding 547

span- and sentence-based generation outputs, as 548

well as the gold spans from the original related 549

work sections. Each citation text is rated by three 550

NLP graduate students who are fluent in English 551

on a 1 (very poor) to 5 (excellent) point scale, with 552

respect to four aspects: fluency (whether a citation 553

7We indicate whether the target span is dominant or refer-
ence type, as well as the type of each citation in the span.
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Flu. Rel. Coh. Overall
Dominant
Gold Span 4.61 3.53 4.17 3.64
Span 4.92 4.07 4.20 3.99
Sentence 4.83 4.03 4.17 4.02
Reference
Gold Span 4.87 4.04 4.18 4.00
Span 4.68 4.24 4.26 3.96
Sentence 4.86 3.64 4.09 3.70

Table 3: Average fluency, relevance, coherence and
overall scores, rated by human judges.

span/sentence is fluent), relevance (whether a cita-554

tion span/sentence is relevant to the cited paper(s)),555

coherence (whether a citation span/sentence is co-556

herent within its context), and overall quality.557

Table 3 shows human evaluation results, with558

moderate inter-annotator agreement (Kendall’s τ559

of 0.298, 0.205, and 0.172 among three annotators).560

All citation texts are judged to be highly fluent.561

Interestingly, in previous studies (Xing et al.,562

2020; Ge et al., 2021) the scores of gold sentences563

are higher than those of generated texts, but our564

gold spans have a significantly lower relevance565

scores than the generated spans. This is likely be-566

cause the gold spans contain information derived567

from the body sections of the cited papers, which568

are not provided to either the models or to the hu-569

man judges. As a result, some gold spans appear570

to be irrelevant to the human judges, echoing our571

earlier finding in §5.1 that citation spans contain572

more focused information. This observation also573

suggests that gold citation spans are not necessarily574

the best target for all task settings.575

We also see that, while dominant sentences and576

spans receive similar scores, the reference sen-577

tences have lower relevance scores than the spans.578

This result makes sense because reference citation579

spans are short and focused, so the full sentences580

include tokens unrelated to the cited paper(s). Over-581

all, the generated spans are rated slightly higher582

than the generated sentences by the human judges,583

confirming that span-level citation text generation584

is preferable to sentence-level generation.585

6 Toward Full Related Work Generation586

Existing extractive related work generation systems587

(Hoang and Kan, 2010; Hu and Wan, 2014; Chen588

and Zhuge, 2019; Wang et al., 2019) select sen-589

tences from the target paper and/or the cited papers,590

which can be concatenated to form a full related591

work section; neural network-based, abstractive592

related work generation systems generate individ-593

ual citation sentences (Xing et al., 2020; Ge et al., 594

2021; Luu et al., 2021) or paragraphs (Chen et al., 595

2021). However, none of these prior works address 596

the ordering of the extracted/generated sentences or 597

the grouping of sentences into paragraphs, nor are 598

they able to produce rhetorical sentences to smooth 599

the transitions between citations. No prior work 600

bridges the gap from generating individual citation 601

texts to generating a full related work section. 602

We suggest a bottom-up, iterative approach to 603

generate full related work sections. The process 604

would begin with generating citation spans under 605

the settings proposed in §5.2. Then, multiple gener- 606

ated citation spans would be aggregated and rewrit- 607

ten into citation text blocks in either the summa- 608

rization or narrative style. These blocks would be 609

further aggregated and rewritten into paragraphs by 610

generating transition and reflection sentences. 611

Generating and rewriting in this pipeline fashion 612

has the following benefits: (1) It mitigates the prac- 613

tical issue of computational resource limitations, 614

given that state-of-the-art models do not perform 615

well on long text generation. (2) The auxiliary in- 616

puts, such as citation functions or discourse tags, 617

may vary for each stage of generation. (3) As a 618

practical system to assist researchers, it is crucial to 619

allow user involvement in the iterative generation 620

process. Due to the large search space, consisting 621

of multiple valid related work section candidates 622

with different writing styles, it is extremely chal- 623

lenging to precisely generate a satisfying text with a 624

one-shot, end-to-end system. A human-in-the-loop 625

approach allows the user to significantly prune the 626

search space and simultaneously reduces the error- 627

propagation issue caused by the pipeline design. 628

7 Conclusion 629

We present the CORWA dataset of three inter- 630

related annotation tasks: discourse tagging, citation 631

span detection, and citation type recognition. We 632

demonstrate the significance of CORWA with anal- 633

yses from multiple perspectives, such as writing 634

style and discourse patterns. We propose a strong 635

baseline model that can automatically propagate 636

the CORWA annotation scheme to massive unla- 637

beled related work sections. Furthermore, we show 638

that citation spans are a better alternative to citation 639

sentences for both the relevant sentence retrieval 640

and citation generation tasks. Finally, we discuss 641

a novel framework for human-in-the-loop iterative 642

abstractive related work generation. 643
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A Appendix954

A.1 Training Configurations955

For the joint related work tagger training, we use956

GeForce GTX 1080 11 GB GPUs. The training957

process lasts 2.5 hours on a single GPU using Hug-958

gingface’s (Wolf et al., 2020) SciBERT, BERT-base959

or Roberta-base as the paragraph encoders, and it960

lasts 6.5 hours using LED-base encoder. We train961

the models for 15 epochs. It takes approximately962

one week to run the hyper-parameter search using963

five-fold cross-validation for all language models,964

using 8 GPUs in total.965

For training the citation span generation model,966

we use Tesla V100s-PCIE-32GB GPUs. The train-967

ing process for lasts for 2 days on a single GPU.968

We run the training for a maximum of 3 epochs969

with early stopping based on the validation loss.970

A.2 Other Related Tasks971

A.2.1 Scientific Document Understanding972

Besides summarization, scientific document under-973

standing also plays an important role in related974

work generation.975

Citation Analysis. Citations are the core of re-976

lated work sections. There has been a line of re-977

search on citation analysis, including citation func-978

tion (Teufel et al., 2006; Dong and Schäfer, 2011;979

Jurgens et al., 2018; Tuarob et al., 2019), citation in-980

tent (Cohan et al., 2019; Lauscher et al., 2021; Fer-981

rod et al., 2021), citation sentiment (Athar, 2011;982

Athar and Teufel, 2012; Ravi et al., 2018; Vyas983

et al., 2020), etc. These studies annotate citations984

with different labeling schemes to study the various985

usages and purposes of citations.986

Discourse Analysis. Scientific discourse analy-987

sis studies the rhetorical components of clauses,988

sentences, or text spans that are not limited to ci-989

tations, uncovering how authors persuade expert990

readers with their claims. There is a significant991

amount of prior work proposing discourse schemes992

and developing models for discourse tagging for993

scientific articles (Teufel and Moens, 1999, 2002;994

Hirohata et al., 2008; Liakata, 2010; Liakata et al.,995

2012; Guo et al., 2010; De Waard and Maat, 2012;996

Burns et al., 2016; Dernoncourt and Lee, 2017;997

Huang et al., 2020; Li et al., 2021).998

Our CORWA discourse tagging task focuses on999

distinguishing the source of the information in each1000

related work sentence, which is complementary to1001

the discourse tagging work listed above.1002

A.2.2 Cited Text Span 1003

AbuRa’ed et al. (2020) extend Hoang and Kan 1004

(2010)’s RWSData dataset by annotating the Cited 1005

Text Span (CTS) (Wang et al., 2019). They an- 1006

notate the specific sentences in cited papers that 1007

each citation in the target paper is based on. For 1008

each cited paper, they further collect a set of papers 1009

that co-cite this cited paper. Jaidka et al. (2018, 1010

2019) propose the CL-Scisumm shared task, which 1011

includes identifying the CTS in reference papers 1012

for each citation instance. This shared task pro- 1013

vides a valuable dataset for the precise generation 1014

of citation texts from a CTS, in contrast to most 1015

recent work, which uses the cited paper’s abstract 1016

or introduction. 1017

A.2.3 Studies of Literature Reviews 1018

From an information studies perspective, Khoo 1019

et al. (2011) largely classify literature reviews into 1020

two styles: integrative and descriptive. Descrip- 1021

tive literature reviews summarize individual studies 1022

and provide detailed information on each, such as 1023

methods, results, and interpretation; integrative lit- 1024

erature reviews provide fewer details of individual 1025

studies, instead focusing on synthesizing ideas and 1026

results extracted from these papers. Jaidka et al. 1027

(2010, 2011, 2013) analyze the properties of these 1028

two types of literature reviews. 1029

A.3 Ethical Considerations 1030

We present a new dataset that is derived from the 1031

S2ORC dataset (Lo et al., 2020), which is released 1032

under CC BY-NC 2.0 license. The Huggingface 1033

models (Wolf et al., 2020) we develop upon are 1034

released under Apache License 2.0. 1035

Our annotators were compensated for their work 1036

at a rate of double the minimum wage in our local 1037

area. 1038
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Disc. Label (d) n(d) p(d) p(d |D) p(d |R) p(D | d) p(R | d) p(D, d) p(R, d)
single_summ 4255 30.8% 80.8% 1.1% 98.5% 1.5% 36.9% 0.6%
transition 3371 24.4% 0 0.2% 12.5 87.5% 0 0.1%
narrative_cite 2540 18.4% 0.4% 90.2% 0.4% 99.6% 0.2% 48.9%
reflection 2489 18.0% 0.1% 6.1% 1.5% 98.5% 0.1% 3.3%
multi_summ 671 4.8% 18.7% 2.5% 86.4% 13.6% 8.5% 1.3%
other 510 3.7% 0 0 0 100.0% 0 0

Table 4: Distributions of discourse labels and citation spans in CORWA dataset. d: Discourse labels. D/R:
Dominant/reference type citation span. n(D) = 3565, n(R) = 4228.

Parameter Name Value
Encoder Learning Rate 10−5

Decoder Learning Rate 5× 10−6

Dropout 0
Epoch 15
Batch Size 1
Steps per Update 10
γd 1
γt 3
γs 1.75

Table 5: Hyper-parameters of our best joint related work
tagger (SciBERT + Distant Dataset).
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Five-fold cross-validation scores Test-set scores
Models Disc CT CS Disc CT CS
SciBERT (Beltagy et al., 2019) 0.900 (0.0099) 0.961 (0.0038) 0.926 (0.0059) 0.898 0.959 0.930
Roberta-base (Liu et al., 2019) 0.886 (0.0050) 0.956 (0.0036) 0.922 (0.0048) 0.885 0.956 0.929
BERT-base (Devlin et al., 2018) 0.879 (0.0070) 0.954 (0.0055) 0.910 (0.0064) 0.875 0.952 0.915
LED-base (Pretrained) 0.872 (0.0253) 0.948 (0.0117) 0.905 (0.0088) 0.869 0.910 0.907
LED-base (Beltagy et al., 2020) 0.865 (0.0090) 0.922 (0.0128) 0.907 (0.0074) 0.842 0.874 0.909

Table 6: Micro-F1 scores for the joint related work tagger using different language models as the encoder. The
tasks are discourse tagging (Disc), citation type recognition (CT), and citation span detection (CS). Five-fold
cross-validation scores are reported as the mean (standard deviation) across all folds. The pretraining of LED is
explained in §5.2.1.

Dominant Reference
Models R-1 R-2 R-L R-1 R-2 R-L
LED-base w/o pretrain 0.220 0.060 0.183 0.228 0.091 0.223
LED-base Span 0.230 0.062 0.186 0.244 0.107 0.240
LED-base Sentence 0.244 0.075 0.202 0.193 0.050 0.151

Table 7: Performance of citation span/sentence generation using LED-base (Beltagy et al., 2020). Citation marks
are excluded from the scores since they are trivial to generate and bring up the scores unintentionally. Note that the
performance of span/sentence generations are NOT directly comparable due to different generation targets.

Discourse Subsequence
transition, narrative_cite, single_summ
Functionalities
Introducing an approach and providing background knowledge.
Examples
1. Joint POS tagging with parsing is not a new idea.
2. In PCFG-based parsing (Collins, 1999; Charniak, 2000; Petrov et al., 2006), POS tagging is
considered as a natural step of parsing by employing lexical rules.
3. For transition-based parsing, Hatori et al. (2011) proposed to integrate POS tagging with
dependency parsing.
Discourse Subsequence
single_summ, reflection
Functionalities
Comparing the prior work to the current work.
Examples
1. Haghighi et al. (2009) confirm and extend these results, showing BLEU improvement for
a hierarchical phrase-based MT system on a small Chinese corpus.
2. As opposed to ITG, we use a linguistically motivated phrase-structure tree to drive our search
and inform our model.
Discourse Subsequence
reflection, single_summ
Functionalities
Supporting the current work with a previous work.
Examples
1. Our baseline semi-supervised model can be viewed as an extension of these approaches to a
reading comprehension setting.
2. Dai et al. (2015) also explore initialization from a language model, but find that the
recurrent autoencoder is superior, which is why we do not consider language models in this work.
Discourse Subsequence
transition, narrative_cite, transition
Functionalities
Topic sentence, narration of prior work followed by critique.
Examples
1. Traditional work on relation classification can be categorized into feature-based methods
and kernel-based methods.
2. The former relies on a large number of human-designed features (Zhou et al., 2005; Jiang and
Zhai, 2007; Li and Ji, 2014) while the latter leverages various kernels to implicitly explore a much
larger feature space (Bunescu and Mooney, 2005; Nguyen et al., 2009 ).
3. However, both methods suffer from error propagation problems and poor generalization abilities
on unseen words.

Table 8: Frequent discourse label subsequences detected by applying PrefixSpan (Han et al., 2001) and Gap-Bide
algorithm (Li and Wang, 2008).
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Discourse Subsequence
single_summ, single_summ, transition
Functionalities
Commenting previous works summarized.
Examples
1. Walker et al. (2012) extract rules representing characters from their annotated movie
subtitle corpora.
2. Miyazaki et al. (2015) propose a method of converting utterances using rewriting rules
automatically derived from a Twitter corpus.
3. These approaches have a fundamental problem to need some manual annotations, which is a
main issue to be solved in this work.
Discourse Subsequence
narrative_cite, transition, single_summ
Functionalities
Criticizing the previously cited work and citing an improved work.
Examples
1. There have also been several classical studies based on nonneural approaches to headline
generation (Woodsend et al., 2010; Alfonseca et al., 2013; Colmenares et al., 2015) ,
but they basically addressed sentence compression after extracting important linguistic
units such as phrases.
2. In other words, their methods can still yield erroneous output, although they would be more
controllable than neural models.
3. One exception is the work of Alotaiby (2011) , where fixed-sized substrings were considered
for headline generation.
Discourse Subsequence
narrative_cite, transition, single_summ
Functionalities
Describing an idea following by a comment and then citations implementing the idea.
Examples
1. One of the classes of errors in the Helping Our Own (HOO) 2011 shared task (Dale and
Kilgarriff, 2011) was punctuation.
2. Comma errors are the most frequent kind of punctuation error made by learners.
3. Israel et al. (2012) present a model for detecting these kinds of errors in learner texts.

Table 9: Frequent discourse label subsequences detected by applying PrefixSpan (Han et al., 2001) and Gap-Bide
algorithm (Li and Wang, 2008), continued.
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