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ABSTRACT
Many software security policies can be encoded as aspects
that identify and guard security-relevant program opera-
tions. Bugs in these aspectually-implemented security poli-
cies often manifest as ambiguities in which aspects provide
conflicting advice for a shared join point. The design and im-
plementation of a detection algorithm for such ambiguities
is presented and evaluated. The algorithm reduces advice
conflict detection to a combination of boolean satisfiability,
linear programming, and regular language non-emptiness.
Case studies demonstrate that the analysis is useful for de-
bugging aspect-oriented security policies for several existing
aspectual security systems.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.3.2 [Programming Languages]: Language Clas-
sifications—Constraint and logic languages; D.4.6 [Operat-
ing Systems]: Security and Protection

General Terms
Languages, Security

Keywords
Aspect-oriented programming, declarative languages, refer-
ence monitors

1. INTRODUCTION
Aspect-oriented programming (AOP) is widely champi-

oned as a means of elegantly enforcing cross-cutting security
concerns. Pointcuts allow aspects to conveniently identify
security-relevant program operations, and advice associated
with each pointcut can be leveraged to mandate runtime
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security checks, security state updates, and other interven-
tionary code to prevent security-relevant operations from
leading to policy violations.

However, expressing high-level security policies program-
matically as aspects is often a difficult and potentially error-
prone process. This is especially true when policies are in-
tended to be generic, applying to a broad class of programs
rather than just a few known programs. Correctly imple-
menting generic, aspect-oriented security policies often re-
quires highly non-trivial reasoning about how the aspect-
weaving process might affect new, previously unseen, un-
trusted code. Unit testing tends to be an unreliable means
of detecting errors in these policy encodings, since an incor-
rect aspectual policy implementation may correctly enforce
the policy for most untrusted programs even if it permits
policy-violating behavior or breaks policy-adherent behav-
ior of a few unusual programs.

Two useful approaches to addressing the aspect-oriented
security policy specification problem include eliminating side-
effects from advice (often strengthening the pointcut lan-
guage to compensate) [10, 11, 19] and synthesizing aspect-
oriented policy implementations automatically from higher-
level specification languages, such as LTL (cf., [7]) or Tem-
poralZ [23]. This results in effect-free, purely declarative
aspect-oriented languages that minimize the potential for
undesired, effectful interactions with untrusted code.

However, policy errors are not limited to advice; they also
arise in pointcuts. Pointcut errors tend to arise even in high-
level specifications since the policy-writer must still some-
how specify the set of security-relevant operations, and the
language of operations is often an unfamiliar domain (e.g.,
Java bytecode instructions).

We have found that one of the most pernicious sources
of error when writing complex, aspectual security policies
is undesired pointcut non-determinism. Pointcut non-deter-
minism arises when multiple pointcuts in an aspect-oriented
security policy provide conflicting advice for a shared join
point. As a trivial example, a policy that restricts file ac-
cesses might mandate different runtime security checks for
calls to methods named *Open* than for calls to methods
named *Read*. This policy might have unintended results
when applied to a program that calls the ReadOpenedFile

method, which matches both pointcuts. When pointcuts in-
volve complex boolean expressions, regular expressions, class
subtyping constraints, and mixtures of static and dynamic
tests, even experts are prone to such mistakes.

We present the design and implementation of a point-
cut analysis utility that automatically detects potential non-



determinism in pointcut libraries. Our tool targets the SPoX
aspect-oriented policy specification language [19], which ex-
tends AspectJ [24] pointcuts with security state, instruction-
level join point matching, and purely declarative dynamic in-
spection of runtime argument values. Other aspect-oriented
security policy languages such as those supported by Java-
MOP [7] have natural encodings in SPoX, permitting easy
analysis of such policies using our utility. We have found
this automated analysis invaluable for discovering bugs in
policy specifications for real systems.

The detection algorithm is useful and practical in security
contexts because it is program-agnostic, it is applied to a
realistic aspect language, and it concerns specifications that
encode program properties rather than program transfor-
mations. This last distinction is critical because protection
systems that include formal verification require a property
to verify, not a program transformation recipe. For exam-
ple, proof-carrying code frameworks [30] and certifying IRM
systems [20] both employ automated verifiers that expect
security properties as input, against which untrusted code
is checked. Traditional aspect-oriented programs that ex-
press transformations rather than properties are unsuitable
for such purposes.

The remainder of the paper is structured as follows. Sec-
tion 2 provides an overview of the SPoX language and its
relationship to other AOP languages such as AspectJ. Sec-
tion 3 details our algorithm for detecting pointcut non-deter-
minism in SPoX policies. Our implementation of the algo-
rithm in constraint-based Prolog is discussed in Section 4,
including several case studies that illustrate how pointcut
non-determinism bugs arise in practice and are detected by
the analysis. Finally, related work and conclusions are sum-
marized in Sections 5 and 6, respectively.

2. POLICY LANGUAGE
SPoX (Security Policy XML) [19] is a purely declarative

yet powerful aspect-oriented policy specification language
for constraining untrusted Java bytecode binaries. A SPoX
specification denotes a security automaton [3]—a finite- or
infinite-state machine that accepts all and only those event
sequences that satisfy the security policy.

Security-relevant program events are specified in SPoX
by pointcuts. The SPoX pointcut language is an extension
of that used by AspectJ [24]. This allows policy-writers to
develop policies that regard static and dynamic method calls
and their arguments, object pointers, and lexical contexts,
among other properties. SPoX supports all pointcuts from
AspectJ that do not depend on advice, which allows it to
specify a broad range of policies purely declaratively.

Prior work [22] has enforced SPoX policies as binary-level
In-lined Reference Monitors (IRM’s) [32]. An IRM system
automatically instruments untrusted binaries with runtime
security checks to produce self-monitoring code. The run-
time checks preserve policy-adherent behavior while prevent-
ing policy-violating behavior. The instrumentation process
is similar to aspect-weaving but is expressed as a binary-to-
binary transformation rather than a compile-time, source-
to-source or source-to-binary transformation. This allows
SPoX policies to be enforced by code-consumers on binaries
without source code.

In place of advice, SPoX policies include declarative spec-
ifications of how security-relevant events change the current
security automaton state. The replacement of imperative

n ∈ Z integers

c ∈ C class names

sv ∈ SV state variables

iv ∈ IV iteration vars

id ∈ ID object identifiers

en ∈ EN edge names

pn ∈ PCN pointcut names

pol ::= np∗sd∗e∗ policies

np ::= (pointcut name="pn" pcd) named pointcuts

sd ::= (state name="sv" ["c"]) state declarations

e ::= edges

(edge name="en" [after] pcd ep∗
) edgesets

| (forall "iv" from a1 to a2 e∗) iteration

ep ::= edge endpoints

| (nodes ["id"] "sv" a1,a2) state transitions

| (nodes ["id"] "sv" a1,#) policy violations

a ::= a1+a2 | a1-a2 | b arithmetic

b ::= n | iv | b1*b2 | b1/b2 | (a)

Figure 1: Simplified SPoX syntax

advice with declarative state-transitions facilitates formal,
automated reasoning about policies without the need to rea-
son about arbitrary imperative code. State-transitions can
be specified in terms of information gleaned from the current
join point, such as method argument values, the call stack,
and the current lexical scope. This allows advice typically
encoded imperatively in most other aspect-oriented secu-
rity languages to be declaratively encoded in SPoX policies.
Typically this results in a natural translation from these
other languages to SPoX, making SPoX an ideal target for
our analysis.

The remainder of the section describes the syntax and
semantics of SPoX. For readability we here use a simplified
Lisp-style syntax; the implementation uses an XML-based
syntax for easy parsing, portability, and extensibility. The
language semantics are here described informally; a formal
denotational semantics is provided in [19].

2.1 Security State
SPoX specifications (see Figures 1 and 2) are lists of se-

curity automaton edge declarations. Each edge declaration
consists of three parts:

• Pointcut expressions (Figure 2) identify sets of related
security-relevant events that programs might exhibit
at runtime. These label the edges of the security au-
tomaton.

• Security-state variable declarations (sd in Figure 1)
abstract the security state of an arbitrary program.
The security state is defined by the set of all state
variables and their integer1 values. These label the
automaton nodes.

1Binary operator / in Figure 1 denotes integer division.



re ∈ RE regular expressions

md ∈ MD method names

fd ∈ FD field names

pcd ::= pointcuts

(call mo∗ rt c.md) method calls

| (execution mo∗ rt c.md) callee executions

| (get mo∗ c.fd) field get

| (set mo∗ c.fd) field set

| (argval n ["id"] vp) stack args (values)

| (argtyp n ["id"] c) stack args (types)

| (target ["id"] [c]) object refs

| (withincode mo∗ rt c.md) lexical contexts

| (pointcutid "pn") named pc refs

| (cflow pcd) control flows

| (and pcd∗
) conjunction

| (or pcd∗
) disjunction

| (not pcd) negation

mo ::= public | private | · · · modifiers

rt ::= c | void | · · · return types

vp ::= (true) value predicates

| (isnull) object predicates

| (inteq n) | (intne n) integer predicates

| (intle n) | (intge n)

| (intlt n) | (intgt n)

| (streq re) string predicates

Figure 2: Simplified SPoX pointcut syntax

• Security-state transitions (e in Figure 1) describe how
events cause the security automaton’s state to change
at runtime. These define the transition relation for the
automaton.

Edges are specified by edge structures, each of which de-
fines a (possibly infinite2) set of edges in the security au-
tomaton. Each edge structure consists of a pointcut ex-
pression and at least one nodes declaration. The point-
cut expression defines a common label for the edges, while
each nodes declaration imposes a transition pre-condition
and post-condition for a particular state variable. The pre-
condition constrains the set of source states to which the
edge applies, and the post-condition describes how the state
changes when an event matching the pointcut expression is
exhibited.

As an example, Figure 3 shows a sample SPoX policy that
requires programs to initialize instances of class Clazz be-
fore calling their methods. Line 1 declares a state variable
init that tracks whether any given Clazz instance has been
initialized. The edge at lines 3–6 transitions init from 0
to 1 when the object’s constructor is invoked. The edge at
lines 8–13 signals a policy violation when any of the object’s

2Infinity of the edge set arises from unboundedness of the
set of objects; however, each object’s automaton is finite.

1 (state name="init" "Clazz")
2

3 (edge name="initEdge"
4 (and (call "Clazz.new")
5 (target "x"))
6 (nodes "init" "x" 0,1))
7

8 (edge name="illegalMethodEdge"
9 (and (call "Clazz.*")

10 (not (call "Clazz.new"))
11 (not (withincode "Clazz.new"))
12 (target "x"))
13 (nodes "init" "x" 0,#))

Figure 3: InitClazz policy

other methods are called while init is 0. The reserved post-
condition # in line 13 indicates that the security automaton
should have no transition for this operation (hence it re-
jects).

Multiple nodes declarations in a single edge are inter-
preted conjunctively. For example, the following edge dic-
tates that if an event matching pointcut p occurs when
s1 = 0 and s2 = 1, then s1 changes to 1 and s2 remains
invariant.

(edge name="edge1"

(p)

(nodes "s1" 0,1)

(nodes "s2" 1,1))

In general, state variables come in two varieties:

• Instance security-state variables describe the security
state of an individual runtime object. They can be
thought of as hidden field members of security-relevant
classes.

• Global security-state variables describe the state of the
overall system. They can be thought of as hidden,
global, program variables.

The init variable in Figure 3 is an instance security-state
variable because it tracks whether any given object instance
has been initialized. Such variables allow SPoX specifica-
tions to express per-object security properties. For example,
a policy can require that each File object may be read at
most ten times by defining an instance security-state vari-
able associated with File objects and defining state tran-
sitions that increment each object’s security-state variable
each time that individual File object is read (up to ten
times).

In contrast, global security-state variables allow SPoX
specifications to express instance-independent security prop-
erties. For example, a policy can require that at most ten
File objects may be created during the lifetime of the pro-
gram by defining a global security-state variable that gets
incremented each time any File object is created (up to ten
times).

The security automata corresponding to many realistic se-
curity policies have repetitive, redundant structure. For ex-
ample, a resource bound policy might implement a counter
with automaton edges that increment the counter from i to
i + 1 for each i < b for some policy-specified bound b. To
simplify such patterned repetition, SPoX includes iteration



variables, defined by forall structures. A forall may con-
tain any number of edges and nested forall structures. For
example, to describe a set of 10 edges, each of which incre-
ments the state variable s upon any event matching pointcut
p, one could use the following SPoX fragment:

(forall "i" from 0 to 9

(edge name="count"

(p)

(nodes "s" i,i+1)))

Iteration variables range over the integer lattice points of
closed intervals. Thus, the above example allows state vari-
able s to range from 0 to 10.

2.2 Pointcuts
A syntax for a subset of the SPoX pointcut language is

given in Figure 2. SPoX pointcut expressions consist of all
pointcuts available in AspectJ except for those that are spe-
cific to AspectJ’s advice language.3 This includes all regular
expression operators available in AspectJ for specifying class
and member names. Since SPoX policies are applied to Java
bytecode binaries rather than to source code, the meaning
of each pointcut expression is reflected down to the byte-
code level. For example, the target pointcut matches any
Java bytecode instruction whose this argument references
an object of class c.

Instead of AspectJ’s if pointcut (which evaluates an ar-
bitrary, possibly effectful, Java boolean expression), SPoX
provides a collection of effect-free value predicates that per-
mit dynamic tests of argument values at join points. These
are accessed via the argval predicate and include object nul-
lity tests, integer equality and inequality tests, and string
regular expression matching. Regular expression tests of
non-string objects are evaluated by obtaining the toString

representation of the object at runtime. (The call to the
toString method itself is a potentially effectful operation
and is treated as a matchable join point by the SPoX en-
forcement implementation. However, subsequent use of the
returned string within injected security guard code is non-
effectful.)

Predicates that match runtime arguments can also declare
an identifier id to which nodes declarations refer in order
to access the instance security state of security-relevant ob-
jects. For example, the following edge changes the s instance
state variable of FileInputStream objects to 1 when they
are closed.

(edge name="fileclose"

(and (call void close)

(target "x" java.io.FileInputStream))

(nodes "x" "s" 0,1))

AspectJ pointcuts are further documented in [35], and
SPoX extensions to them are documented in [19].

3. ANALYSIS
A SPoX policy is non-deterministic if it denotes a non-

deterministic security automaton. Formally, we define pol-
icy non-determinism as follows.

3For example, AspectJ’s advicexecution() pointcut is
omitted because SPoX lacks advice.

Definition 1. A SPoX policy is non-deterministic if it de-
notes a security automaton in which there exists a state4

q ∈ (SV ×O) ⇀ Z and two edges (q, q1) and (q, q2) labeled
with pointcuts pcd1 and pcd2 respectively, such that q1 6= q2
and pcd1 and pcd2 match non-disjoint sets of join points.

IRM systems typically exhibit implementation-defined be-
havior when provided a non-deterministic policy specifica-
tion as input. The implementation-defined behavior de-
pends upon the order in which the IRM implements the
runtime security checks that decide whether to perform each
possible state transition at matching join points. The in-
strumentation (aspect-weaving) process does not detect the
non-determinism statically because it cannot decide if mul-
tiple checks inserted at the same join point always result in
mutually exclusive outcomes at runtime.

Two obvious solutions to this problem are to automati-
cally determinize the security automaton prior to weaving
it into untrusted code, or to automatically resolve conflicts
by imposing a default ordering on conflicting edges. How-
ever, our experience indicates that these approaches often
result in an automaton that does not reflect the intentions
of the policy-writer. Instead, they often have the counter-
productive effect of silently concealing policy design errors
from the user. Non-determinism typically arises in practice
when separate parts of a specification constrain event sets
that the policy-writer expected to be disjoint, but that in-
tersect at a few unusual join points or security states that
the policy-writer did not adequately consider. Our goal is
to bring these possible design errors to the attention of the
policy-writer so that specification bugs can be manually cor-
rected.

We therefore adopt the approach of detecting and reject-
ing non-deterministic policies automatically prior to enforce-
ment. To support generic policies, the decision algorithm
considers the universe of all possible untrusted target pro-
grams rather than a specific program to which the policy is
to be applied. When non-determinism is detected, the al-
gorithm yields a witness in the form of a security state and
join point for which the non-determinism is exhibited. This
allows policy-writers to understand and correct design flaws
that may have led to the ambiguity.

At a high level the decision algorithm consists of two
phases. In the first phase, state variable pre-conditions and
post-conditions of every pair of edge declarations are com-
pared to determine which edge pairs have common source
states but distinct destination states. SPoX supports state
transitions both immediately before and immediately af-
ter (via the after keyword in Figure 1) the matched join
point. The SPoX language semantics adopt a point-in-time
join point model [16] in which after-transitions are distinct
from before-transitions of any following join point. Thus, an
after edge can never conflict with a before edge in SPoX,
and such edge pairs can be safely ignored when searching
for potential non-determinism during the first phase.

In the second phase, pointcut labels of edge pairs identified
in the first phase are compared to decide if their intersec-
tion is non-empty. If any labeled edge pair is identified as
non-deterministic by both phases, a witness is then synthe-
sized from a common source state from the first phase and

4Set O denotes the universe of object instances plus a global
meta-object that models the storage context of global secu-
rity state variables.



a common join point from the second phase. Both phases
are discussed in detail in the following sections.

3.1 Security State Non-determinism
The problem of deciding whether there exist automaton

edges (q, q1) and (q, q2) with q1 6= q2 can be reduced to a
linear programming problem. Each edge declaration in the
policy defines its source (resp. destination) states in terms
of pre-conditions (resp. post-conditions) that are expressed
as integer equality constraints over state variables and itera-
tion variables. Iteration variables are further constrained by
inequality constraints imposed by the surrounding forall

blocks that declare the iteration variables and the closed
intervals over which their values range.

Thus, each set of n nested forall blocks that surround an
edge containing m nodes elements defines a convex, ratio-
nal polytope T ⊆ Qn with 2(n+m) linear constraints. Each
integer lattice point in feasible region T corresponds to a
source state for an automaton edge defined by the edge dec-
laration. The m post-condition constraints in such a struc-
ture define an affine transformation f : T → Qn that maps
each source state to a destination state.

To decide whether an edge pair e1, e2 is potentially non-
deterministic, we therefore adopt the following procedure.

1. Alpha-convert iteration variables to unique names. (In-
stance state variables are not renamed since the anal-
ysis must conservatively assume that all object refer-
ences of similar type may alias.)

2. Compute feasible regions T1 and T2 for edges e1 and e2
by collecting the linear constraints encoded in relevant
forall declarations and the pre-conditions of nodes

declarations.

3. Compute affine transformations f1 and f2 by collecting
the linear constraints encoded in the post-conditions of
the nodes declarations.

4. Compute the set of common source states T = T1∩T2.

5. Compute extrema of objective function m(q) = f1(q)−
f2(q) over q ∈ T . If m has a maximum or minimum
other than 0 at any q̄ ∈ T , then q̄ is a common source
state for which edges e1 and e2 lead to different desti-
nation states f1(q̄) and f2(q̄).

As an example, consider the following pair of edge decla-
rations, which refer to the same instance state variable s:

(forall "i" from 0 to 10 (forall "i" from 0 to 3
(argval 1 "x" p1) (argval 2 "y" p2)
(nodes "x" "s" i,i-3)) (nodes "y" "s" i*3,i+2))

Step 1 alpha-converts the iteration variables to unique names
i0 and i1. Since objects x and y may alias (e.g., at a join
point whose first and second arguments refer to the same
object), instance state variable s is not alpha-converted.
Step 2 then defines feasible region T1 by linear constraints
(i0 ≥ 0) ∧ (i0 ≤ 10) ∧ (s = i0) and feasible region T2 by
(i1 ≥ 0) ∧ (i1 ≤ 3) ∧ (s = 3i1). Transformations f1 and f2
are defined in Step 3 by f1(s) = s− 3 and f2(s) = s/3 + 2.
Step 4 defines intersection T = T1 ∩ T2 by the conjunction
of the constraints defining T1 and T2.

Step 5 considers objective function m(s) = s−3−(s/3+2),
which is maximized in T at (s, i0, i1) = (9, 9, 3) and mini-
mized at (0, 0, 0) (with values 1 and -5, respectively). Thus,

1 (state name="c")
2 (forall "i" from 0 to maxint-1
3 (edge name="cflowinc"
4 (p)
5 (nodes "c" i,i+1))
6 (edge name="cflowdec" after
7 (p)
8 (nodes "c" i+1,i)))

Figure 4: SPoX fragment for (cflow p)

non-determinism could potentially be exhibited when x.s =
y.s ∈ {0, 9} if there exists a program operation that matches
both of pointcuts p1 and p2. Disjointness of pointcut expres-
sions is discussed in the next section.

3.2 Pointcut Non-determinism
Pointcut disjointness is reducible to pointcut unsatisfia-

bility. That is, pointcuts pcd1 and pcd2 match disjoint sets
of join points if and only if pointcut (and pcd1 pcd2) is un-
satisfiable. Pointcut satisfiability can, in turn, be reduced
to boolean satisfiability (SAT). The remainder of the section
describes an algorithm S that transforms a pointcut pcd into
a boolean sentence S(pcd) such that sentence S(pcd) is sat-
isfiable if and only if pointcut pcd is satisfiable.

Conjunction, disjunction, and negation in pointcut ex-
pressions can be translated directly to boolean conjunction,
disjunction, and negation. The only remaining pointcut syn-
taxes are primitives (forms such as call that do not include
nested pointcuts) and control flow operators such as cflow.

Control flow operators are removed from pointcuts prior
to the analysis by translating them to an equivalent automa-
ton encoding. For example, (cflow p) matches join points
whose call stacks contain a frame matching pointcut p, which
can be modeled by the policy fragment shown in Figure 4.5

Control flow operators in edges are then replaced with equiv-
alent nodes elements that stipulate an equivalent condition
(e.g., c ≥ 1).

This leaves the various pointcut primitives, such as call,
get, and argval. For each unique primitive, a unique bool-
ean variable is introduced. This results in a boolean sentence
that is satisfiable if the original pointcut is satisfiable, but
which might be satisfiable even if the original pointcut is
unsatisfiable. For example, the pointcut

(and (call "File.open") (call "File.close"))

yields the sentence a ∧ b, which is satisfiable even though
the original pointcut is not. To correct this, a constraint
term must be added to the sentence for each pair of boolean
variables that denote non-independent pointcut primitives.
In this case the appropriate constraint term is ¬(a∧ b) since
a and b denote primitives that cannot both be true for the
same join point. A systematic approach to deriving con-
straint terms is provided later in the section.

Algorithm S can therefore be summarized as follows:

1. Construct a mapping V : P → B from pointcut prim-
itives to unique boolean variables.

2. For each subset of pointcut primitives S ⊆ P , poten-
tially generate a constraint term c(S).

5In Figure 4, c is a thread-local instance state variable and
is instantiated with a unique name for each cflow instance
in the policy.



Table 1: Constraint generation cases
call exec get set argv targ argt with

call CR
exec E CR
get E E CR
set E E E CR
argv C C E C RV
targ CR CR C C I CR
argt C C E C T I CR
with I E I I I I I CR

Legend:

I: independent (no constraint required)

E: mutually exclusive (use constraint ¬(a ∧ b))

C: independent except for known classes

R: regular expression non-emptiness check

V: argval check

T: argval–argtyp compatibility check

3. Construct sentence S(pcd) as follows:

S(pcd) = T (pcd) ∧
( ∧
S⊆P

c(S)
)

where T (and pcd1 pcd2) = T (pcd1) ∧ T (pcd2)

T (or pcd1 pcd2) = T (pcd1) ∨ T (pcd2)

T (not pcd1) = ¬T (pcd1)

T (pcd) = V (pcd) for pcd primitive

Generating constraint terms c(S) in Step 2 is the most
difficult step in the reduction. Most of the necessary con-
straints can be generated by considering only pairs of point-
cuts S = {p1, p2} rather than larger sets. (The one excep-
tion involves regular expressions, and is described in greater
detail below.) The possible cases for such pairs can be di-
vided into the various possible syntactic forms for p1 and p2.
These cases are summarized in Table 1. The columns and
rows of the table are labeled with the four-letter prefixes of
pointcut primitives listed in Figure 2.

Cells labeled I are always independent; no constraint term
is required in these cases. For example, a call join point
can potentially appear within any lexical scope, so call

and withincode pointcuts are independent. Cells labeled
E are mutually exclusive; the necessary constraint term is
¬(T (p1) ∧ T (p2)). For example, no join point is both a call
instruction and a field-get instruction, so call and get are
mutually exclusive.

Deriving appropriate constraints for cells labeled C re-
quires a model of the trusted portion of the class hierarchy.
Trusted classes typically consist of those implemented by the
Java standard libraries or other system-level libraries. When
one or both pointcut primitives name a known, trusted class,
the constraint generator performs a subclass test over the
trusted class model; otherwise the two pointcuts are inde-
pendent. For example, two argtyp pointcuts (argt) are typ-
ically independent since in an arbitrary untrusted program
any type could be a subtype of any other type. However, if
one pointcut names a standard library class c that is declared
final and the other uses a type pattern that does not match
any superclass of c, then the two are mutually exclusive.

A regular expression non-emptiness test is required for
cells marked R in Table 1, and is the only case that requires

consideration of sets S ⊆ P that are larger than size 2.
For each set of pointcuts S that place regular expression
constraints upon the same join point component (e.g., the
same instruction argument), the constraint generator must
decide whether there exists a string that satisfies all regular
expressions in S and none in P − S. If so, no constraint is
generated for S; otherwise a mutual exclusion constraint is
generated. For example, consider the pointcut fragment

(and (call "x*") (call "xx*") (call "xy"))

which initially reduces to the sentence a ∧ b ∧ c before con-
straints are added. Regular expressions xx* and xy are both
subsets of x*, and xy is disjoint from xx*. The algorithm
above therefore represents these with a conjunction of three
constraints: ¬(b ∧ ¬a) ∧ ¬(c ∧ ¬a) ∧ ¬(a ∧ b ∧ c).

The space of subsets S ⊆ P that must be considered is
potentially exponential in the size of P , but in practice the
space can be significantly pruned through memoizing. That
is, if any subset S has an empty intersection, then no super-
sets of S need be considered further. Thus, working upward
from small subsets to larger ones tends to result in a smaller
number of regular expression emptiness sub-problems that
must be solved.

The cell of Table 1 marked V concerns the special case of
two argval predicates. Two argval predicates are always
independent unless they regard the same argument index n
and both contain value predicates that are relevant to the
same type of data (object, integer, or string). String predi-
cates reduce to regular expression non-emptiness problems,
described above. Integer predicates result in implication, bi-
implication, or mutual exclusion constraints. For example,
if p1 contains (inteq 3) and p2 contains (intlt 4), then
c({p1, p2}) = (T (p1)⇒ T (p2)).

Finally, the table cell marked T concerns the special case
of an argval and an argtyp primitive. These are always in-
dependent if they refer to different runtime arguments, they
are mutually exclusive if they refer to differing types, and
otherwise the argval predicate implies the argtyp predi-
cate. For example, if p1 = (argval 1 (inteq 3)) and p2 =
(argtyp 1 int) then we obtain the constraint T (p1) ⇒
T (p2) because any join point satisfying p1 also satisfies p2.

Once boolean sentence S(pcd) has been constructed, it is
delivered to a SAT-solving engine. The SAT-solver yields
a satisfying assignment of boolean variables if one exists.
From such an assignment it is trivial to recover a witness
join point that lies in the intersection of the two original
pointcuts. This facilitates disambiguation of the flawed pol-
icy specification by providing the human expert with an ex-
ample target program fragment for which the policy is am-
biguous. In the next section, we discuss several case studies
in which our analysis algorithm discovered and reported un-
desired non-determinism in real policies.

4. CASE STUDIES
We implemented our non-determinism detection tool us-

ing a combination of Java and SWI-Prolog. The Java com-
ponent consists of a SPoX parsing library (approximately
5000 lines of Java code) and an analysis engine that includes
a Prolog-generating back-end (approximately 4200 lines of
Java code). It extracts relevant information from the policy,
including automaton transitions and pointcut expressions,
and uses this to generate Prolog predicates that model the
extracted policy information.



The Prolog half of the implementation is the heart of the
analysis engine, and consists of dynamically generated code.
It decides whether any pair of pointcut-labeled edges in the
policy are non-deterministic using the algorithm described
in Section 3. State variable non-determinism is decided
through the use of a Prolog-based linear constraint solver.
Pointcut non-determinism is decided by submitting the bool-
ean sentence derived by algorithm S of Section 3.2 to a C
implementation of the MiniSat SAT-solving engine [15]. If
the sentence is satisfiable then the policy is non-determinis-
tic, and the analysis tool identifies the conflicting portions
of the specification.

In this section we discuss six policy scenarios in which our
analysis tool discovered policy bugs through non-determin-
ism detection. For each case study, we discuss the origins of
the policy, the design flaw that led to unintended non-deter-
minism, and how we removed the error. Runtime statistics
for all experiments are summarized at the end of the section.

4.1 Filesystem API Protocols
An important class of software security policies are those

that prescribe protocols for accessing system API’s. For ex-
ample, the JavaMOP documentation [18] includes a policy
that prevents writing to a file that is not already open. Such
a policy can be naturally encoded in SPoX as a 2-state au-
tomaton, where the open operation transitions the automa-
ton from the closed to opened state, write operations are
only permitted in the opened state, and the close operation
transitions the automaton back to the closed state.

In practice such protocols can be significantly more com-
plex. For example, a natural extension to the example above
makes the set of acceptable operations contingent upon the
mode in which the file has been opened. Files opened in
read-mode may be read but not written, only those opened
in random access mode may be seeked, etc. As the number
of possible operations increases, policy complexity and the
opportunity for error increase as well.

The FileMode policy specification in Figure 5 models a
simplified filesystem API policy that supports read and write
modes, open and close operations, and read and write op-
erations. Lines 18 and 23 of the policy use the reserved #

post-condition to cause the automaton to reject if a write
or read operation is attempted in an incompatible mode. In
addition, lines 31–34 prohibit all I/O operations when a file
is in the closed state.

Line 32 of the policy contains a bug that has the unin-
tended effect of rejecting even open operations when a file
is in the closed state. The bug arises because the regular
expression in that line is overly broad.

After submitting this policy to our analysis tool, it re-
ported that the edge at line 31 conflicts with the edges at
lines 3 and 9. Specifically, calls to File.open with a sec-
ond argument of "OpenRead" or "OpenWrite" and a security
state of f = 0 solicit conflicting advice.

Upon discovering the bug, we disambiguated the policy
by replacing the pointcut at lines 32–33 with the following
refinement of the original pointcut expression.

(and (call "File.*)

(not (call "File.open"))

(target "x"))

The resulting policy passed the analysis and correctly en-
forced the desired policy.

1 (state name="f" "File")
2

3 (edge name="openFileRead"
4 (and (call "File.open")
5 (argval 2 (streq "OpenRead"))
6 (target "x"))
7 (nodes "f" "x" 0,1))
8

9 (edge name="openFileWrite"
10 (and (call "File.open")
11 (argval 2 (streq "OpenWrite"))
12 (target "x"))
13 (nodes "f" "x" 0,2))
14

15 (edge name="illegalWrite"
16 (and (call "File.write")
17 (target "x"))
18 (nodes "f" "x" 1,#))
19

20 (edge name="illegalRead"
21 (and (call "File.read")
22 (target "x"))
23 (nodes "f" "x" 2,#))
24

25 (forall "i" from 1 to 2
26 (edge name="fileClose"
27 (and (call "File.close")
28 (target "x"))
29 (nodes "f" "x" i,0)))
30

31 (edge name="illegalFileOp"
32 (and (call "File.*")
33 (target "x"))
34 (nodes "f" "x" 0,#))

Figure 5: FileMode policy

4.2 Transaction Logging
A classic application of Aspect-Oriented Programming in

the literature is transaction logging (e.g., [27]). An AOP-
style transaction logger is one specific enforcement of a more
general audit policy. The audit policy dictates that impend-
ing security-relevant transaction operations must be first
logged via a trusted logging mechanism. An IRM or other
security implementation can enforce the policy by injecting
the necessary logging operations immediately before each
transaction operation.

Figure 6 provides a fragment of one such audit policy for
a hypothetical credit card processing library. The library in-
cludes a CreditCardProcessor class that contains numerous
transaction implementations, all accessed via methods with
names ending in *Transaction. The desired audit policy
mandates exactly one call to the trusted logTransaction

method before each such transaction.
The specification in Figure 6 contains bugs at lines 8

and 16 that mistakenly treat calls to the logTransaction

method itself as transactions. Our analysis uncovered these
bugs in the form of two sources of non-determinism: one
associated with the edges at lines 3 and 15, and the other
associated with those at lines 7 and 11. In the first case calls
to logTransaction solicit conflicting advice in security state
0. In the second case the same ambiguity arises in state 1.

To correct the error, we introduced a named pointcut that
lists each security-relevant transaction method explicitly in
a large disjunctive pointcut. (An alternative would be to
explicitly except the logging method using pointcut negation



1 (state name="logged")
2

3 (edge name="log"
4 (call "CreditCardProcessor.logTransaction")
5 (nodes "logged" 0,1))
6

7 (edge name="transaction"
8 (call "CreditCardProcessor.*Transaction")
9 (nodes "logged" 1,0))

10

11 (edge name="badLog"
12 (call "CreditCardProcessor.logTransaction")
13 (nodes "logged" 1,#))
14

15 (edge name="badTransaction"
16 (call "CreditCardProcessor.*Transaction")
17 (nodes "logged" 0,#))

Figure 6: Logger policy

1 (state name="exists" "File")
2

3 (forall "i" from 0 to 1
4 (edge name="rename"
5 (and (call "File.renameTo")
6 (target "x")
7 (argtyp 1 "y" "File"))
8 (nodes "x" "exists" 1,0)
9 (nodes "y" "exists" i,1)))

Figure 7: FileExists policy

and conjunction operators.) This eliminated the non-deter-
minism and passed the analysis.

4.3 Object Aliasing
A particularly elusive form of unintentional non-determin-

ism arises from object aliasing. As an illustration, consider
the policy fragment in Figure 7, which tracks whether Java
File objects refer to existent or non-existent files. When an
existing file is renamed, the policy marks the source File

object as referring to a non-existent file and the destination
File object as referring to an existent one.

However, this policy has a subtle non-determinism bug
that arises when the same object is passed as both the source
and destination arguments of the File.renameTo method.
In this case the policy stipulates that the File object tran-
sitions to both the existent and non-existent security states.
A malicious program could exploit this loophole to transi-
tion File objects to incorrect security states and potentially
circumvent the intended policy.

Our non-determinism analysis detected this bug in the
form of a join point in which object identifiers x and y alias to
a common File object. We corrected the error by changing
the i in line 9 to the constant 0. This resolves the non-
determinism by restricting only renameTo operations that
change the name of an existing file to an unused filename;
thus the source and destination cannot be the same object.
The resulting policy was validated as deterministic.

4.4 Information Flow
A canonical information flow policy example in the IRM

literature prevents untrusted programs from leaking confi-
dential files over the network. One standard encoding of this
policy prohibits all network send operations after a confiden-

1 (state name="accessed")
2 (state name="permission")
3

4 (edge name="authorize"
5 (call "GUI.grantConnectPermission")
6 (nodes "permission" 0,1))
7

8 (forall "i" from 0 to 1
9 (edge name="read"

10 (and (call "File.open")
11 (argval 2 (streq "OpenRead")))
12 (nodes "accessed" i,1))
13 (edge name="send"
14 (call "Connection.open")
15 (nodes "permission" i,0)))
16

17 (edge name="badsend"
18 (call "Connection.open")
19 (nodes "accessed" 1,1)
20 (nodes "permission" 0,#))

Figure 8: GetPermission policy

tial file has been read [32]; however the resulting policy can
be sometimes be too draconian to be useful in practice. A
useful relaxation introduced in [2] permits subsequent net-
work send operations only after the user has expressly per-
mitted them via a trusted authentication and authorization
mechanism.

We ported this latter policy specification to SPoX in Fig-
ure 8. Method GUI.grantConnectPermission has a trusted
implementation that authorizes new connections. (When
authorization is denied, the method does not return.) The
policy maintains two security state variables: permission

and accessed. The former is set to 1 (line 6) when the
user authorizes a new connection and reset to 0 (line 15)
after a new connection is established. Thus, future con-
nections require subsequent authorizations. The accessed

variable is set to 1 (line 12) when a confidential file is read.
Unauthorized, new connections subsequent to such reads are
prohibited by line 20, which signals a policy violation.

The policy specification contains a bug in the edge at line
13, which resets permission to 0 even when the new connec-
tion constitutes a policy violation. This results in a conflict
between that edge and line 20 which signals the violation.
In this case the unintended non-determinism therefore arises
at the security state level rather than at the pointcut level.

To fix the problem, we split the edge at line 13 into two
cases, one for new connections after confidential reads and
another for new connections prior to any confidential reads:

(forall "i" from 0 to 1 (edge name="send2"
(edge name="send1" (call "Connection.open")
(call "Connection.open") (nodes "accessed" 1,1)
(nodes "accessed" 0,0) (nodes "permission" 1,0)))
(nodes "permission" i,0)))

This repartitioning of the security state space intentionally
omits the case where the send operation occurs after a con-
fidential file-read and without authorization, since that case
is adequately covered by the edge at line 17. The resulting
policy is deterministic and therefore passed the analysis.

4.5 Free-riding Prevention
A recent case study [22] used SPoX to enforce a free-riding

prevention policy for a peer-to-peer file-sharing application.



1 (state name="counter")
2

3 (forall "i" from -10000 to 2
4 (edge name="download"
5 (call "Connection.download")
6 (nodes "counter" i,i+1))
7 (edge name="upload"
8 (call "Connection.upload")
9 (nodes "counter" i,i-1)))

10

11 (edge name="illegalDownload"
12 (call "Connection.download")
13 (nodes "counter" 2,#))

Figure 9: NoFreeride policy

The policy permitted users to download at most 2 more files
than had been uploaded by the application. This forces users
of the network to share approximately as many files as they
obtain. The policy is reproduced in Figure 9.

Surprisingly, this policy specification contains a non-deter-
minism bug, which was uncovered by our analysis utility.
Specifically, when counter i reaches 2 and another down-
load operation occurs, the edges at lines 4 and 11 of the
specification give conflicting advice. The design flaw can be
traced to an off-by-one error in the bounds of the forall

loop, which permit line 6 to increase the counter beyond 2
and line 9 to decrease the counter beyond -10000.

To correct the error, we reduced the upper bound in line
3 from 2 to 1 and changed the decrement operation in line
9 from i,i-1 to i+1,i. This corrected the bug and yielded
a deterministic policy.

4.6 Policy Composition
Automated non-determinism detection is also useful for

composing related policies because it reveals join points for
which the different policies conflict. This affords policy-
writers an opportunity to decide how such conflicts should
be resolved on a case-by-case basis.

For example, [13] discusses challenges related to merging
policies that mandate logging and encryption of the same
data in untrusted program operations. We adapted that
example to SPoX in the form of a data encryption policy for
the credit card transaction system discussed in Section 4.2.
The encryption policy specification is shown in Figure 10.

Combining the policy in Figure 10 with the one in Fig-
ure 5 resulted in a composite policy that our analysis tool
identified as non-deterministic. The non-determinism was
witnessed by join points that both policies considered to be
security-relevant, such as calls to creditTransaction.

In each case, we were able to resolve the unwanted non-
determinism by prescribing an ordering (via an appropri-
ate automaton encoding) on the policy-mandated security
checks. For this example we adopted the strategy of re-
quiring the encryption operations to be exhibited before the
logging operations. Once all conflicts were resolved, the final
composite policy passed the analysis and correctly enforced
both policies.

4.7 Summary of Results
The results of our experiments are summarized in Table 2.

All experiments were performed on an HP Pavilion notebook
computer with 4 GB of RAM and an AMD Turion 64 X2
TL-62 mobile processor running at 2.10 GHz, using a 32-

1 (state name="encrypted")
2

3 (edge name="encrypt"
4 (call "CreditCardProcessor.encryptTransaction")
5 (nodes "encrypted" 0,1))
6

7 (edge name="transaction"
8 (or (call "CreditCardProcessor.creditTransaction")
9 (call "CreditCardProcessor.debitTransaction"))

10 (nodes "encrypted" 1,0))
11

12 (edge name="badEncrypt"
13 (call "CreditCardProcessor.encryptTransaction")
14 (nodes "encrypted" 1,#))
15

16 (edge name="badTransaction"
17 (or (call "CreditCardProcessor.creditTransaction")
18 (call "CreditCardProcessor.debitTransaction"))
19 (nodes "encrypted" 0,#))

Figure 10: Encrypt policy

bit JVM and the 64-bit version of Windows 7. In the table
headings, size refers to the number of characters in each pol-
icy specification (including spaces) and pointcut vars refers
to the number of unique boolean variables introduced dur-
ing the reduction to SAT described in Section 3.2. In one
case (FileExistsFixed) no pointcut variables were gener-
ated because all potential non-determinism was eliminated
after the first phase of the algorithm.

The MiniSat Prolog interface converts boolean sentences
to conjunctive normal form (CNF) before processing. To
indicate the size and complexity of the resulting SAT prob-
lems, we list the number of boolean variables and the number
of clauses in the resulting CNF sentences in columns 4 and
5 of the table, respectively. Finally, the last column reports
the average execution time in milliseconds that our analy-
sis tool required for each policy including parsing, Prolog-
generation, and both phases of the algorithm.

In general we found that runtimes and boolean sentence
sizes were well within the range of practical use for the poli-
cies we tested. The only potential scaling issue we encoun-
tered concerns policies that contain large numbers of non-
independent regular expressions containing wildcards. In
those cases our treatment of regular expressions generates a
large number of constraint terms, slowing the analysis. We
believe this drawback could be overcome by making better
use of the memoizing technique mentioned in Section 3.2
(which is not yet fully utilized by our prototype). An inter-
esting and potentially more elegant alternative is to replace
the SAT solver with an SMT solver equipped with a the-
ory of regular languages. This is an avenue we intend to
investigate in future work.

5. RELATED WORK
From its inception, aspect-oriented programming has been

widely recognized as a promising technique for elegantly
implementing cross-cutting security concerns at the source
code level (cf., [36]). However, a major challenge faced by
security practitioners involves the need to formally reason
about aspects, which is difficult when the language includes
an effectful, Turing-complete advice language. Past work
has therefore proposed effect-free AOP languages to facili-
tate such formal reasoning [10]. AspectML [11] and SPoX



Table 2: Experimental Results
Size Pointcut CNF CNF

Policy (chars) vars vars clauses Runtimes
FileMode 1488 9 1764 2061 2243ms

FileModeFixed 1570 8 706 850 248ms
Logger 722 2 10 12 235ms

LoggerFixed 956 3 34 40 156ms
GetPermission 938 5 44 57 90ms

GetPermissionFixed 1189 5 49 61 85ms
FileExists 437 3 10 14 35ms

FileExistsFixed 423 0 0 0 25ms
NoFreeride 1024 3 22 28 797ms

NoFreerideFixed 1075 3 18 22 825ms
Encrypt 986 3 34 40 163ms

Log&Encrypt 2281 4 972 1180 538ms
Log&EncryptFixed 2321 4 578 703 391ms

[19] are purely functional and purely declarative (respec-
tively) AOP languages that have emerged recently in re-
sponse to this challenge.

A form of formal reasoning that has received particular
attention in the AOP literature regards the problem of re-
solving potential conflicts between advice applied to shared
join points [9]. One approach to this problem disambiguates
such advice by considering and analyzing every possible or-
dering of advice insertions [1, 14]. Incremental testing [26]
has been proposed as a means of modeling stateful effects
caused by application of advice, which is potentially use-
ful for detecting conflicts. Such analyses have also proved
useful for elimination of unnecessary advice insertions [29].
However, each of these approaches regards disambiguation
of advice applied to a specific, known target program. This
limits their usefulness for analyzing generic, aspectual secu-
rity policy specifications that are intended to be applicable
to arbitrary untrusted target programs.

Another useful line of research involves extending AOP
languages to include convenient mechanisms that allow the
aspect programmer to eliminate unwanted non-determinism
manually [29]. These are most valuable after potential non-
determinism has been detected.

Pointcut independence without respect to a given target
program (strong independence [12]) is considered by Palm
et. al. [31] in the context of program componentization.
Their model regards a restricted pointcut language that con-
sists only of calls, control flow operators (cflow), and bool-
ean operators. For this reduced language the pointcut satis-
fiability problem is shown to be NP-complete. In contrast,
our work considers a richer language that includes stateful
advice, AspectJ pointcut primitives [24], dynamic predicates
over runtime values, and regular expressions. It is not clear
that the aforementioned NP-completeness result applies to
this richer language. For example, the SAT-reduction in Sec-
tion 3 must potentially consider all subsets of the set of reg-
ular expressions in the policy during constraint-generation,
and therefore generates boolean sentences that are worst-
case exponential in size. Work on anti-patterns [25] has un-
covered various other difficult challenges related to decision
problems that include regular expressions and negation.

In-lined Reference Monitoring [32] is a general paradigm
for shifting reference monitors traditionally implemented at
the system level (e.g., within the operating system or vir-
tual machine) into the untrusted code they monitor. This

provides optimization opportunities not readily available to
traditional system-level monitors, such as reduced context-
switching overhead and various techniques for partially eval-
uating injected security guard code (e.g., [4, 6, 8]). The in-
lining process is similar to aspect-weaving, which has led to
an increasing convergence of IRM and AOP research.

JavaMOP [7] implements IRM’s as AspectJ aspects. SPoX
enforces policies expressible as security automata [3] and im-
plements them by in-lining the automata into Java bytecode
[22]. Related work has implemented IRM’s for several other
architectures, including the Microsoft .NET framework [20],
ActionScript bytecode [33], and x86 assembly code [17]. The
approach is also widely used for a variety of debugging pur-
poses, such as for detecting race conditions [5].

Work on automatically certifying IRM implementations is
ongoing, and includes type-checking [20], programming-by-
contract [2], and model-checking [34]. Most IRM systems
limit their attention to safety policies, since these are known
to be precisely enforceable [21, 32]. However, recent work on
edit automata [28] has extended IRM technology to include
certain restricted classes of liveness policies as well.

6. CONCLUSION
Correct policy specification is recognized throughout the

security literature as a notoriously difficult problem. Poli-
cies encoded as full aspects can include arbitrary imperative
code, making them especially difficult to analyze and verify.

In this work we have demonstrated that restricting aspec-
tual policy specifications to purely declarative (but stateful)
advice, and strengthening the pointcut language to include
declarative predicates over runtime values, improves the fea-
sibility of aspectual policy analysis yet remains expressive
enough to encode large classes of important security prop-
erties. Such policies can be effectively enforced as In-lined
Reference Monitors that target Java bytecode binaries.

We have further observed that in such a policy language,
many common specification errors manifest as policy non-
determinism. The detection of such errors was achieved via
a non-determinism analysis that reduces the problem to a
combination of several well-known sub-problems including
boolean satisfiability, linear programming, and regular lan-
guage non-emptiness.

The effectiveness of the technique was demonstrated via
the detection of policy specification bugs in a number of



case studies. In each case the analysis reliably uncovered
specification bugs in a way that facilitated understanding
of the underlying policy design flaws and how to correct
them. Policies were drawn from several existing aspect-
oriented languages, indicating that the analysis is useful for
debugging specifications for a variety of systems.
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