Axiomatic Semantics

CS 6371: Advanced Programming Languages
Roadmap

• Operational Semantics
 – Large-step and Small-step varieties
 – formally defines the operation of a machine that executes a program

• Denotational Semantics
 – defines the mathematical object (i.e., function) that a program denotes

• Static Semantics (Type-theory)
 – performs a static analysis that prevents certain runtime errors (“stuck states”)

• Today: Axiomatic Semantics
Axiomatic Semantics

• Goal: We wish to prove program correctness
 – type-theory too weak* (just proves soundness)
 – operational semantics requires us to step outside the derivation system to prove things about derivations
 – denotational semantics creates a massive mathematical object that encodes all memory states (too hard to reason about)

• Solution (Axiomatic Semantics):
 – derivation system that reduces a program to a (small) set of theorems that, if proved, would collectively imply program correctness
 – prove the resulting theorems to prove correctness

*Actually, some advanced type systems (like the one used by Coq) encode an entire axiomatic semantics into the type system, but let’s classify that as a merging of type theory with axiomatic semantics.
Two Kinds of “Correctness”

• Partial Correctness
 – Notation: \{A\}c\{B\} (called a Hoare Triple)
 – If “A” is true before executing c, and if c terminates, then “B” is true after executing c.
 – A is “precondition”, B is “postcondition”

• Total Correctness
 – Notation: [A]c[B]
 – If “A” is true before executing c, then c eventually terminates and “B” is true once it does.
Examples

• \{x \leq 10\} \text{ while } (x \leq 10) \text{ do } x := x + 1 \text{ } \{ \text{ ? } \}
Examples

• \{x \leq 10\} while (x\leq10) do x:=x+1 \{x=11\}
Examples

• \{x \leq 10\} while (x\leq 10) do x:=x+1 \{x=11\}
• \[x \leq 10\] while (x\leq 10) do x:=x+1 [?]
Examples

• \{x \leq 10\} \text{ while } (x \leq 10) \text{ do } x := x + 1 \{x = 11\}
• [x \leq 10] \text{ while } (x \leq 10) \text{ do } x := x + 1 [x = 11]
Examples

• \(\{x \leq 10\}\) while \((x \leq= 10)\) do \(x:=x+1\) \(\{x=11\}\)
• \([x \leq 10]\) while \((x \leq= 10)\) do \(x:=x+1\) \([x=11]\)
• \([T]\) while \((x \leq= 10)\) do \(x:=x+1\) \([\ ? \]\)
Examples

• \{x \leq 10\} while \ (x \leq 10) \ do \ x := x + 1 \ \{x = 11\}
• \[x \leq 10\] while \ (x \leq 10) \ do \ x := x + 1 \ [x = 11]
• \[T\] while \ (x \leq 10) \ do \ x := x + 1 \ [x \geq 11]
Examples

• \{x \leq 10\} while (x \leq 10) do x := x + 1 \{x = 11\}
• [x \leq 10] while (x \leq 10) do x := x + 1 [x = 11]
• [T] while (x \leq 10) do x := x + 1 [x \geq 11]
• [x = i] while (x \leq 10) do x := x + 1 [?]
Examples

• \{x \leq 10\} while (x \leq 10) do x := x + 1 \{x = 11\}
• \[x \leq 10\] while (x \leq 10) do x := x + 1 \[x = 11\]
• \[T\] while (x \leq 10) do x := x + 1 \[x \geq 11\]
• \[x = \bar{i}\] while (x \leq 10) do x := x + 1 \[x = \text{max}(11, \bar{i})\]
Examples

- \{x \leq 10\} \text{ while } (x \leq 10) \text{ do } x := x + 1 \{x = 11\}
- \[x \leq 10\] \text{ while } (x \leq 10) \text{ do } x := x + 1 \[x = 11\]
- \[T\] \text{ while } (x \leq 10) \text{ do } x := x + 1 \[x \geq 11\]
- \[x = \bar{i}\] \text{ while } (x \leq 10) \text{ do } x := x + 1 \[x = \max(11, \bar{i})\]
- \{T\} \text{ while } \text{true} \text{ do } \text{skip} \{F\}
Examples

• \{x\leq 10\} while (x\leq 10) do x:=x+1 \{x=11\}
• [x\leq 10] while (x\leq 10) do x:=x+1 [x=11]
• [T] while (x\leq 10) do x:=x+1 [x\geq 11]
• [x=i] while (x\leq 10) do x:=x+1 [x=\text{max}(11,i)]
• \{\text{any A}\} any non-terminating program \{\text{any B}\}
Examples

• \{x \leq 10\} \text{ while } (x \leq 10) \text{ do } x := x + 1 \ \{x = 11\}
• [x \leq 10] \text{ while } (x \leq 10) \text{ do } x := x + 1 \ [x = 11]
• [T] \text{ while } (x \leq 10) \text{ do } x := x + 1 \ [x \geq 11]
• [x = \bar{i}] \text{ while } (x \leq 10) \text{ do } x := x + 1 \ [x = \max(11, \bar{i})]
• \{\text{any A}\} \text{ any non-terminating program } \{\text{any B}\}
• \{F\} \text{ any program } \{\text{any B}\}
Language of Assertions

• First-order logic with arithmetic:

 arithmetic exps
 a ::= i | v | \tilde{v} | a_1+a_2 | a_1-a_2 | a_1*a_2
 assertions
 A ::= T | F | $a_1=a_2$ | $a_1\leq a_2$ | $A_1\land A_2$ | $A_1\lor A_2$ | $\neg A$ | $A_1\Rightarrow A_2$ | $\forall v.A$ | $\exists v.A$

• From these one can construct all functions and logical operators, so we will freely use extensions to the above.
Hoare Logic

• First published by Tony Hoare [1969]
 – First and most famous axiomatic semantics
 – “An axiomatic basis for computer programming”
 – Often cited as one of the greatest CS papers of all time (only 6 pages long!)
 – Optional: read the original paper (linked from course website)

• Adaptation to SIMPL consists of...
 – six axioms (rules) describing SIMPL programs
 – inference rules of first-order logic
 – axioms of arithmetic (e.g., Peano arithmetic)