
From Patches to Honey-Patches: Lightweight
Attacker Misdirection, Deception, and Disinformation∗

Frederico Araujo Kevin W. Hamlen
The University of Texas at Dallas

{frederico.araujo, hamlen}@utdallas.edu

Sebastian Biedermann Stefan Katzenbeisser
Technische Universität Darmstadt

{biedermann, katzenbeisser}@seceng.informatik.tu-darmstadt.de

ABSTRACT
Traditional software security patches often have the unfortu-
nate side-effect of quickly alerting attackers that their attempts
to exploit patched vulnerabilities have failed. Attackers greatly
benefit from this information; it expedites their search for
unpatched vulnerabilities, it allows them to reserve their ulti-
mate attack payloads for successful attacks, and it increases
attacker confidence in stolen secrets or expected sabotage
resulting from attacks.

To overcome this disadvantage, a methodology is pro-
posed for reformulating a broad class of security patches into
honey-patches—patches that offer equivalent security but
that frustrate attackers’ ability to determine whether their
attacks have succeeded or failed. When an exploit attempt
is detected, the honey-patch transparently and efficiently
redirects the attacker to an unpatched decoy, where the at-
tack is allowed to succeed. The decoy may host aggressive
software monitors that collect important attack information,
and deceptive files that disinform attackers. An implementa-
tion for three production-level web servers, including Apache
HTTP, demonstrates that honey-patching can be realized for
large-scale, performance-critical software applications with
minimal overheads.

Categories and Subject Descriptors: D.2.7 [Software
Engineering]: Distribution, Maintenance, and Enhancement;
D.4.6 [Operating Systems]: Security and Protection; K.6.5
[Management of Computing and Information Systems]: Secu-
rity and Protection—Unauthorized access

Keywords: Intrusion detection and prevention; Honeypots

1. INTRODUCTION
Patching continues to be perhaps the most ubiquitous and

widely accepted means for addressing newly discovered security
vulnerabilities in commodity software products. Microsoft

∗This research was supported by ONR grant N00014-14-1-0030,
AFOSR grant FA9550-14-1-0173, NSF grant 1054629, CASED
and EC-SPRIDE Darmstadt, and BMBF grant 01C12S01V.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS’14, November 3–7, 2014, Scottsdale, Arizona, USA.
Copyright 2014 ACM 978-1-4503-2957-6/14/11 ...$15.00.
http://dx.doi.org/10.1145/2660267.2660329.

alone released over 100 security bulletins spanning 330 sepa-
rate vulnerabilities in its products during 2013 [33]. However,
despite the increasingly prompt availability of security patches,
a majority of attacks in the wild continue to exploit vulnera-
bilities that are known and for which a patch exists [5, 9, 23].
This is in part because patch adoption is not immediate,
and may be slowed by various considerations, such as patch
compatibility testing, in some sectors.

As a result, even determined, resourceful attackers often
probe and exploit unpatched, patchable vulnerabilities in their
victims. For example, a 2013 security audit of the U.S. De-
partment of Energy revealed that 60% of DoE desktops lacked
critical patch updates, leading to a compromise and exfiltra-
tion of private information on over 100,000 individuals [22].
The prevalence of unpatched systems has led to tools and
technologies via which attackers can quickly derive unique,
previously unseen exploits from patches [12], allowing them to
infiltrate vulnerable systems.

The obvious solution is, of course, to obey the golden rule
of “patch early, patch often.” However, once applied, typical
security patches have a significant drawback—they advertise
that the system is patched. For example, a request that
yields garbage output from an unpatched server, but yields
an error message from a patched server, readily divulges
whether the server is vulnerable. Attackers can quickly and
efficiently probe such servers for known vulnerabilities to
discover patching lapses and prepare potent attacks.

To misdirect such attackers, we propose patching vulnera-
bilities in such a way that failed exploits appear to succeed.
This frustrates attackers’ ability to discern which apparent
vulnerabilities will actually divulge secrets or do damage
once fully exploited. We refer to such a patch as a honey-
patch. Honey-patches offer equivalent security to conventional
patches, but respond to attempted exploits by transparently
redirecting the attacker’s connection to a carefully isolated
decoy environment. The decoy is unpatched, allowing the
attack to succeed, but gathers information about the threat
(e.g., collecting and analyzing previously unseen malware),
and feeds disinformation to the attacker in the form of falsified
data (cf., [11, 48,62]).

As an illustration of where honey-patching could be useful,
consider the digital infrastructure mandated by the U.S. Pa-
tient Protection and Affordable Care (“Obamacare”) Act [52].
The act entails the deployment of federal- and state-level web
servers that sell health care plans. These servers have been
identified as inviting targets of directed cyber-attacks, since
they receive a wealth of personally identifying information that
could be abused for identity theft and fraud [21]. Patching
these servers in the conventional way protects against known

Listing 1: Abbreviated patch for Heartbleed
1 + if (1 + 2 + payload + 16 > s->s3->rrec.length)
2 + return 0; //silently discard

exploits, but facilitates an attacker’s probing efforts until an
unpatched vulnerability is found. Network-level filters redirect
known malware to honey-servers, but may not catch custom
malware payloads whose exploitive behavior is only detected
at execution.

However, honey-patching the servers and stocking the
decoy environments with false information that has been
red-flagged in identity theft databases greatly increase risk for
attackers who manage to bypass other safeguards to reach
the decoy. Apparently successful attacks may then yield
tainted information that could lead to an arrest when used.
Even if the deception is eventually uncovered, defenders gain
valuable threat information by aggressively monitoring the
most dangerous attacks, and attacker reconnaissance efforts
are impeded.

While the concept of honey-patching is straightforward,
realizing it in practice is not. To demonstrate and evaluate
its feasibility, we present an implementation for three high-
performance web servers: Apache HTTP, Lighttpd, and Nginx.
Our implementation, RedHerring, Redirects Exploits to
Deceptive Honeypot Environments for counteRReconnaissance
and INformation Gathering. We chose Apache as our flag-
ship case-study due to its complexity (2.2M SLOC) and its
use in many security-sensitive contexts. For example, most
Obamacare web sites presently use it.

Our work includes the following contributions:

• We outline a strategy for easily reformulating many
vendor-supplied, source-level patches into equally secure
honey-patches that raise attacker risk and uncertainty.

• We introduce a light-weight, resource-efficient, and
fine-grained approach to transparently fork attacker
connections to a sandboxed decoy devoid of secrets.

• Our decoy generation incorporates a novel technique
for efficient in-memory redaction of secrets that could
otherwise be abused by attackers.

• Implementations and evaluations for three production
web servers demonstrate that the approach is feasible for
large-scale, performance-critical software with minimal
overheads for legitimate users.

Section 2 first outlines the honey-patching process and
presents our system design. Section 3 describes the architecture
in greater detail, and Section 4 explores the central challenge
of efficient, live redirection of attacker sessions to decoys. Our
implementation is summarized in Section 5 and evaluated
in Section 6. Discussion and related work are presented in
Sections 7 and 8, respectively, and Section 9 concludes with a
summary of outcomes and future directions.

2. SYSTEM OVERVIEW
We first outline the concept of a honey-patch, and then de-

scribe primary challenges and corresponding high-level design
decisions for honey-patching. Finally, we summarize important
technologies that undergird our implementation approach.

2.1 From Patches to Honey-Patches
Listing 1 shows an abbreviated patch in diff style for the

Heartbleed OpenSSL buffer over-read vulnerability (CVE-
2014-0160) [14]—one of the most significant vulnerability

Listing 2: Honey-patch for Heartbleed
1 if (1 + 2 + payload + 16 > s->s3->rrec.length)
2 + {
3 + hp fork();
4 - return 0; //silently discard
5 + hp skip(return 0); //silently discard
6 + }

disclosures in recent history, affecting a majority of then-
deployed web servers, including Apache. The patch introduces
a conditional that validates SSL/TLS heartbeat packets,
declining malformed requests. Prior to being patched, attackers
could exploit this bug to acquire sensitive information from
many web servers.

This patch exemplifies a common vulnerability mitigation:
dangerous inputs or program states are detected via a boolean
test, with positive detection eliciting a corrective action.
The corrective action is typically readily distinguishable by
attackers—in this case, the attacker request is silently declined.
As a result, the patched and unpatched programs differ only
on attack inputs, making the patched system susceptible to
probing. Our goal in this work is to introduce a strategy
whereby administrators of products such as Apache can
easily transform such patches into honey-patches, whose
corrective actions impede attackers and offer strategic benefits
to defenders.

Toward this end, Listing 2 presents an alternative, honey-
patched implementation of the same patch. In response
to a malformed input, the honey-patched application forks
itself onto a confined, ephemeral, decoy environment, and
behaves henceforth as an unpatched, vulnerable version of
the software. Specifically, line 3 forks the user session to
a decoy container, and macro hp_skip in line 5 elides the
rejection in the decoy container so that the attack appears
to have succeeded. Meanwhile, the attacker session in the
original container is safely terminated (having been forked to
the decoy), and legitimate, concurrent connections continue
unaffected.

Observe that the differences between the patch and the
honey-patch are quite minor, except for the fixed cloning
infrastructure that the honey-patch code references, and that
can be maintained separately from the server code. This
allowed us to formulate a Heartbleed honey-patch within
hours of receiving the vulnerability disclosure on April 7,
facilitating a quick, aggressive response to the threat [53]. In
general, only a superficial understanding of many patches is
required to convert them to honey-patches of this form. (A
more systematic study of honey-patchable patches is presented
in §6.) However, the cloning infrastructure required to facilitate
efficient, transparent, and safe redirection to decoys demands
a careful design.

2.2 Challenges & Design Decisions
Although the honey-patching approach described above is

simple on the surface, there are many significant security and
performance challenges that must be surmounted to realize
it in practice. For example, a näıve forking implementation
copies any secrets in the victim process’s address space, such as
encryption keys of concurrent sessions, over to the child decoy.
In a honey-patching framework this would be disastrous, since
the attack is allowed to succeed in the decoy, thereby giving
the attacker potential access to any secrets it may contain.

Moreover, practical adoption requires that honey-patches
(1) introduce almost no overhead for legitimate users, (2) per-

form well enough for attackers that attack failures are not
placarded, and (3) offer high compatibility with software that
boasts aggressive multi-processing, multi-threading, and active
connection migration across IPs. Solutions must be sufficiently
modular and generic that administrators require only a su-
perficial, high-level understanding of each patch’s structure
and semantics to reformulate it as an effective honey-patch.
Specifically, we envision the following practical requirements:

1. Remote forking of attacker sessions must happen live,
with no perceptible disruption in the target application;
established connections must not be broken.

2. Decoy deployment must be fast, to avoid offering overt,
reliable timing channels that advertise the honey-patch.

3. All sensitive data must be redacted before the decoy
resumes execution.

Together, these requirements motivate three main design
decisions. First, the required time performance precludes
system-level cloning (e.g., VM cloning [13]) for session forking;
instead, we employ a lighter-weight, finer-grained alternative
based on process migration through checkpoint-restart [41].
To scale to many concurrent attacks, we use an OS-level
virtualization technique to deploy forked processes to decoy
containers, which can be created, deployed, and destroyed
orders of magnitude faster than other virtualization techniques,
such as full virtualization or para-virtualization [60].

Second, our approach to remote session forking benefits
from the synergy between mainstream Linux kernel APIs and
user-space tools, allowing for a small freezing time of the target
application. To maintain established connections when forking,
we have conceived and implemented a connection relocation
procedure that allows for transparent session migration.

Third, to guarantee that successful exploits do not afford
attackers access to sensitive data stored in application memory,
we have implemented a memory redaction and light-weight syn-
chronization mechanism during forking. This censors sensitive
data from process memory before the forked (unpatched) ses-
sion resumes. Forked decoys host a deceptive file system that
omits all secrets, and that can be laced with disinformation to
further deceive, delay, and misdirect attackers.

2.3 Threat Model
Attackers in our model submit malicious inputs (HTTP

requests) intended to probe and exploit known vulnerabilities
on victim web servers. Our system does not defend against
exploits of previously unknown (i.e., zero-day) vulnerabilities;
such protection is outside our scope.

Although the exploited vulnerabilities are known, we assume
that the attack payloads might be completely unique and
therefore unknown to defenders. Such payloads might elude
network-level monitors, and are therefore best detected at the
software level at the point of exploit. We also assume that
attackers might use one payload for reconnaissance but reserve
another for the final attack. Misleading the attacker into
launching the final attack is therefore useful for discovering
the final attack payload, which can divulge attacker strategies
and goals not discernible from the reconnaissance payload
alone.

Attacker requests are processed by a server possessing
strictly user-level privileges, and must therefore leverage web
server bugs and kernel-supplied services to perform malicious
actions, such as corrupting the file system or accessing other
users’ memory to access confidential data. The defender’s
ability to thwart these and future attacks stems from his

ability to deflect attackers to fully isolated decoys and perform
counterreconnaissance (e.g., attack attribution and information
gathering).

2.4 Background
Apache HTTP has been the most popular web server since
April 1996 [4]. Its market share includes 54.5% of all active
websites (the second, Nginx, has 11.97%) and 55.45% of the
top-million websites (against Nginx with 15.91%) [42]. It is a
robust, commercial-grade, feature-rich open-source software
product comprised of 2.27M SLOC mostly in C [44], and
has been tested on millions of web servers around the world.
These characteristics make it a highly challenging, interesting,
and practical flagship case study to test our approach.

Process Checkpoint-restart. Process migration through
checkpoint-restart is the act of transferring a running process
between two nodes by dumping its state on the source and
resuming its execution on the destination. (A mechanism to
transfer the state between nodes is assumed.) Recently, there
has been growing interest in this problem, especially for high-
performance computing [27, 57]. As a result, several emerging
tools have been developed to support performance-critical
process checkpoint-restart (e.g., BLCR [20], DMTCP [3], and
CRIU [18]). Process checkpoint-restart plays a pivotal role
in making the honey-patch concept viable. In this work, we
have extended CRIU (Checkpoint/Restore In Userspace) [18]
with memory redaction and transparent relocation of TCP
connections to restore active attacker sessions in decoys without
disrupting the source web server.

Linux Containers. OS-level virtualization allows multiple
guest nodes (containers) to share the kernel of their control-
ling host. Linux containers (LXC) [39] implement OS-level
virtualization, with resource management via process control
groups and full resource isolation via Linux namespaces. This
ensures that each container’s processes, file system, network,
and users remain mutually isolated.

For our purposes, LXC offers a lightweight sandbox that we
leverage for attacker session isolation. For efficient container
management, we use the overlay file system to deploy con-
tainers backed by a regular directory (the template) to clone
new overlayfs containers (decoys), mounting the template’s
root file system as a read-only lower mount and a new private
delta directory as a read-write upper mount. The template
used to clone decoys is a copy of the target container in which
all sensitive files are replaced with disinformation.

3. ARCHITECTURE
The architecture of RedHerring is shown in Fig. 1. Central

to the system is a reverse proxy that acts as a transparent
proxy between users and internal servers deployed as LXC
containers. The target container hosts the honey-patched web
server instance, and the n decoys form the pool of ephemeral
containers managed by the LXC Controller. The decoys
serve as temporary environments for attacker sessions. Each
container runs a CR-Service (Checkpoint/Restore) daemon,
which exposes an interface controlled by the CR-Controller
for remote checkpoint and restore.

Honey-patch. The honey-patch mechanism is encapsulated
in a tiny C library, allowing for low-coupling between target
application and honey-patching logic. The library exposes
three API functions:

Honey-patched
Binary

Apply.Patch.&
Compile

Reverse.Proxy

target decoy.1 decoy.2 decoy.n

LXC

...

User
Attacker

CR-Controller

LXC.Controller

ephemeral containers

Source
Code

Honey-
patch

Figure 1: RedHerring system architecture overview

• hp_init(pgid , pid , tid , sk): initialize honey-patch with
the process group pgid , process pid , thread tid , and
socket descriptor sk of the session.

• hp_fork(): initiate the attacker session remote forking
process, implementing the honey-patching core logic.

• hp_skip(c): skip over block c if in a decoy.

Function hp_init initializes the honey-patch with the neces-
sary information to handle subsequent session termination
and resurrection. It is invoked once per HTTP connection, at
the start of the session life cycle. In Apache, this immediately
follows acceptance of an HTTP request and handing the
newly created session off to a child process or worker thread;
in Lighttpd and Nginx, it follows the accept event for new
connections.

Listing 3 details the basic steps of hp_fork. Line 3 deter-
mines the application context, which can be either target

(denoting the target container) or decoy. In a decoy, the
function does nothing, allowing multiple attacks within a
single attacker session to continue within the same decoy.
In the target, a fork is initiated, consisting of four steps:
(1) Line 5 registers the signal handler for session termination
and resurrection. (2) Line 6 sends a fork request containing
the attacker session’s pgid , pid , and tid to the proxy’s CR-
Controller. (3) Line 7 synchronizes checkpoint and restore of
the attacker session in the target and decoy, respectively, and
guarantees that sensitive data is redacted from memory before
the clone is allowed to resume. (4) Once forking is complete
and the attacker session has been resurrected, the honey-patch
context is saved and the attacker session resumes in the decoy.

The fork request (step 2) achieves high efficiency by first
issuing a system fork to create a shallow, local clone of the
web server process. This allows event-driven web servers
to continue while attacker sessions are forked onto decoys,
without interrupting the main event-loop. It also lifts the
burden of synchronizing concurrent checkpoint operations,
since CRIU injects a Binary, Large OBject (BLOB) into the
target process memory space to extract state data during
checkpoint (see §4).

The context-sensitivity of this framework allows the honey-
patch code to exhibit context-specific behavior: In decoy
contexts, hp_skip elides the execution of the code block
passed as an argument to the macro, elegantly simulating the
unpatched application code. In a target context, it is usually
never reached due to the fork. However, if forking silently fails
(e.g., due to resource exhaustion), it abandons the deception
and conservatively executes the original patch’s corrective
action for safety.

LXC Pool. The decoys into which attacker sessions are
forked are managed as a pool of Linux containers controlled
by the LXC Controller. The controller exposes two operations

Listing 3: hp_fork function
1 void hp fork()
2 {
3 //read context (target/decoy)read context();
4 //if in decoy, do nothingif (decoy) return;
5 //register signal handlerregister handler();
6 //fork session to decoyrequest fork();
7 //wait until fork process has finishedwait();
8 //save context and resumesave context();
9 }

to the proxy: acquire (to acquire a container from the pool),
and release (to release back a container to the pool).

Each container follows the life cycle depicted in Fig. 2. Upon
receiving a fork request, the proxy acquires the first available
container from the pool. The acquired container holds an
attacker session until (1) the session is deliberately closed by
the attacker, (2) the connection’s keep-alive timeout expires,
(3) the ephemeral container crashes, or (4) a session timeout
is reached. The last two conditions are common outcomes
of successful exploits. In any of these cases, the container is
released back to the pool and undergoes a recycling process
before becoming available again.

Recycling a container encompasses three sequential opera-
tions: destroy, clone (which creates a new container from a
template in which legitimate files are replaced with honeyfiles),
and start. These steps happen swiftly for two main reasons.
First, the lightweight virtualization implemented by LXC
allows containers to be destroyed and started similarly to how
OS processes are terminated and created. Second, we deploy
our ephemeral containers as overlayfs-based clones, making
the cloning step almost instantaneous.

CR-Service. The Reverse Proxy uses the CR-Controller
module to communicate with CR-Service daemons running in
the background of each container. Each CR-Service implements
a façade that exposes CR operations to the proxy’s CR-
Controller through a simple RPC protocol based on Protocol
Buffers [28]. To enable fast, OS-local RPC communication,
we use IPC sockets (a.k.a., Unix domain sockets).

The CR-Service uses an extended version of CRIU to
checkpoint attacker sessions on the target and restore them
on decoys. It is also responsible for sanitizing process image
files (dump files), which are written to disk during checkpoint,
as well as managing attacker session signaling.

Reverse Proxy. The proxy plays a dual role in the honey-
patching system, acting as (1) a transport layer transparent
proxy, and (2) an orchestrator for attacker session forking.

As a transparent proxy, its main purpose is to hide the
backend web servers and route client requests. To serve each
client’s request, the proxy server accepts a downstream socket
connection from the client and binds an upstream socket
connection to the backend HTTP server, allowing HTTP
sessions to be processed transparently between the client and
the backend server. To keep its size small, the proxy neither
manipulates message payloads, nor implements any rules for

...

acquire

decoy 1
running

decoy 2
running

decoy n
running

release

decoy 1

running

decoy 1

recycling
recycled

containers pool

available unavailable

Figure 2: Linux containers pool and decoys life cycle

target

CRqService

bimgs

decoy
bimgs

CRqService

ReverseGProxy

CRqController

4W checkpoint

5W restore

Attacker

2W GET bmalicious

3W fork

6W HTTPGresponse

LXCGController 1W GET bmalicious

7W HTTPGresponse

Legend:
requestGmessage

responseGmessage

CRGoperationLXC

clone

WebGServer

WebGServer
bind

mounted

4W2Gterminate
attackGsession

5W2Gresume
attackGsession

4W1Gcheckpoint

5W1Grestore

Figure 3: Attacker session forking. Numbers indicate the sequential steps taken to fork an attacker session.

detecting attacks. There is also no session caching. This makes
it extremely innocuous and lightweight. We implemented the
proxy as a transport-layer reverse proxy to reduce routing
overhead and support the variety of protocols operating above
TCP, including SSL/TLS.

As an orchestrator, the proxy listens for fork requests and
coordinates the attacker session forking as shown in Fig. 3.
Under legitimate load, the proxy simply routes user requests
to the target and routes server responses to users. However,
attack inputs elicit the following alternate workflow:

Step 1: The attacker probes the server with a crafted request
(denoted by GET/malicious in Fig. 3).

Step 2: The reverse proxy transparently routes the request
to the backend target web server.

Step 3: The request triggers the honey-patch (i.e., when the
honey-patch detects an attempted exploit of the patched
vulnerability) and issues a fork request to the reverse proxy.

Step 4: The proxy’s CR-Controller processes the request,
acquires a decoy from the LXC Pool, and issues a checkpoint
RPC request to the target’s CR-Service. The CR-Service
4.1: checkpoints the running web server instance to the
/imgs directory; and

4.2: signals the attacker session with a termination code,
gracefully terminating it.

Step 5: Upon checkpoint completion, the CR-Controller
commands the decoy’s CR-Service to restore the dumped
web server images on the decoy. The CR-Service then
5.1: restores a clone of the web server from the dump

images located in the /imgs directory; and
5.2: signals the attacker session with a resume code, and

cleans the dump data from /imgs.
Step 6: The attacker session resumes on the decoy, and a

response is sent back to the reverse proxy.
Step 7: The reverse proxy routes the response to the attacker.

Throughout this workflow, the attacker’s session forking
is completely transparent to the attacker. To avoid any
substantial overhead for transferring files between target and
decoys, we adopt the strategy of bind-mounting each decoy’s
/imgs folder to the target’s /imgs directory. After the session
has been forked to the decoy, it behaves like an unpatched
server, making it appear that no redirection has taken place
and the original probed server is vulnerable.

4. SESSION REMOTE FORKING
At the core of our architecture is the capability of remote

forking an attacker session to a decoy through checkpoint and

restore of the target server. To this end, we have extended
CRIU [18] with a memory redaction procedure performed
during checkpoint to protect sensitive data of legitimate users,
and a transparent connection relocation mechanism to restore
TCP connections in the destination decoy without stopping
the target server. We name this extended version CRIUm.

4.1 Checkpoint
The checkpoint procedure takes place in the target container

and is initiated when the CR-Service receives a checkpoint
request. The request includes the process group leader $pgid,
attacker process $pid, and attacker thread $tid.

The CR-Service passes this information to our CRIUm

checkpoint interface, which in turn: (1) uses the /proc
file system to collect file descriptors (/proc/$pgid/fd and
/proc/$pgid/fdinfo), pipe parameters, and memory maps
(/proc/$pgid/maps) for the process group; (2) walks through
/proc/$pgid/task/ and gathers child processes recursively to
build the process tree; (3) locks the network by adding netfilter
rules and collecting socket information; (4) uses ptrace (with
PTRACE_SEIZE) to attach to each child (without stopping it)
and collect VMA areas, the task’s file descriptor numbers, and
core parameters such as registers; (5) injects a BLOB code
into the child address space to collect state information such as
memory pages; (6) performs memory redaction using $pid and
$tid; (7) uses ptrace to remove the injected code from the
child process and continues until all children have been traced;
(8) unlocks network using netfilter, and finishes the procedure
by writing the process tree image files to /imgs/$tid/.

At this point, CRIUm returns to the caller, the web server
is running, and the attacker thread waits to be signaled. The
CR-Service then sends a termination signal to the attacker
thread, which terminates itself gracefully in the target web
server. This successfully completes the checkpoint request,
and the CR-Service sends a success status response to the
CR-Controller.

We next examine the memory redaction step in greater
detail, to explain how sensitive, in-memory data is safely
replaced with decoy data during the fork.

Memory Redaction. Were session cloning performed in
the typical, rote fashion of copying all bytes, attackers who
successfully hijack decoys could potentially view any confiden-
tial data copied from the memory space of the original process
(e.g., in a multi-threaded setting). Sophisticated attacks could
thus glean sensitive information about other users previously
or concurrently connected to the original server process, if

such information is cloned with the process. In web servers,
such sensitive information includes IP addresses of other users,
request histories, and information about encrypted connections.
It is therefore important to redact these secrets during cloning.

We therefore introduce a memory redaction procedure that
replaces sensitive data with specially forged, anonymous data
during cloning. Since every server application has different
forms of sensitive data stored in slightly different ways, our
solution is a general-purpose tool that must be specialized to
each server product by an administrator prior to deployment.
In the case of Apache, we focus on redaction of user request
data, session data, and SSL context data, which Apache
records in a few data structures stored in memory for each
user session. For instance, Apache’s request_rec struct stores
request histories. Other servers store such data in similar
ways, but we omit their discussion due to limited space.

A brute force strategy for memory redaction is to search the
entire process memory space to match and replace sensitive
data. Such a strategy does not perform well. Instead, we
leverage the fact that most security-relevant data are stored in
struct variables in heap or stack memory, allowing us to narrow
the search space significantly. Freed memory is included in the
search. For efficiency, our redactor replaces these structures
with anonymous data having exactly the same length and
characteristics. For example, IP addresses in request_rec

are replaced with strings having the same length that are also
valid IP addresses, but randomly generated. This yields a
realistic, consistent process image that can continue running
without errors (save possibly for effects of the attack).

The redaction is implemented as a step of the checkpoint
procedure, so that the image files temporarily created during
process checkpoint and shared with decoys do not contain
any sensitive information that could be potentially abused
by attackers. Secrets are redacted from all session-specific
structures except the attacker’s, allowing the attacker’s session
to continue uninterrupted.

We initially implemented memory redaction as a separate
operation applied to the image files generated by CRIU. While
this seemed attractive for avoiding modification of CRIU,
it exhibited poor performance due to reading and writing
the image files multiple times. Our revised implementation
therefore realizes redaction as a streaming operation within
CRIU’s checkpointing algorithm. In-lining it within check-
pointing avoids reloading the process tree images into memory
for redaction. In addition, redacting secrets before dumping
the process images avoids ever placing secrets on disk.

4.2 Restore
Upon successful completion of a checkpoint operation, the

CR-Controller sends a request to the decoy’s CR-Service into
which the attacker session is to be forked. In addition to $pgid,
$pid, and $tid, the body of the restore request contains a
callback port that has been dynamically assigned by the
reverse proxy to hold the new back-end connection associated
with the attacker session. Once the request is parsed, the CR-
Service passes this information as parameters to the CRIUm

restore interface, which (1) reads the corresponding process
tree from /imgs/$tid/; (2) uses the clone system call to start
each dumped process found in the process tree with its original
process ID; (3) restores file descriptors and pipes to their
original states, and executes relocation of ESTABLISHED socket
connections; (4) injects a BLOB code into the process address
space to recreate the memory map from the dumped data;

create new
connection ()
tsk

close silently (tsk)

transfer state (tsk, sk)

tsk = create_socket(new bounds)
bind(tsk)
connect(tsk)

enter_repair_mode(tsk)
close(tsk)

transfer_seqs(tsk, sk)
bind(sk)
connect(sk)
transfer_opts(tsk, sk)
transfer_queues(tsk, sk)

Figure 4: Procedure for TCP connection relocation

(5) removes the injected binary, and resumes the execution of
the application via the rt_sigreturn system call.

At this point, CRIUm returns to the caller, the forked
instance is running on the decoy, and the attacker thread waits
to be signaled. The CR-Service sends a resume signal to the
attacker thread, which allows it to resume request processing.
This completes the restore request, and the CR-Service sends a
success response to the CR-Controller. Subsequent attacker
requests are relayed to the decoy instead of the target, as
discussed in §3. Next, we discuss details of the TCP connection
relocation procedure.

Established Connection Relocation. Target and decoys
are fully isolated containers running on separate namespaces.
As a result, each container is assigned a unique IP in the
internal network, which affects how we move active connections
from the target to a decoy. Since CRIU was not implemented
with this use case in mind, we extended it to support relocation
of TCP connections during process restoration. In what follows,
we explain how we approached this problem.

The reverse proxy always routes legitimate user connections
to the target; hence, there is no need to restore the state of
connections for these users when restoring the web server
on a decoy. We simply restore legitimate connections to
“drainer” sockets, since we have no interest in maintaining
legitimate user interaction with the decoys. This ensures that
the associated user sessions are restored to completion without
interrupting the overall application restoration.

Conversely, the attacker connection must be restored to
its dumped state when switching the attacker session to a
decoy. This is important to avoid connection disruption and
to allow transparent session migration (from the perspective
of the attacker). To accomplish this, our proxy dynamically
establishes a new back-end TCP connection between proxy
and decoy containers in order to hold the attacker session
communication. Moreover, a mechanism based on TCP repair
options [16] is employed to transfer the state of the original
attacker’s session socket (bound to the target IP address) into
the newly created socket (bound to the decoy IP address).

Figure 4 describes the connection relocation mechanism,
implemented as a step of the attacker’s session restore process.
At process checkpoint, the state information of the original
socket sk is dumped together with the process image (not
shown in the figure). This includes connection bounds, previ-
ously negotiated socket options, sequence numbers, receiving
and sending queues, and connection state. During process
restore, we relocate the connection to the assigned decoy by
(1) connecting a new socket tsk to the proxy $port given in
the restore request, (2) setting tsk to repair mode and silently
closing the socket (i.e., no FIN or RST packages are sent to the

 0

 5

 10

 15

 20

2005 2006 2007 2008 2009 2010 2011 2012 2013

nu
m

be
r

of
 s

ec
ur

ity
 v

ul
ne

ra
bi

lit
ie

s
honey-patchable

not easily honey-patchable

Figure 5: Apache honey-patchable vulnerabilities

remote end), and (3) transferring the connection state from
sk to tsk in repair mode. Once the new socket tsk is handed
over to the restored attacker session, the relocation process
has completed and communication resumes, often with an
HTTP response being sent back to the attacker.

5. IMPLEMENTATION
We have developed an implementation of RedHerring

for the 64-bit version of Linux (kernel 3.11 or above). The
implementation consists of five components: the honey-patch
library, the LXC-Controller, the CR-Controller, the CR-
Service, and the reverse proxy. The honey-patch library
provides the tiny API required for triggering the honey-
patching mechanism. Its implementation consists of about
270 lines of C code that uses no external libraries or utilities.
The reverse proxy routes HTTP/S requests in accordance
with the behavior described in §3. Its implementation is
fully asynchronous and consists of about 325 lines of node.js
JavaScript code. The CR-Controller is implemented as an
external C++ module to the proxy, and consists of about 450
lines of code that uses Protocol Buffers to communicate with
the CR-Service. Similarly, the LXC-Controller is implemented
as an external node.js library consisting of about 190 lines
of code. The CR-Service receives CR requests from the CR-
Controller and uses CRIUm to coordinate process checkpoint
and restore. Its implementation comprises about 525 lines of
C code. Our extensions to CRIUm add about 710 lines of C
code to the original CRIU tool.

6. EVALUATION
This section discusses the applicability of honey-patching

and investigates performance characteristics of the session
live migration scheme implemented by RedHerring. First,
we survey the past nine years of Apache’s security reports to
assess the proportion of security patches that are amenable to
our honey-patching technique. Then, we investigate the effect
of session migration on malicious attack HTTP response times
and report measurements of the impact of concurrent attacks
on legitimate HTTP request round-trip times. Finally, we
compare the performances of the honey-patched versions of
Apache, Lighttpd, and Nginx.

All experiments were performed on a quad-core virtual
machine (VM) with 8 GB RAM running 64-bit Ubuntu 14.04
(Trusty Tahr). Each LXC container running inside the VM
was created using the official LXC Ubuntu template. We
limited resource utilization on decoys so that a successful
attack does not starve the host VM. The host machine is an
Intel Xeon E5645 desktop running 64-bit Windows 7.

Listing 4: Abbreviated patch for CVE-2013-1862
1 logline = apr psprintf(r->pool, ...,
2 ...
3 - ap get server name(r),
4 + ap escape logitem(r->pool, ...(r)),
5 ...

6.1 Honey-patchable Patches
Our strategy sketched in §2.1 for transforming patches into

honey-patches is more easily applied to some patches than
others. In general, patches that have a clear, boolean decision
point where patched and unpatched application behavior
diverge are best suited to our approach, whereas patches that
introduce deeper changes to the application’s control-flow
structure or data structures may require correspondingly
deeper knowledge of the patch’s semantics to reformulate as a
honey-patch.

To assess the practicality of honey-patching, we surveyed
all vulnerabilities officially reported by the Apache HTTP
web server project between 2005 and 2013. We systematically
examined each security patch file and corresponding source
code to determine its amenability to honey-patching. Figure 5
reports the results. Overall, we found that 49 out of 75
patches analyzed (roughly 65%) are easily transformable into
honey-patches. This corroborates the intuition that most
security vulnerabilities are patched with some small check,
usually one that performs input validation [12].

Listing 4 shows an example of a patch (simplified for
brevity) for which honey-patching is not elementary. The
patch replaces the insecure method ap_get_server_name
with an alternate one (ap_escape_logitem) that performs
input sanitization. The sanitization step lacks any boolean
decision point where exploits are detected; it instead performs
a string transformation that replaces dangerous inputs with
non-dangerous ones. Thus, it is not obvious where to position
the forking operation needed for a honey-patch.

However, even in the case of Listing 4, we note that honey-
patching is still possible, given a sufficiently comprehensive
understanding of the patch’s semantics. In particular, this
patch could be converted to a honey-patch by retaining
both the sanitizing and non-sanitizing implementations and
comparing the resulting strings. If the strings differ, the
honey-patch forks the session to a decoy. Note that not every
input sanitization patch can be honey-patched in this way,
since some sanitization procedures modify even non-dangerous
inputs. Thus, patches of this sort were conservatively classified
as not easily honey-patchable in our study, since they require
greater effort to honey-patch.

Experimental validation. To evaluate honey-patching’s ef-
fectiveness in diverting attackers to decoys, we tested RedHer-
ring with different honey-patched Apache releases. Table 1
summarizes the tested versions of Apache and correspond-
ing vulnerabilities that we successfully exploited. For each
vulnerability, we tested the system on non-malicious inputs
and verified that RedHerring does not fork any attacker
sessions. Then we exploited honey-patched vulnerabilities,
and verified that the system behaves as a vulnerable decoy
server in response to the attack inputs.

Apache 2.2.21 allows the inadvertent exposure of inter-
nal resources to remote users who send specially crafted
requests (CVE-2011-3368). For example, the request GET
@private.com/topsecret.pdf HTTP 1.1 may result in an
exposure of unpatched servers. The security patch for this
vulnerability modifies protocol.c to send an HTTP 400

Table 1: Honey-patched security vulnerabilities for
different versions of the Apache Web Server

Version CVE-ID Description

2.2.21 CVE-2011-3368 Improper URL validation
2.2.9 CVE-2010-2791 Improper timeouts of keep-alive

connections
2.2.15 CVE-2010-1452 Bad request handling
2.2.11 CVE-2009-1890 Request content length out of

bounds
2.0.55 CVE-2005-3357 Bad SSL protocol check

response if the request URI is not an absolute path. Our
honey-patch forks to a decoy instead.

Similarly, we honey-patched and tested CVE-2010-1452
and CVE-2009-1890, which involve improper HTTP request
sanitization. CVE-2010-1452 exposes a request handling
problem in which requests missing the path field may cause
the worker process to segfault, inviting potential DOS attacks.
CVE-2009-1890 exposes another type of DOS vulnerability in
which a sufficiently long HTTP request may lead to memory
exhaustion.

CVE-2010-2791 allows us to test RedHerring against
attacks exploiting vulnerabilities related to keep-alive con-
nections. In this particular case, a bug neglects closing the
back-end connection if a timeout occurs when reading a re-
sponse from a persistent connection, which allows remote
attackers to obtain a potentially sensitive response intended
for a different client. Finally, CVE-2005-3357 exposes a bad
SSL protocol check that allows an attacker to cause a DOS if
a non-SSL request is directed to an SSL port.

6.2 Performance Benchmarks
This section evaluates RedHerring’s performance. Our

objectives are two-fold: to determine the performance overhead
imposed upon sessions forked to decoys (i.e., the impact on
malicious users), and to estimate the impact of honey-patching
on the overall system performance (i.e., its impact on legitimate
users). To obtain baseline measurements that are independent
of networking overhead, the experiments in this section are
executed locally on a single-node virtual machine using default
Apache settings. Performance is measured in terms of HTTP
request round-trip time.

Session forking overhead. As expected, forking attacker
sessions from target to decoy containers is the main source of
performance overhead in RedHerring. To estimate its impact
on attacker response times, we crafted and sent malicious
requests to the server in order to trigger its internal honey-
patching mechanism, and measured the request round-trip
time of each individual request. For accuracy, we waited for
the completion of each request before sending another one.

Since Apache allocates requests (including their content) on
the heap, payload size directly impacts the amount of data
to be dumped in each checkpoint operation. It is therefore
important to experiment using varying sizes of malicious
HTTP request payload data (from 0 KB to 36 KB, in steps
of 1.2 KB). Also, to estimate the response time overhead
incurred from the memory redaction process, we executed our
tests twice, with memory redaction enabled and disabled.

Figure 6a shows the encouraging results of this experiment.
Malicious HTTP request round-trip times tend to remain
almost constant as payload size increases. This desirable
relationship can be explained by two reasons. First, CRIU’s
approach of copying process memory pages into dump files

during checkpoints is extremely efficient. It involves a direct
copy of data between file descriptors in kernel space using the
splice system call. As a consequence, the target memory
pages are never buffered into user space. Second, our approach
to memory redaction leverages the fact that Apache stores
session data in well-defined structs (avoiding having multiple
copies in memory) to locate and redact it directly into the
dump images while they are being generated by the checkpoint
process. Our initial efforts to implement redaction after
checkpointing exhibited far poorer performance, leading to
this more efficient solution.

Overall, the round-trip times of malicious HTTP requests
incur a constant overhead of approximately 0.25 seconds
due to memory redaction. (When memory redaction is used,
the average request takes approximately 0.40 seconds; but
when disabled, it takes 0.15 seconds.) While possibly sig-
nificant (depending on networking latencies), we emphasize
that this constant overhead only impacts malicious users, as
demonstrated by the next experiment.

Overall system overhead. To complete our evaluation, we
tested RedHerring on a wide variety of workload profiles
consisting of both legitimate users and attacker sessions on
a single node. In this experiment, we wrote a small Python
script modeling every user and attacker as a separate worker
thread triggering legitimate and malicious HTTP requests,
respectively. We chose the request payload size to be 2.4 KB,
based on the median of KB per request measured by Google
web metrics [29]. To simulate different usage profiles, we
tested our system with 25–150 concurrent users, with 0–20
attackers.

Figure 6b plots our results. Observe that for the vari-
ous profiles analyzed, the HTTP request round-trip times
remain approximately constant (ranging between 1.7 and
2.5 milliseconds) when increasing the number of concurrent
malicious requests. This confirms that adding honey-patching
capabilities has negligible performance impact on legitimate
requests and users relative to traditional patches, even during
concurrent attacks. It also confirms our previous claims re-
garding the small freezing window necessary to checkpoint the
target application.

Finally, this also shows that RedHerring can cope with
large workloads. In this experiment, we have assessed its
baseline performance considering only one instance of the
target server running on a single node virtual machine. In
a real setting, we can deploy several similar instances using
a web farm scheme to scale up to thousands of users, as we
show next.

Stress testing. To estimate the throughput of our system
and test its scalability properties, we developed a small HTTP
load balancer in node.js to round-robin requests between
three-node VMs, each hosting one instance of Apache deployed
on RedHerring. In this experiment, we used ab (Apache
HTTP server benchmarking tool) to create a massive workload
of legitimate users (more than 5,000 requests in 10 threads) for
different attack profiles (0 to 20 concurrent attacks). Each VM
is configured with a 2 GB RAM and one quad-core processor.
The load balancer and the benchmark tool run on a separate
VM on the same host machine. Apache runs with default
settings (i.e., no fine tuning has been performed).

As Figure 6c illustrates, the system can handle the strenuous
workload imposed by our test suite. The average request time
for legitimate users ranged from 2.5 to 5.9 milliseconds, with

 0

 0.2

 0.4

 0.6

 0.8

 0 7200 14400 21600 28800 36000

m
ed

ia
n

ro
un

d-
tr

ip
 t

im
e

(s
)

payload size (KB)

with redaction
no redaction

(a) 3 ≤ σ ≤ 15 ms, n = 10

 1

 2

 3

 4

 0 2 4 6 8 10 12 14 16 18 20

m
ed

ia
n

ro
un

d-
tr

ip
 t

im
e

(m
s)

concurrent attacks

25 users
50 users
75 users

100 users
125 users
150 users

(b) 0.6 ≤ σ ≤ 35, n = 10

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10 12 14 16 18 20
 0

 100

 200

 300

 400

 500

av
er

ag
e

ro
un

d-
tr

ip
 t

im
e

(m
s)

re
qu

es
ts

 p
er

 s
ec

on
d

concurrent attacks

average request time
measured throughput

(c) 0.3 ≤ σ ≤ 1.2, 25 ≤ σ ≤ 94

Figure 6: Performance benchmarks. (a) Effect of payload size on malicious HTTP request round-trip time.
(b) Effect of concurrent attacks on legitimate HTTP request round-trip time on a single-node VM. (c) Stress
test illustrating request throughput for a 3-node, load-balanced RedHerring setup (workload ≈ 5K requests).

measured throughput ranging from 169 to 312 requests per
second. In typical production settings we would expect this
delay to be amortized by the network latency (usually on the
order of several tens of milliseconds). This result is important
because it demonstrates that honey-patching can be realized
for large-scale, performance critical software applications with
minimal overheads for legitimate users.

6.3 Web Servers Comparison
We also tested RedHerring on Lighttpd [38] and Ng-

inx [43], web servers whose designs are significantly different
from Apache. The most notable difference lies in the pro-
cessing model of these servers, which employs non-blocking
systems calls (e.g., select, poll, epoll) to perform asynchronous
I/O operations for concurrent processing of multiple HTTP
requests. In contrast, Apache dispatches each request to a
child process or thread [45]. Our success with these three
types of server evidences the versatility of our approach.

Figure 7 shows our results. In comparison to Apache, session
forking performed considerably better on Lighttpd and Nginx
(ranging between 0.092 seconds without memory redaction and
0.156 seconds with redaction). This is mainly because these
servers have smaller process images, reducing the amount of
state to be collected and redacted during checkpointing.

7. DISCUSSION
Selective honey-patching. Our work evaluates the feasi-
bility of honey-patching as realistic application, but raises
interesting questions about how to evaluate the strategic
advantages or disadvantages of honey-patching various specific
vulnerabilities. For example, some patches close vulnerabilities
by adding new, legitimate software functionalities. Converting
such patches to honey-patches might be inadvisable, since it
might treat uses of those new functionalities as attacks. In
general, honey-patching should be applied judiciously based
on an assessment of attacker and defender risk. Future work

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

Apache HTTP Lighttpd Nginx

m
ed

ia
n

ro
un

d-
tr

ip
 t

im
e

(s
)

no redaction
with redaction

Figure 7: Malicious HTTP request round-trip times
for different web servers (6 ≤ σ ≤ 11 ms, n = 20)

should consider how to reliably conduct such assessments.
Similarly, honey-patching can be applied selectively to simulate
different software versions and achieve versioning consistency.

Automation. Our implementation approach offers a semi-
manual process for transforming patches into honey-patches.
An obvious next step is to automate this by incorporating
it into a rewriting tool or compiler. One interesting chal-
lenge concerns the question of how to audit or validate the
secret redaction step for arbitrary software. Future research
should consider facilitating this by applying language-based
information flow analyses (cf., [47]).

Active Defense. Honey-patching enhances the current realm
of weaponized software by placing defenders in a favorable
position to deploy offensive techniques for reacting to attacks.
For example, decoys provide the ideal environment for im-
plementing stealthy traps to disinform attackers and report
precisely what attacks are doing in real-time [17], and further
insight into the attackers’ modus operandi can be gained by
forging and acting upon decoy data. There is existing work in
this direction in DARPA’s Mission-oriented Resilient Clouds
(MRC) program [55].

Deception. The effectiveness of a honey-patch is contingent
upon the deceptiveness of decoy environments. Prior work
has investigated the problem of how to generate and maintain
convincing honey-data for effective attacker deception (e.g.,
[11, 48, 54, 62]), but there are other potential avenues of
deception discovery that must be considered.

Response times are one obvious channel of possible discovery
that must be considered. Cloning is efficient but still introduces
non-zero response delay for attackers. By collecting enough
timing statistics, attackers might try to detect response delays
to discern honey-patches. Our ongoing work is focusing on
improving the efficiency of the memory redaction step, which
is the source of most of the this delay.

In addition, RedHerring’s deceptiveness against discovery
through response delays is aided by the plethora of noisy
latency sources that most web servers naturally experience,
which tend to eclipse the relatively small delays introduced
by honey-patching [49]. Unpatched, vulnerable servers often
respond slower to malicious inputs than to normal traffic [25,
58], just like honey-patched servers. This suggests that
detecting honey-patches by probing for delayed responses
to attacks may yield many false positives for attackers. If
criminals react to the rise of honey-patching by cautiously
avoiding attacks against servers that respond slightly slower
when attacked, many otherwise successful attacks will have
been thwarted.

Alternatively, attackers who take full control of decoys
can potentially read and reverse-engineer the process image’s
binary code to discover the honey-patch (e.g., by injecting
malicious code that reads the process binary and finds the call
to hp_fork). While possible with enough effort, we believe
this is nevertheless a significant burden relative to the much
easier task of detecting failed exploits against traditionally
patched systems. The emergence of artificial software diversity
(e.g., [30]) and fine-grained binary randomization tools (e.g.,
[59]) has made it increasingly difficult to quickly and reliably
reverse-engineer arbitrary binary process images. Future work
should consider raising the bar further by unloading prominent
libraries, such as the honey-patch library, during cloning.

Additionally, RedHerring’s decoy environments are con-
structed to look identical to real distributed web servers from
inside the container; for example, many real web servers use
LXC containers that look like the decoy LXC containers.
Therefore, distinguishing decoys from real web servers on the
basis of environmental details (e.g., through init process
control groups) is difficult for attackers. Although resource
exhaustion attacks (e.g., flooding) can cause RedHerring to
run out of decoy resources (e.g., containers), this outcome is
difficult for attackers to distinguish from running the same
attacks against a non-honey-patched server; both result in
observationally similar resource exhaustions.

Likewise, real-time behavior of the decoy inevitably differs
from the target due to the lack of other, concurrent con-
nections. With a long enough observation period, attackers
can reliably detect this difference (cf., [24]). We mitigate
this by constraining decoy lifetimes with a timeout. This
resembles unpatched servers that automatically reset when a
crash or freeze is detected, and therefore limits the attacker’s
observations of real-time connection activity without revealing
the honey-patch or limiting the attacker’s access to decoy data
or honeyfiles.

Detection granularity. One foundational assumption of our
work is that some attacks are not identifiable at the network
or system level before they do damage. Thus, detection
approaches that monitor network or system logs for malicious
activity are not a panacea. For example, encrypted, obfuscated
payloads buried in a sea of encrypted connection data, or
those that undertake previously unseen malicious behaviors
after exploiting known vulnerabilities, might be prohibitively
difficult to detect by network or log mining. The goal of our
work is to detect such exploits at the software level, and then
(1) impede the attack by misdirecting the attacker, (2) lure
the attacker to give defenders more time and information
to trace and/or prosecute, (3) feed attackers disinformation
to lower the effectiveness of current and future attacks, and
(4) gather information about attacker gambits to identify and
better protect confidential data against future attacks.

Real-world deployment. It would be worthwhile to eval-
uate the effects of honey-patching on web servers that are
frequent victims of targeted, tailored attacks by resourceful
adversaries. Over the long run, this can help us better under-
stand the practical implications of honey-patching and the
attacks they capture.

In addition to web servers, we consider our approach feasible
for protecting web applications and other Linux networking
applications in general. We would also like to test and deploy
RedHerring on cloud infrastructures that support LXC to
benefit from the cloud’s dynamic scalability and performance
characteristics.

8. RELATED WORK
Remote Exploitation. Remote, exploitable attacks are one
of the biggest threats to IT-security, leading to exposure of
sensitive information and high financial losses. While (zero-
day) attacks exploiting undisclosed vulnerabilities are the
most dangerous, attacks exploiting known vulnerabilities are
most prevalent—public disclosure of a vulnerability usually
heralds an increase of attacks against it by up to 5 orders
of magnitude [9]. Most attacks are remote code injections
against vulnerable network applications, and are automatically
exploitable by malware without user interaction. Fritz et
al. [23] survey the threat landscape of remote code injections
and their evolution over the past five years.

Unfortunately, finding vulnerabilities that lead to remote
exploits is becoming easier. ReDeBug [31] finds buggy code
that has been copied from project to project. This occurs since
programmers often reuse code, and patches are not applied
to every version. The Automatic Exploit Generation (AEG)
research challenge [6] involves automatically finding vulnera-
bilities and generating exploits by formalizing the notion of
an exploit and analyzing source code. Security patches can
also be used to automatically generate exploits, since they
reveal details about the underlying vulnerabilities [12].

To help overcome this, patch execution consistency models,
which guarantee that a patch is safe to apply if the tandem
execution of patched and unpatched versions does not diverge,
have been recommended as a basis for constructing honeypots
that detect and redirect attacks [40]. Our work pursues this
goal at the software level, where software exploit detection is
easier and more reliable than at the network level. Software
diversification has also been proposed as an efficient protection
against patch-based attacks [15].

Honeypots for Attack Analysis. Honeypots are infor-
mation systems resources conceived to attract, detect, and
gather attack information. They are designed such that any
interaction with a honeypot is likely to be malicious. Although
the concept is not new [50], there has been growing interest
in protection and countermeasure mechanisms using honey-
pots [7, 34, 37]. Honeypots traditionally employ virtualization
to trap and investigate attacks [46, 61]. By leveraging VM
monitors, honeypots adapt and seamlessly integrate into the
network infrastructure [35], monitoring attacker activities
within a compromised system [7, 19, 26, 37]. Nowadays, large
honeyfarms, supporting on-demand loading of resources, enable
large-scale defense scenarios [32,56].

Shadow honeypots [1, 2] are a hybrid approach in which
a front-end anomaly detection system forwards suspicious
requests to a back-end instrumented copy of the target applica-
tion, which validates the anomaly prediction and improves the
anomaly detector’s heuristics through feedback. Although the
target and instrumented programs may share similar states
for detection purposes, shadow honeypots make no effort to
deceive attackers into thinking the attack was successful.

In contrast, OpenFire [10] uses a firewall-based approach
to forward unwanted messages to decoy machines, making it
appear that all ports are open and inducing attackers to target
false services. Our work adopts an analogous strategy for
software vulnerabilities, making it appear that vulnerabilities
are unpatched and inducing attackers to target them.

Cloning for Security Purposes. Our work benefits from
research advances on live cloning [51], which VM architectures
are increasingly using for load balancing and fault-tolerance [36,

63]. In security contexts, VM live cloning can also be used to
automate the creation of on-demand honeypots [8, 56]. For
instance, dynamic honeypot extraction architectures [8] use a
modified version of the Xen hypervisor to detect potential
attacks based on analysis of request payload data, and delay
their execution until a modified clone of the original system
has been created. To fool and distract attackers, sensitive data
is removed from the clone’s file-system. However, no steps
are taken to avoid leaking confidential information contained
within the cloned process memory image, and the detection
strategy is purely system-level, which cannot reliably detect
the language-level exploits redirected by honey-patches.

9. CONCLUSION
This paper proposed, implemented, and evaluated honey-

patching as a strategy for elegantly reformulating many vendor-
supplied, source-level patches as equally secure honey-patches
that raise attacker risk and uncertainty. A light-weight,
resource-efficient, and fine-grained implementation approach
based on live cloning transparently forks attacker connections
to sandboxed decoy environments in which in-memory and file
system secrets have been redacted or replaced with honey-data.
Our implementation and evaluation for the Apache HTTP
web server demonstrate that honey-patching can be realized
for large-scale, performance-critical software with minimal
overheads for legitimate users. If adopted on a wide scale,
we conjecture that honey-patching could significantly impede
certain attacker activities, such as vulnerability probing, and
offers defenders a new, potent tool for attacker deception.

10. REFERENCES
[1] K. G. Anagnostakis, S. Sidiroglou, P. Akritidis,

M. Polychronakis, A. D. Keromytis, and E. P. Markatos.
Shadow honeypots. Int. J. Computer and Network
Security (IJCNS), 2(9):1–15, 2010.

[2] K. G. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xinidis,
E. Markatos, and A. D. Keromytis. Detecting targeted
attacks using shadow honeypots. In Proc. USENIX
Security Sym., 2005.

[3] J. Ansel, K. Arya, and G. Cooperman. DMTCP:
Transparent checkpointing for cluster computations and
the desktop. In Proc. IEEE Int. Parallel and Distributed
Processing Sym. (IPDPS), pages 1–12, 2009.

[4] Apache. Apache HTTP server project. http://httpd.
apache.org, 2014.

[5] W. A. Arbaugh, W. L. Fithen, and J. McHugh. Windows
of vulnerability: A case study analysis. IEEE Computer,
33(12), 2000.

[6] T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley.
AEG: Automatic exploit generation. In Proc. Network &
Distributed System Security Sym. (NDSS), 2011.

[7] M. Beham, M. Vlad, and H. P. Reiser. Intrusion detection
and honeypots in nested virtualization environments. In
Proc. IEEE/IFIP Int. Conf. Dependable Systems and
Networks (DSN), pages 1–6, 2013.

[8] S. Biedermann, M. Mink, and S. Katzenbeisser. Fast
dynamic extracted honeypots in cloud computing. In Proc.
ACM Cloud Computing Security Work. (CCSW), pages
13–18, 2012.

[9] L. Bilge and T. Dumitras. Before we knew it: An
empirical study of zero-day attacks in the real world.

In Proc. ACM Conf. Computer and Communications
Security (CCS), pages 833–844, 2012.

[10] K. Borders, L. Falk, and A. Prakash. OpenFire: Using
deception to reduce network attacks. In Proc. Int. Conf.
Security and Privacy in Communications Networks
(SecureComm), pages 224–233, 2007.

[11] B. M. Bowen, S. Hershkop, A. D. Keromytis, and
S. J. Stolfo. Baiting inside attackers using decoy
documents. In Proc. Int. ICST Conf. Security and
Privacy in Communication Networks (SecureComm),
pages 51–70, 2009.

[12] D. Brumley, P. Poosankam, D. Song, and J. Zheng.
Automatic patch-based exploit generation is possible:
Techniques and implications. In Proc. IEEE Sym.
Security & Privacy (S&P), pages 143–157, 2008.

[13] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live migration
of virtual machines. In Proc. Sym. Networked Systems
Design & Implementation (NSDI), volume 2, pages
273–286, 2005.

[14] Codenomicon. The Heartbleed bug. http://heartbleed.
com, Apr. 2014.

[15] B. Coppens, B. D. Sutter, and K. D. Bosschere.
Protecting your software updates. IEEE Security &
Privacy, 11(2):47–54, 2013.

[16] J. Corbet. TCP Connection Repair. http://lwn.net/
Articles/495304, 2012.

[17] S. Crane, P. Larsen, S. Brunthaler, and M. Franz. Booby
trapping software. In Proc. New Security Paradigms
Work. (NSPW), pages 95–106, 2013.

[18] CRIU. Checkpoint/Restore In Userspace. http://criu.org,
2014.

[19] D. Dagon, X. Qin, G. Gu, W. Lee, J. Grizzard, J. Levine,
and H. Owen. Honeystat: Local worm detection using
honeypots. In Proc. Int. Sym. Recent Advances in
Intrusion Detection (RAID), pages 39–58, 2004.

[20] J. Duell. The design and implementation of Berkeley
Lab’s Linux checkpoint/restart. Technical Report
LBNL-54941, U. California at Berkeley, 2002.

[21] J. Finkle. U.S. government failed to secure Obamacare
site – experts. Reuters, Jan. 16, 2014.

[22] G. H. Friedman. Evaluation report: The Department of
Energy’s unclassified cyber security program. Technical
Report DOE/IG-0897, U.S. Dept. of Energy, Oct. 2013.

[23] J. Fritz, C. Leita, and M. Polychronakis. Server-side
code injection attacks: A historical perspective. In
Proc. Int. Sym. Research in Attacks, Intrusions and
Defenses (RAID), pages 41–61, 2013.

[24] X. Fu, W. Yu, D. Cheng, X. Tan, and S. Graham. On
recognizing virtual honeypots and countermeasures.
In Proc. IEEE Int. Sym. Dependable, Autonomic and
Secure Computing (DASC), pages 211–218, 2006.

[25] Z. Gadot, M. Alon, L. Rozen, M. Atad, and Y. S. V.
Shrivastava. Global application & network security report
2013. Technical report, Radware, 2014.

[26] T. Garfinkel and M. Rosenblum. A virtual machine
introspection based architecture for intrusion detection.
In Proc. Network & Distributed Systems Security Sym.
(NDSS), pages 191–206, 2003.

[27] B. Gerofi, H. Fujita, and Y. Ishikawa. An efficient process
live migration mechanism for load balanced distributed

http://httpd.apache.org
http://httpd.apache.org
http://heartbleed.com
http://heartbleed.com
http://lwn.net/Articles/495304
http://lwn.net/Articles/495304
http://criu.org

virtual environments. In Proc. IEEE Int. Conf. Cluster
Computing (CLUSTER), pages 197–206, 2010.

[28] Google. Protocol Buffers. https://code.google.com/p/
protobuf, 2014.

[29] Google. Web metrics. https://developers.google.com/
speed/articles/web-metrics, 2014.

[30] T. Jackson, B. Salamat, A. Homescu, K. Manivannan,
G. Wagner, A. Gal, S. Brunthaler, C. Wimmer, and
M. Franz. Compiler-generated software diversity. In
S. Jajodia, A. K. Ghosh, V. Swarup, C. Wang, and
X. S. Wang, editors, Moving Target Defense – Creating
Asymmetric Uncertainty for Cyber Threats, pages 77–98.
Springer, 2011.

[31] J. Jang, A. Agrawal, and D. Brumley. ReDeBug: Finding
unpatched code clones in entire OS distributions. In Proc.
IEEE Sym. Security & Privacy (S&P), pages 48–62,
2012.

[32] X. Jiang, D. Xu, and Y.-M. Wang. Collapsar: A
VM-based honeyfarm and reverse honeyfarm architecture
for network attack capture and detention. J. Parallel
and Distributed Computing – Special Issue on Security
in Grid and Distributed Systems, 66(9):1165–1180, 2006.

[33] W. Kandek. Year closing – December 2013 patch Tuesday.
Qualys: Laws of Vulnerabilities, Dec. 2013.

[34] S. Kulkarni, M. Mutalik, P. Kulkarni, and T. Gupta.
Honeydoop – a system for on-demand virtual high
interaction honeypots. In Proc. Int. Conf. for Internet
Technology and Secured Transactions (ICITST), pages
743–747, 2012.

[35] I. Kuwatly, M. Sraj, Z. A. Masri, and H. Artail. A
dynamic honeypot design for intrusion detection. In Proc.
IEEE/ACS Int. Conf. Pervasive Services (ICPS), pages
95–104, 2004.

[36] H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell,
P. Patchin, S. M. Rumble, E. de Lara, M. Brudno, and
M. Satyanarayanan. SnowFlock: Rapid virtual machine
cloning for cloud computing. In Proc. ACM European
Conf. Computer Systems (EuroSys), pages 1–12, 2009.

[37] T. K. Lengyel, J. Neumann, S. Maresca, B. D. Payne,
and A. Kiayias. Virtual machine introspection in a hybrid
honeypot architecture. In Proc. USENIX Work. Cyber
Security Experimentation and Test (CSET), 2012.

[38] Lighttpd. Lighttpd server project. http://www.lighttpd.
net, 2014.

[39] LXC. Linux containers. http://linuxcontainers.org, 2014.

[40] M. Maurer and D. Brumley. Tachyon: Tandem execution
for efficient live patch testing. In Proc. USENIX Security
Sym., pages 617–630, 2012.

[41] D. S. Milóičić, F. Douglis, Y. Paindaveine, R. Wheeler,
and S. Zhou. Process migration. ACM Computing
Surveys, 32(3):241–299, 2000.

[42] Netcraft. Are there really lots of vulnerable Apache web
servers? http://news.netcraft.com/archives/2014/02/07,
2014.

[43] Nginx. Nginx server project. http://nginx.org, 2014.

[44] Ohloh. Apache HTTP server statistics. http://www.
ohloh.net/p/apache, 2014.

[45] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An
efficient and portable web server. In Proc. Conf. USENIX
Annual Technical Conference (ATEC), pages 15–15,
1999.

[46] N. Provos and T. Holz. Virtual Honeypots: From
Botnet Tracking to Intrusion Detection. Addison-Wesley
Professional, 2007.

[47] A. Sabelfeld and A. C. Myers. Language-based in-
formation flow security. IEEE J. Selected Areas in
Communications, 21(1):5–19, 2003.

[48] M. B. Salem and S. J. Stolfo. Decoy document
deployment for effective masquerade attack detection. In
Proc. Int. Conf. Detection of Intrusions and Malware,
and Vulnerability Assessment, pages 35–54, 2011.

[49] S. Souders. The performance golden rule. http://www.
stevesouders.com/blog/2012/02/10/the-performance-
golden-rule, Feb. 2012.

[50] L. Spitzner. Honeypots: Tracking Hackers. Addison-
Wesley Longman, 2002.

[51] Y. Sun, Y. Luo, X. Wang, Z. Wang, B. Zhang, H. Chen,
and X. Li. Fast live cloning of virtual machine based on
Xen. In Proc. IEEE Conf. High Performance Computing
and Communications (HPCC), pages 392–399, 2009.

[52] The 111th United States Congress. An act entitled the
patient protection and affordable care act. Public Law
111-148, 124 Stat. 119, Mar. 2010.

[53] The Economic Times. New technique Red Herring fights
‘Heartbleed’ virus. The Times of India, Apr. 15, 2014.

[54] J. Voris, N. Boggs, and S. J. Stolfo. Lost in translation:
Improving decoy documents via automated translation.
In Proc. IEEE Sym. Security & Privacy Workshops
(S&PW), pages 129–133, 2012.

[55] J. Voris, J. Jermyn, A. D. Keromytis, and S. J. Stolfo.
Bait and snitch: Defending computer systems with
decoys. In Proc. Conf. Cyber Infrastructure Protection
(CIP), 2012.

[56] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft,
A. C. Snoeren, G. M. Voelker, and S. Savage. Scalability,
fidelity, and containment in the Potemkin virtual
honeyfarm. In Proc. ACM Sym. Operating Systems
Principles (SOSP), pages 148–162, 2005.

[57] C. Wang, F. Mueller, C. Engelmann, and S. L. Scott.
Proactive process-level live migration in HPC envi-
ronments. In Proc. ACM/IEEE Conf. Supercomputing,
2008.

[58] J. Wang, X. Liu, and A. A. Chien. Empirical study of
tolerating denial-of-service attacks with a proxy network.
In Proc. USENIX Security Sym., pages 51–64, 2005.

[59] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. Binary
stirring: Self-randomizing instruction addresses of legacy
x86 binary code. In Proc. ACM Conf. Computer and
Communications Security (CCS), pages 157–168, 2012.

[60] A. Whitaker, R. S. Cox, M. Shaw, and S. D. Gribble.
Constructing services with interposable virtual hard-
ware. In Proc. Sym. Networked Systems Design and
Implementation (NSDI), pages 169–182, 2004.

[61] V. Yegneswaran, P. Barford, and D. Plonka. On the
design and use of internet sinks for network abuse
monitoring. In Proc. Int. Sym. Recent Advances in
Intrusion Detection (RAID), pages 146–165, 2004.

[62] J. Yuill, D. Denning, and F. Feer. Using deception to
hide things from hackers: Processes, principles, and
techniques. J. Information Warfare, 5(3):26–40, 2006.

[63] W. Zheng, R. Bianchini, G. J. Janakiraman, J. R.
Santos, and Y. Turner. JustRunIt: Experiment-based
management of virtualized data centers. In Proc.
USENIX Annual Technical Conf., 2009.

https://code.google.com/p/protobuf
https://code.google.com/p/protobuf
https://developers.google.com/speed/articles/web-metrics
https://developers.google.com/speed/articles/web-metrics
http://www.lighttpd.net
http://www.lighttpd.net
http://linuxcontainers.org
http://news.netcraft.com/archives/2014/02/07
http://nginx.org
http://www.ohloh.net/p/apache
http://www.ohloh.net/p/apache
http://www.stevesouders.com/blog/2012/02/10/the-performance-golden-rule
http://www.stevesouders.com/blog/2012/02/10/the-performance-golden-rule
http://www.stevesouders.com/blog/2012/02/10/the-performance-golden-rule

	Introduction
	System Overview
	From Patches to Honey-Patches
	Challenges & Design Decisions
	Threat Model
	Background

	Architecture
	Session Remote Forking
	Checkpoint
	Restore

	Implementation
	Evaluation
	Honey-patchable Patches
	Performance Benchmarks
	Web Servers Comparison

	Discussion
	Related Work
	Conclusion
	References

