Introduction to Model-checking
CS 6301-002: Language-based Security

Kevin W. Hamlen

October 5, 2015
Software Verification Approaches

- **Unit Testing / Fuzzing**
 - Throw many test inputs (often randomly generated) at software and see whether it fails.
 - Good for fault detection. Inadequate for security.
 - input space usually infinite
 - attackers seek out and exploit untested inputs

- **Program-Proof Co-Development (Coq)**
 - Implement software in a “nice” (e.g., functional) language.
 - Write formal correctness properties and proofs.
 - Proofs are *machine-checked* (not trusted).
 - Pros: highest assurance, covers infinite state space
 - Con: painful to write proofs

- **Today: Model-checking**
 - a middle-ground between random fuzzing and formal proofs
 - Express software as an abstract, finite-state *model* M.
 - Express security property as a logical predicate ϕ.
 - Decide $M \models \phi$ by exhaustive state-space search.
Some History

- First developed in 1980s by Clarke, Emerson, and Sifakis (Turing Award 2007)
 - primarily targeted hardware verification
 - disillusionment with proofs in 80s and 90s
 - found previously undetected errors in 1992 IEEE Future+ cache coherence protocol
 - 1994 Intel Pentium floating-point bug
 - passed unit testing
 - cost Intel $400–500 million
 - could have been detected by model-checking
 - model-checking now routinely used by Intel, AMD, IBM, Lucent, etc.
- Rise of Software Model-checking in late 90s
 - VeriSoft (Lucent), SPIN (Holtzmann, Bell Labs)
 - Big challenge: state-space explosion
Example (from JavaPathFinder documentation)

1 Random random = new Random();
2 int a = random.nextInt(2);
3 System.out.println("a=" + a);

// lots of code here

4 int b = random.nextInt(3);
5 System.out.println("b=" + b);
6 int c = a/(b+a-2);
7 System.out.println("c=" + c);

Sample run:
 a = 1
 b = 0
 c = -1
State Space

```
s t a r t

a = 0

a = 0
b = 0

a = 0
b = 1

a = 0
b = 2

c = 0

c = 0
error

a = 0
b = 1

c = 0
error

a = 0
b = 2

c = 1

a = 1
b = 0

a = 1
b = 1

a = 1
b = 2

a = 1
b = 1

a = 1
b = 2

c = 1
error
```
Not always (or even usually) trees
 ▶ conditionals = multiple in-edges
 ▶ program loops = cycles

Does not always match control-flow graph structure
 ▶ One program line could correspond to many different states, depending on the values of its variables.
 ▶ Abstracting coalesces states (more on this later...)

Can be huge
 ▶ How many states if we change the “2” argument in line 2?
Properties

- Typically expressed in a temporal logic
- Flagship example: Linear Temporal Logic (LTL)
- Assertions: $\pi \models \phi$ — path π models property ϕ
 - atomic propositions (e.g., is_error, $a = 2$, etc.)
 - $\neg \phi$ — negation
 - $\phi_1 \lor \phi_2$ — disjunction
 - $X(\phi)$ — next ϕ
 - $U(\phi_1, \phi_2)$ — ϕ_1 until ϕ_2
 - $F(\phi)$ — finally ϕ
 - $G(\phi)$ — globally ϕ
- Exercise: Do all paths from “start” model the following?
 - $X(a = 0)$
 - $U(\neg \text{is}_\text{error}, b > 0)$
 - $F(U(\text{false}, b \leq 2))$
Branching Temporal Logics

- LTL cannot express most existential properties
 - Example: “for every state there exists a non-error step”
- Solution: Branching Temporal Logics
- Flagship example: Modal μ-Calculus
- Assertions: $s \models \psi$ — state s is a member of the set of all states denoted by ψ
 - $\psi_1 \land \psi_2$ — conjunction (intersection)
 - $\psi_1 \lor \psi_2$ — disjunction (union)
 - $[a]\psi$ — all outgoing a-transitions model ψ
 - $\langle a \rangle \psi$ — some outgoing a-transitions model ψ
 - $\mu X . \psi$ — least fixed point
 - $\nu X . \psi$ — greatest fixed point
- What are least and greatest “fixed points”?
Definition: A *fixed point* of a function $f : A \rightarrow A$ is a value $x \in A$ such that $f(x) = x$.

- **Examples:**
 - What is a fixed point of $f(x) = x + 1$?
 - What is a fixed point of $g(x) = x^2$?
 - What is a fixed point of $h(S) = \{x^2 \mid x \in S\}$?

- When f is a function from sets to sets, we say S is...
 - ...a *least fixed point* if S is a fixed point and no (strict) subset of S is a fixed point.
 - ...a *greatest fixed point* if S is a fixed point and no (strict) superset of S is a fixed point.

- Can a function have multiple least fixed points or multiple greatest fixed points?
Fixed Point Operators

- Back to modal μ-calculus:
 - $\mu X . \psi$ is the least set S such that $S = \psi[X := S]$
 - $\nu X . \psi$ is the greatest set S such that $S = \psi[X := S]$

- Finding least/greatest fixed points:
 - Find $\mu X . \psi$ inductively:
 - start with $X = \emptyset$
 - keep adding things to X until no progress
 - Find $\nu X . \psi$ co-inductively:
 - start with $X =$ universe of all states
 - keep removing things from X until no progress

- Examples:
 - What is $\mu X . (X \lor \langle \rangle \text{is_error})$?
 - What is $\nu X . (\text{is_error} \lor \langle \rangle X)$?
State Space Explosion Problem

- Main challenge: What if the state space is huge?
- Example: How many states does the following program have?

```c
int i = 0;
while true do
    i := i + 1;
```

- Solution: Abstract Interpretation
 - Instead of having one state for every mapping of variables to values, label states with abstract properties.
 - Example: What if we only care about whether \(i \) is zero (e.g., to avoid division-by-zero)?
 - Could instead just have one state for each possible sign of \(i \)
 - \(zero + positive = ? \)
 - \(positive + positive = ? \)
State Space Explosion Problem

- Main challenge: What if the state space is huge?
- Example: How many states does the following program have?

```plaintext
int i = 0;
while true do
    i := i + 1;
```

- Solution: Abstract Interpretation
 - Instead of having one state for every mapping of variables to values, label states with abstract properties.
 - Example: What if we only care about whether \(i \) is zero (e.g., to avoid division-by-zero)?
 - Could instead just have one state for each possible sign of \(i \):
 - \(zero + positive = positive \)
 - \(positive + positive = ? \)
State Space Explosion Problem

- Main challenge: What if the state space is huge?
- Example: How many states does the following program have?

```plaintext
int i = 0;
while true do
    i := i + 1;
```

- Solution: Abstract Interpretation
 - Instead of having one state for every mapping of variables to values, label states with abstract properties.
 - Example: What if we only care about whether `i` is zero (e.g., to avoid division-by-zero)?
 - Could instead just have one state for each possible sign of `i`
 - `zero + positive = positive`
 - `positive + positive = positive`
 - We’re finished with only 2 states to explore!
Counterexample Guided Abstraction Refinement (CEGAR)

- Over-abstraction Problem
 - If model-check succeeds on abstract model, then we’re done. But...
 - Abstracting often forgets information needed to prove correctness.
 - Results in false rejection (model-checker signals fault where there is none)

- Solution: Iteratively Abstract and Refine
 1. Abstract until search space is feasible.
 2. Exhaustively search the space. If model-check rejects...
 3. Test the counterexample on the original (non-abstract) search space. If it’s a real counterexample, we found a real bug. Otherwise...
 4. We must have abstracted too much. Refine (opposite of abstract) and repeat.

- Next time: Science of Cyber Deception!