Lectures #10–11: Semantic Equivalence

CS 6371: Advanced Programming Languages

Lemma 1. The following statements are equivalent: (1) \(\langle a, \sigma \rangle \downarrow n \), (2) \(\langle a, \sigma \rangle \to^* \langle n, \sigma \rangle \), (3) \(A[a] \sigma = n \).

Lemma 2. The following statements are equivalent: (1) \(\langle b, \sigma \rangle \downarrow p \), (2) \(\langle b, \sigma \rangle \to^* \langle p, \sigma \rangle \), (3) \(B[b] \sigma = p \).

Thm 1. The following statements are equivalent: (1) \(\langle c, \sigma \rangle \downarrow \sigma' \), (2) \(\langle c, \sigma \rangle \to^* \langle \text{skip}, \sigma' \rangle \), (3) \(C[c] \sigma = \sigma' \)

Proof that (1) \(\Rightarrow\) (2). Proof is by structural induction over the derivation \(D \) of \(\langle c, \sigma \rangle \downarrow \sigma' \).

IH: If \(\langle c_0, \sigma_0 \rangle \downarrow \sigma'_0 \) has a derivation \(D_0 < D \), then \(\langle c_0, \sigma_0 \rangle \to^* \langle \text{skip}, \sigma'_0 \rangle \).

(Base) Case 1: Suppose \(D \) ends in Rule L1:

\[
D = \frac{\langle \text{skip}, \sigma \rangle \downarrow \sigma}{(L1)}
\]

Thus, \(c = \text{skip} \) and \(\sigma = \sigma' \), so we conclude that \(\langle c, \sigma \rangle \to_n \langle \text{skip}, \sigma' \rangle \).

Case 2: Suppose \(D \) ends in Rule L2:

\[
D = \frac{D_1 \quad D_2}{(L2)}
\]

\[
D_1 = \frac{\langle c_1, \sigma \rangle \downarrow \sigma_2}{(c_1; c_2, \sigma) \downarrow \sigma'}
\]

\[
D_2 = \frac{\langle c_2, \sigma_2 \rangle \downarrow \sigma'}{(c_1; c_2, \sigma) \downarrow \sigma'}
\]

By IH with \(D_0 = D_1 \) and \(D_0 = D_2 \) (respectively), we have \(\langle c_1, \sigma \rangle \to^* \langle \text{skip}, \sigma_2 \rangle \) and \(\langle c_2, \sigma_2 \rangle \to^* \langle \text{skip}, \sigma' \rangle \) (respectively).

Lemma: If \(\langle c_1, c_2, \sigma \rangle \to_n \langle \text{skip}, \sigma_2 \rangle \) then \(\langle c_1; c_2, \sigma \rangle \to^* \langle \text{skip}, \sigma_2 \rangle \).

Proof: Proof is by induction on \(n \).

Base Case: If \(n = 0 \) then \(c_1 = \text{skip} \) and \(\sigma = \sigma_2 \). Thus, \(\langle \text{skip}; \text{skip}, \sigma \rangle \to_n \langle \text{skip}; \text{skip}, \sigma_2 \rangle \).

IH2: If \(\langle c_0, \sigma_0 \rangle \to_{n-1} \langle \text{skip}; \text{skip}, \sigma'_0 \rangle \) then \(\langle c_0; c_2, \sigma_0 \rangle \to^* \langle \text{skip}; \text{skip}, \sigma'_0 \rangle \).

Inductive Case: if \(n > 0 \) then \(\langle c_1, \sigma \rangle \to_1 \langle c'_1, \sigma_3 \rangle \to_{n-1} \langle \text{skip}, \sigma_2 \rangle \). From \(\langle c_1, \sigma \rangle \to_1 \langle c'_1, \sigma_3 \rangle \), Rule S1 derives \(\langle c_1; c_2, \sigma \rangle \to_1 \langle c'_1; c_2, \sigma_3 \rangle \). Applying IH2 with \(c_0 = c'_1; c_2, \sigma_0 = \sigma_3 \), and \(\sigma_0' = \sigma_2 \), we obtain \(\langle c'_1; c_2, \sigma_3 \rangle \to^* \langle \text{skip}; c_2, \sigma_2 \rangle \). In conclusion, \(\langle c_1; c_2, \sigma \rangle \to_1 \langle c'_1; c_2, \sigma_3 \rangle \to^* \langle \text{skip}; c_2, \sigma_2 \rangle \).

From the lemma, we conclude that \(\langle c_1; c_2, \sigma \rangle \to^* \langle \text{skip}; c_2, \sigma_2 \rangle \). Rule S1 derives \(\langle \text{skip}; c_2, \sigma_2 \rangle \to_1 \langle c_2, \sigma_2 \rangle \). We already proved that \(\langle c_2, \sigma_2 \rangle \to^* \langle \text{skip}, \sigma' \rangle \), so this completes the case.

(Base) Case 3: Suppose \(D \) ends in Rule L3:

\[
D = \frac{\langle a, \sigma \rangle \downarrow i}{(L3)}
\]

\[
D = \frac{\langle a = a, \sigma \rangle \downarrow i}{\sigma[v \mapsto i]}
\]

From \(\langle a, \sigma \rangle \downarrow i \), Lemma 1 proves that \(\langle a, \sigma \rangle \to^* \langle i, \sigma \rangle \).

Lemma: If \(\langle a, \sigma \rangle \to_n \langle i, \sigma' \rangle \) then \(\langle v = a, \sigma \rangle \to^* \langle v = i, \sigma' \rangle \).

Proof: Proof is by induction on \(n \).

Base Case: If \(n = 0 \) then \(a = i \) and \(\sigma = \sigma' \). Thus, \(\langle v = a, \sigma \rangle \to_0 \langle v = i, \sigma \rangle \).

IH2: If \(\langle a_0, \sigma_0 \rangle \to_{n-1} \langle i, \sigma'_0 \rangle \) then \(\langle v = a_0, \sigma_0 \rangle \to^* \langle v = i, \sigma'_0 \rangle \).

Inductive Case: if \(n > 0 \) then \(\langle a, \sigma \rangle \to_1 \langle a_0, \sigma_2 \rangle \to_{n-1} \langle i, \sigma' \rangle \). From \(\langle a, \sigma \rangle \to_1 \langle a_0, \sigma_2 \rangle \), Rule S3 derives \(\langle v = a, \sigma \rangle \to_1 \langle v = a_0, \sigma_2 \rangle \). Applying IH2 with \(a_0 = a_2, \sigma_0 = \sigma_2, \) and \(\sigma'_0 = \sigma' \), we obtain \(\langle v = a_2, \sigma_2 \rangle \to^* \langle v = i, \sigma' \rangle \). In conclusion, \(\langle v = a, \sigma \rangle \to_1 \langle v = a_2, \sigma_2 \rangle \to^* \langle v = i, \sigma' \rangle \).

From the lemma, we conclude that \(\langle v = a, \sigma \rangle \to^* \langle v = i, \sigma \rangle \). Rule S4 derives \(\langle v = i, \sigma \rangle \to_1 \langle \text{skip}, \sigma[v \mapsto i] \rangle \), completing the case.

Cases 4–6: Left as an exercise to the reader.
Proof that (2) \(\Rightarrow\) (3). It suffices to prove that if \(\langle c, \sigma \rangle \rightarrow \langle c', \sigma' \rangle\) then \(C[c] \sigma = C[c'] \sigma'\). Proof is by structural induction over the derivation \(D\) of \(\langle c, \sigma \rangle \rightarrow \langle c', \sigma' \rangle\).

IH: If \(\langle c_0, \sigma_0 \rangle \rightarrow \langle c_0', \sigma_0' \rangle\) has a derivation \(D_0 \prec D\), then \(C[c_0] \sigma_0 = C[c_0'] \sigma_0'\).

Case 1: Suppose \(D\) ends in Rule S2:

\[D = \frac{\langle c_1, \sigma \rangle \rightarrow \langle c_1', \sigma' \rangle}{\langle c_1; c_2, \sigma \rangle \rightarrow \langle c_1'; c_2, \sigma' \rangle} \ 	ext{(S2)} \]

Thus, \(c = c_1; c_2\) and \(c' = c_1'; c_2\). By IH with \(D_0 = D_1\), we have \(C[c_1] \sigma = C[c_1'] \sigma'\). We conclude that \(C[c_1; c_2] \sigma = C[c_2](C[c_1] \sigma) = C[c_2](C[c_1'] \sigma') = C[c_1; c_2] \sigma'\).

Cases 2–8: Left as an exercise to the reader. All except Case 8 (for while loops) are fairly straightforward. □

Proof that (3) \(\Rightarrow\) (1). Proof is by structural induction over \(c\).

IH: If \(C[c_0] \sigma_0 = \sigma_0'\) and \(c_0 \prec c\), then \(\langle c_0, \sigma_0 \rangle \Downarrow \sigma_0'\) is derivable.

(Base) Case 1: Suppose \(c = \text{skip}\). Then \(C[c] = i\), and therefore \(\sigma' = \sigma\). Rule L1 thus derives \(\langle \text{skip}, \sigma \rangle \Downarrow \sigma\).

Case 2: Suppose \(c = c_1; c_2\). Then \(C[c] = C[c_2](C[c_1] \sigma)\). Applying the IH with \(c_0 = c_1, \sigma_0 = \sigma, \) and \(\sigma_0' = C[c_1] \sigma\) implies that \(\langle c_1, \sigma \rangle \Downarrow C[c_1] \sigma\) has a derivation \(D_1\). Applying the IH with \(c_0 = c_2, \sigma_0 = C[c_1] \sigma, \) and \(\sigma_0' = \sigma'\) implies that \(\langle c_2, C[c_1] \sigma \rangle \Downarrow \sigma'\) has a derivation \(D_2\). We can hence derive:

\[
\begin{array}{c}
D_1 \\
\hline \\
\langle c_1, \sigma \rangle \Downarrow C[c_1] \sigma \\
\hline \\
D_2 \\
\hline \\
\langle c_1; c_2, \sigma \rangle \Downarrow \sigma' \\
\end{array}
\]

(L2)

Cases 3–5: Left as an exercise to the reader.

Case 6: Suppose \(c = \text{while } b \text{ do } c_1\). Then \(C[c] = \text{fix}(\Gamma)\). We will prove \(P(\text{fix}(\Gamma))\) by fixed point induction, where property \(P\) is defined by \(P(g) \equiv \forall \sigma \in g^- : \langle c, \sigma \rangle \Downarrow g(\sigma)\).

Base Case: \(P(\bot)\) holds vacuously.

IH2: Assume \(P(g)\). That is, \(\sigma_0 \in g^- \implies \langle c_0, \sigma_0 \rangle \Downarrow g(\sigma_0)\).

IC: Let \(\sigma \in \Gamma(g)^-\) be given.

Case 1: If \(B[b] \Downarrow F\) then \(\sigma' = \Gamma(g) \sigma = \sigma\). Since \(B[b] \Downarrow F\), Lemma 2 proves that \(\langle b, \sigma \rangle \Downarrow F\) has a derivation \(D_1\). Thus, we can derive:

\[
\begin{array}{c}
D_1 \\
\hline \\
\langle b, \sigma \rangle \Downarrow F \\
\langle \text{skip}, \sigma \rangle \Downarrow \sigma \\
\hline \\
\langle \text{if } b \text{ then } (c_1; c) \text{ else skip} \rangle \Downarrow \sigma \\
\end{array}
\]

(L5)

Case 2: If \(B[b] \Downarrow T\) then \(\sigma' = \Gamma(g) \sigma = g(C[c_1] \sigma)\). Since \(B[b] \Downarrow T\), Lemma 2 proves that \(\langle b, \sigma \rangle \Downarrow T\) has a derivation \(D_1\). Applying IH(1) with \(c_0 = c_1, \sigma_0 = \sigma, \) and \(\sigma_0' = C[c_1] \sigma\) implies that \(\langle c_1, \sigma \rangle \Downarrow C[c_1] \sigma\) has a derivation \(D_2\). Applying IH2 with \(c_0 = c, \sigma_0 = C[c_1] \sigma, \) and \(\sigma_0' = \sigma'\) implies that \(\langle c, C[c_1] \sigma \rangle \Downarrow g(C[c_1] \sigma) = \sigma'\) has a derivation \(D_3\). We can therefore derive:

\[
\begin{array}{c}
D_1 \\
\hline \\
\langle b, \sigma \rangle \Downarrow T \\
\hline \\
D_2 \\
\hline \\
\langle c_1; c, \sigma \rangle \Downarrow \sigma' \\
\langle c_1; c, \sigma \rangle \Downarrow \sigma' \\
\langle \text{if } b \text{ then } (c_1; c) \text{ else skip} \rangle \Downarrow \sigma' \\
\langle \text{if } b \text{ then } (c_1; c) \text{ else skip} \rangle \Downarrow \sigma' \\
\end{array}
\]

(L6)