Enforceability Theory

CS6301-002: Language-based Security
Dr. Kevin W. Hamlen
Motivating Questions

• Can we prove that mechanism M enforces policy P?
 – What is the mathematical definition of a policy?
 – What does it mean to “enforce” a policy?

• Are there limits to what is enforceable?
 – Which enforcement approaches are best suited to which policies?
 – Are there some policies that are completely beyond any known enforcement strategy?
 – Are some enforcement approaches strictly more powerful than others?

• What is the mathematical landscape of policies, policy classes, and enforcement mechanisms?
Enforceable Security Policies
[Schneider, TISSEC 2000]

• Proposed a theory of Execution (a.k.a. Reference) Monitors (EMs)
 – EMs watch untrusted programs at runtime
 – impending events mediated by the EM
 – impending violations solicit EM interventions (termination)
• Example: File system access control
 – EM is inside the OS
 – decides policy violations using access control lists (ACLs)
Programs and Policies

• An execution χ is a sequence of security-relevant program events e or actions
 – sequence may be finite or (countably) infinite
 – simplifying formalism: Model program termination as an infinite repetition of e_{halt}
 – now all executions are infinite length sequences

• A program Π is a SET of possible executions
 – one execution for each possible input
 • input can be an infinite sequence read over time
 • model non-determinism/randomness as an implicit input

• A policy P is a PROPERTY of programs
 – partitions the space of all programs into two groups: permissible programs and impermissible ones
 – impermissible programs are censored somehow (e.g., terminated on violating runs)
EM-enforceable Policies

1) $P(Π) ≡ ∀χ$
Security Automata
[Erlingsson & Schneider, NSPW ’99]

- Formalization of safety policies
 - finite state automaton
 - accepts language of permissible executions
 - alphabet = set of events
 - edge labels = event predicates
 - all states accepting (language is prefix-closed)
- Example: no sends after reads
In-lined Reference Monitors

- Disadvantages of traditional EMs
 - inefficient: context-switch on every event
 - large TCB: EM extends the OS
 - weak: EM can’t easily see internal program actions
 - non-modular: changing policy requires changing OS
In-lined Reference Monitors

- **Main idea:**
 - Implement a reference monitor by *in-lining* its logic into the untrusted code
 - In-lining procedure should be automated

- **Challenges:**
 - How to automatically generate EM code?
 - How to preserve (non-violating) program logic?
 - How to prevent (malicious) programs from corrupting the EM?
In-lining a Security Automaton

Example: Let’s in-line this security automaton

\[\neg (push \lor ret) \quad \neg push \]

(Policy: push exactly once before returning)

into this binary code
In-lining Algorithm

1) Conceptually in-line the automaton just before EVERY event

2) Partially evaluate (i.e., specialize) the automaton edges to the event it guards – some edges disappear entirely

3) Generate guard code for the remaining automaton logic
In-lining Example

Insert security automata

Evaluate transitions

Simplify automata

Compile automata

mul r1, r0, r0

if state == 0
then state := 1
else ABORT
push r1
ret
Computability Classes For Enforcement Mechanisms

Hamlen, Morrisett, and Schneider

TOPLAS 2006
IRMs vs. EMs

• Implicit assumption of the Schneider paper:
 – in-lining is just an implementation strategy
 – doesn’t affect set of enforceable policies
• Are we sure?
• Two interesting issues:
 – A policy constrains a program, right? But now the EM is part of the program. Can it constrain itself?
 – EM was previously a black box. But now it’s subject to the laws of the computational model.
• Big idea: Is there a link between computability and enforceability?
Review: Computation Theory

• Turing Machine
 – Alan Turing (1936)
 – simple mathematical model of a computer
 – consists of:

 a “tape”
 ![Tape diagram]

 a “tape head”
 ![Tape head diagram]

 a “finite control”
 ![Finite control diagram]
TM Power

- Can do simple arithmetic
- TMs don’t necessarily terminate
- Can do anything programmable with logic gates (AND, OR, XOR, ...)
- Can evaluate a C program encoded in binary
- Can simulate arbitrary TMs (given as input) on arbitrary inputs (given as input)
 - called a “universal TM”
- Intuition: Can do anything a real computer can do (but very, very slowly)
- But TMs can’t solve undecidable problems (e.g., halting problem)
Enforcement Strategy #1: Static Analysis

- **Approach:**
 - analyze untrusted code BEFORE it runs
 - return “accept” or “reject” in finite time
- **Pros:**
 - immediate answer
 - code runs at full speed
- **Cons:**
 - high load overhead
 - weak in power...?
Enforcement Strategy #1: Static Analysis

Approach:
- analyze untrusted code BEFORE it runs
- return "accept" or "reject" in finite time

Pros:
- immediate answer
- code runs at full speed

Cons:
- high load overhead
- weak in power...

Recursively Decidable Policies
Enforcement Strategy #2: Execution Monitoring

- **Approach:**
 - EM monitors events
 - intervenes to prevent violations
 - implemented outside program

- **Cons:**
 - no answer until execution
 - runtime slow-down (context-switches)

- **Pros:**
 - lower load-time overhead than static analysis
 - more powerful...?
Enforcement Strategy #2: Execution Monitoring

- **Approach:**
 - EM monitors events
 - intervenes to prevent violations
 - implemented outside program
- **Cons:**
 - no answer until execution
 - runtime slow-down (context-switches)
- **Pros:**
 - lower load-time overhead than static analysis
 - more powerful...?

co-Recursively Enumerable Policies
Arithmetic Hierarchy
Arithmetic Hierarchy
Arithmetic Hierarchy

$D(x) \exists \text{ eventually halts}$

$\exists \text{ decidable TM } x$
Arithmetic Hierarchy

- Decidable: $D(x)$
- Recursively Enumerable: $\exists y. D(x,y)$
- TM x eventually halts
- TM x never halts
Arithmetic Hierarchy

- Decidable: $\exists y. D(x,y)$
- Recursively Enumerable: $\forall y. D(x,y)$
- Co-RE: $\forall y. D(x,y)$
- Σ: $\exists y. D(x,y)$
- Π: $\forall y. D(x,y)$

- TM x never halts
- TM x eventually halts
- TM x sometimes loops
Arithmetic Hierarchy

- **Decidable** $D(x)$
- **Recursively Enumerable** $\exists y. D(x, y)$
- **TM x eventually halts**
- **co-RE** $\forall y. D(x, y)$
- **TM x never halts**
- **Σ_2** $\exists z. \forall y. D(x, y, z)$
- **TM x sometimes loops**
- **Π** $\forall y. D(x, y)$
- **Recursively Enumerable** $\exists y. D(x, y)$
- **TM x eventually halts**
- **TM x always halts**
- **decidable** $D(x)$
Arithmetic Hierarchy

- **Decidable** \(D(x) \)
- **Recursively Enumerable** \(\exists y. D(x, y) \)
- **TM x eventually halts**
- **co-RE**
- **\(\Pi_2 \) always halts**
 - \(\forall z. \exists y. D(x, y, z) \)
- **\(\Sigma_2 \) sometimes loops**
 - \(\exists z. \forall y. D(x, y, z) \)
- **TM x never halts**
- **\(\Pi \) never halts**
- **TM x always halts**
- **\(\Sigma \) always halts**
 - \(\forall z. \exists y. D(x, y, z) \)
- **Recursively Enumerable**
 - \(\exists y. D(x, y) \)
- **decidable**
 - \(\exists y. D(x, y) \)
Computability & Enforceability

- static analysis = recursively decidable
- EM-enforceable = co-RE

Conclusions so far:
- EMs are strictly more powerful than static
- but they cannot enforce RE, higher classes etc.

What about IRMs? Same as EMs?
- Surprising answer: No!
IRM Strategy: Rewrite-enforcement

- **Approach:**
 - transform untrusted code
 - must return new program in finite time
 - transformed code must satisfy policy
 - behavior of safe code must be preserved

- **Pros:**
 - lowest runtime overhead
 - load-time overhead is once-only
 - sometimes no answer until execution
Rewrite-enforceability

A policy P is *rewrite-enforceable* if and only if there exists a computable function $R : M \rightarrow M$ such that...
- $\text{image}(R) \subseteq P$ (all outputs are policy-adherent)
- $P(M) \Rightarrow (R(M) \approx M)$ (behavior of policy-adherent programs is preserved)

Need a definition of program-equivalence \approx
- turns out any “reasonable” definition will do
- Example: equal inputs produce equal outputs

Major difference from EM model: IRM must obey policy, whereas EM has no such obligation
- IRM’s intervention must not be a policy violation
- IRM must possess an intervention that precludes the impending violation

On the other hand, IRM has luxury of CHANGING the untrusted code! This is a power that EMs lack.
Main Discoveries

- There are EM-enforceable policies that are not RW-enforceable.
 - Example: Untrusted code must not print the secret stored at address a, and must not read address a.

- There are RW-enforceable policies that are not EM-enforceable.
 - Example: Untrusted code must behave identically to program M1 on all inputs

- The class of all RW-enforceable policies is not equal to ANY class of the arithmetic hierarchy
 - Open question: What is it, exactly?
 - See also research on Edit Automata

- Next time:
 - More practical examples of RW-enforceable, non-EM-enforceable policies, and how to enforce them
 - How the theory affects certifying IRM technologies