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Answer Set Programming.

Nomenclature

• AnsProlog*: Programming in logic with answer sets

• Also referred to as A-Prolog

• A collection of rules of the form

L0 or . . . or Lk ← Lk+1, . . . , Lm,not Lm+1, . . . ,not Ln.

where Li’s are literals in the sense of first order logic.

• The language

– with syntax encompassing

∗ general logic programs (normal logic programs): k = 0, Lis are atoms.

∗ extended logic programs: k = 0.

∗ disjunctive logic programs: Lis are atoms, m = n.

∗ disjunctive normal logic programs: Lis are atoms.

∗ extended disjunctive normal logic programs: no restrictions.

– and semantics characterized with answer sets
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MOTIVATION: “INTELLIGENCE” TO “AI” TO “KR” TO
“ANSPROLOG”



Answer Set Programming. Motivation: “Intelligence” to “AI” to “KR” to “AnsProlog”

A dictionary meaning of the word: “intelligence”

(1)

(a) The capacity to acquire and apply knowledge.

(b) The faculty of thought and reason.

(c) Superior powers of mind. See Synonyms at mind.

(2) An intelligent, incorporeal being, especially an angel.

(3) Information; news. See Synonyms at news.

(4)

(a) Secret information, especially about an actual or potential enemy.

(b) An agency, staff, or office employed in gathering such information.

(c) Espionage agents, organizations, and activities considered as a group

Source: The American Heritage Dictionary of the English Language, Fourth Edition

Copyright 2000 by Houghton Mifflin Company. Published by Houghton Mifflin

Company. All rights reserved.
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Answer Set Programming. Motivation: “Intelligence” to “AI” to “KR” to “AnsProlog”

Wordnet meaning of ‘intelligence”

n

1: the ability to comprehend; to understand and profit from experience

[ant: stupidity]

2: a unit responsible for gathering and interpreting intelligence

3: secret information about an enemy (or potential enemy); “we sent out planes to gather

intelligence on their radar coverage”

4: new information about specific and timely events; “they awaited news of the outcome”

[syn: news, tidings, word]

5: the operation of gathering information about an enemy [syn: intelligence activity,

intelligence operation]

Source: WordNet 1.6, 1997 Princeton University
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Answer Set Programming. Motivation: “Intelligence” to “AI” to “KR” to “AnsProlog”

Artificial Inteligence and ‘Knowledge representation and reasoning’

• AI is the science and engineering necessary to create artifacts that can

– acquire knowledge, i.e., can learn; and

– reason with knowledge (leading to doing tasks such as planning,

explaining, diagnosing, acting rationally, etc.),

• Thus to build intelligent artifacts one of two important aspects that is needed is to be

able to ‘Reasoning with knowledge’

• To build an artificial entity (or artifact) that can ‘reason with knowledge’ one must

‘represent the knowledge’.

• Central to Knowledge Representation and Reasoning is a knowledge representation

framework consisting of

– a knowledge representation language, [KR]

– a language to reason (i.e., ask various questions), [R]

– and connection between theories of the above two. [KR & R]
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Answer Set Programming. Motivation: “Intelligence” to “AI” to “KR” to “AnsProlog”

• An analogy: In summary, developing a KR & R framework is as fundamental

to build AI artifacts as Calculus is to Engineering.
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Answer Set Programming. Motivation: “Intelligence” to “AI” to “KR” to “AnsProlog”

Knowledge Representation has come of age.

• Project Halo. (Digital Aristotle.)

• Semantic Web.

• Advance Question Answering

• Cellular event modeling.

• Knowledge based planning. (HTN, TLPLAN, TALPLAN)
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Answer Set Programming. Motivation: “Intelligence” to “AI” to “KR” to “AnsProlog”

What properties should a good KR & R language have?

1. Should be non-monotonic. (So that the system can revise its earlier conclusion in light

of new information.)

2. Should have the ability to represent normative statements, exceptions, and default

statements, and should be able to reason with them.

3. Should be expressive enough to express and answer problem solving queries such as

planning queries, counterfactual queries, explanation queries and diagnostic queries.

4. Should have a simple and intuitive syntax so that domain experts (who may be

non-computer scientists) can express knowledge using it.

5. Should have enough existing research (or building block results) about this language

so that one does not have to start from scratch.

6. Should have interpreters or implementation of the language so that one can indeed

represent and reason in this language. (I.e., it should not be just a theoretical

language.)

7. Should have existing applications that have been built on this language so as to

demonstrate the feasibility that applications can be indeed built using this language.
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Answer Set Programming. Motivation: “Intelligence” to “AI” to “KR” to “AnsProlog”

Knowledge Representation Languages: a short (biased) history

• First-order logic and propositional logics

– both monotonic in nature.

• Description logic

– a fragment of FOL;

– is monotonic;

– mostly focussed on representing and reasoning about ontologies or inheritance

hierarchies

• Semantic Nets

– basically a graphical sub-class of FOL

• Non-monotonic logics

– Circumscription

– Default logic
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Answer Set Programming. Motivation: “Intelligence” to “AI” to “KR” to “AnsProlog”

– Non-monotonic modal logics (including auto-epistemic logic)

** complex syntax, no expressiveness advantages, limited building block results.

• AnsProlog* vs Pure Prolog

– Differences:

∗ Prolog is sensitive to ordering of rules and ordering of literals in the body of

rules.

∗ Inappropriate ordering leads to infinite loops. (Thus Prolog is not declarative;

hence not a knowledge representation language)

∗ Prolog stumbles with recursion through negation

∗ No disjunction in the head (less expressive power in the propositional case)

– Similarities: For certain subclasses of AnsProlog*, Prolog can be thought of as a

top-down engine.
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Answer Set Programming. Motivation: “Intelligence” to “AI” to “KR” to “AnsProlog”

Why AnsProlog* ?

1. Is non-monotonic.

2. Has the ability to represent normative statements, exceptions, and default statements,

and should be able to reason with them.

3. Is expressive enough to express and answer problem solving queries such as planning

queries, counterfactual queries, explanation queries and diagnostic queries.

4. Has a simple and intuitive syntax so that domain experts (who may be non-computer

scientists) can express knowledge using it.

5. Has enough existing research (or building block results) about this language so that

one does not have to start from scratch.

6. Has interpreters or implementation of the language so that one can indeed represent

and reason in this language. (I.e., it should not be just a theoretical language.)

7. Has existing applications that have been built on this language so as to demonstrate

the feasibility that applications can be indeed built using this language.
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SYNTAX AND SEMANTICS OF ANSPROLOG*



Answer Set Programming. Syntax and Semantics of AnsProlog*

Terminologies – many brorrowed from classical logic

• variables: X, Y, Z, etc.

• object constants (or simply constants): a, b, c, etc.

• function symbols: f, g, h, etc.

• predicate symbols: p, q, etc.

• terms: variables, constants, and f(t1, . . . , tn) such that tis are terms.

• atoms: p(t1, . . . , tn) such that tis are terms.

• literals: atoms or an atom preceded by ¬.

• naf-literals: atoms or an atom preceded by not.

• gen-literals: literals or a literal preceded by not.

• ground terms (atoms, literals) : terms (atoms, literals resp.) without variables.
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Answer Set Programming. Syntax and Semantics of AnsProlog*

Herbrand Universe and Herbrand Base

• Some components of a language: variables, constants, functions, predicates

• HUL – Herbrand Universe of a language L: the set of all ground terms which can be

formed with the functions and constants in L.

• HBL – Herbrand Base of a language L: the set of all ground atoms which can be

formed with the functions, constants and predicates in L.

• Example:

– Consider a language L1 with variables X, Y ; constants a, b; function symbol f of

arity 1; and predicate symbol p of arity 1.

– HUL1 = {a, b, f (a), f(b), f(f(a)), f(f(b)), f(f(f(a))), f(f(f (b))), . . .}.
– HBL1 = {p(a), p(b), p(f(a)), p(f(b)), p(f(f(a))), p(f(f(b))),

p(f (f (f (a)))), p(f(f(f(b)))), . . .}.
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Answer Set Programming. Syntax and Semantics of AnsProlog*

AnsProlog* programs and their grounding

• A rule is of the form: L0 or . . . or Lk ← Lk+1, . . . , Lm,not Lm+1, . . . ,not Ln.

• ground(r,L): the set of all rules obtained from r by all possible substitution of

elements of HUL for the variables in r.

• Example:

Consider the rule p(f (X)) ← p(X). and the language L1. Then ground(r,L1) will

consist of the following rules:

p(f (a)) ← p(a).

p(f (b)) ← p(b).

p(f (f (a))) ← p(f (a)).

p(f (f (b))) ← p(f (b)).
...

• For an AnsProlog* program Π:

– ground(Π,L) =
⋃

r∈Π ground(r,L)

– L(Π): The langauge that is defined by the predicates, functions and constants

occurring in Π.
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Answer Set Programming. Syntax and Semantics of AnsProlog*

– ground(Π) =
⋃

r∈Π ground(r,L(Π)).

• Example:

– Π:

p(a).

p(b).

p(c).

p(f (X)) ← p(X).

– ground(Π):

p(a) ←.

p(b) ← .

p(c) ← .

p(f (a)) ← p(a).

p(f (b)) ← p(b).

p(f (c)) ← p(c).

p(f (f (a))) ← p(f(a)).

p(f (f (b))) ← p(f(b)).

p(f (f (c))) ← p(f(c)).
...
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Answer Set Programming. Syntax and Semantics of AnsProlog*

AnsProlog: Syntax and semantics

• Syntax: A collection of rules of the form L0 ← L1, . . . , Lm,not Lm+1, . . . ,not Ln.

where Li’s are atoms.

• Semantics of a program Π: Given in terms of answer sets of the program ground(Π).

– Answer sets of AnsProlog−not programs (where m = n for all rules):

∗ The least Herbrand model of the program.

∗ The minimal set of atoms (from Herbrand base of the program) that is closed

under the program.

∗ The least fixpoint of van Emden and Kowalski’s iteration operator.

– Gelfond-Lifschitz transformation: Given an AnsProlog program Π and a set S of

atoms from HBΠ, the Gelfond-Lifschitz transformation ΠS is obtained by deleting

(i) each rule that has a naf-literal not L in its body with L ∈ S, and

(ii) naf-literals of the form not L in the bodies of the remaining rules.

– Answer sets: S is an answer set of an AnsProlog program Π if S is the answer set

of the AnsProlog−not program ΠS.
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Answer Set Programming. Syntax and Semantics of AnsProlog*

Examples

• Π1:

p ← a.

q ← b.

a ← .

• Π2:

p ← p.

• Π3:

p ← p.

q ← .

• Π4:

a ← not b.

Chitta Baral 18



Answer Set Programming. Syntax and Semantics of AnsProlog*

• Π5:

a ← not b.

b ← not a.

• Π6:

p ← a.

a ← not b.

b ← not a.

• Π7:

a ← not b.

b ← not c.

d ← .

• Π8:

p ← not p.
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Answer Set Programming. Syntax and Semantics of AnsProlog*

• Π9:

p ← not p, d.

r ←.

d ← .

• Π10:

p ← not p, d.

r ← not d.

d ← not r.

• Π11:

p ← not p.

p ← not d.

r ← not d.

d ← not r.
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SOME BUILDING BLOCK RESULTS



Answer Set Programming. Some Building Block results

Further intuitions behind the semantics

• A set of atoms S is closed under an AnsProlog program Π if for all rules of the form

L0 ← L1, . . . , Lm,not Lm+1, . . . ,not Ln.

in Π, {L1, . . . , Lm} ⊆ S and {Lm+1, . . . , Ln} ∩ S = ∅ implies that L0 ∈ S.

• A set of atoms S is said to be supported by Π if for all p ∈ S there is a rule of the

form p ← L1, . . . , Lm,not Lm+1, . . . ,not Ln.

in Π, such that {L1, . . . , Lm} ⊆ S and {Lm+1, . . . , Ln} ∩ S = ∅.
• Clark defined a notion of completion of a program called Clark’s completion. Models

of the Clark’s completion of an AnsProlog program Π are closed under and supported

by Π and vice-versa.

• Answer sets of Π are models of Clark’s Completion of Π. But not vice-versa.

(example: p ← p.)
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Answer Set Programming. Some Building Block results

• A set of atoms S is an answer set of an AnsProlog program Π iff (i) S

is closed under Π and (ii) there exists a level mapping function λ (that

maps atoms in S to a number) such that for each p ∈ S there is a rule

in Π of the form p ← L1, . . . , Lm,not Lm+1, . . . ,not Ln. such that

{L1, . . . , Lm} ⊆ S, {Lm+1, . . . , Ln} ∩ S = ∅ and λ(p) > λ(Li), for 1 ≤ i ≤ m.

• Note that (ii) above implies that S is supported by Π.

• A logical characterization of (ii) above needs to be added to Clark’s completion so as

to have a 1-1 correspondence between models and answer sets.
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Answer Set Programming. Some Building Block results

Clark’s Completion and some examples

• Given a propositional AnsProlog program Π consisting of rules of the form:

Q ← P1, . . . , Pn,not R1, . . . ,not Rm.

its completion Comp(Π) is obtained in two steps:

– Step 1: Replace each rule of the above mentioned form with the formula:

Q ⇐ P1 ∧ . . . ∧ Pn ∧ ¬R1 ∧ . . .¬Rm

– Step 2: For each symbol Q, let Support(Q) denote the set of all clauses with Q in

the head. Suppose Support(Q) is the set:

Q ⇐ Body1
...

Q ⇐ Bodyk

Replace this set with the single formula,

Q ⇔ Body1 ∨ . . . ∨ Bodyk.

If Support(Q) = ∅ then replace it by ¬Q. �
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Answer Set Programming. Some Building Block results

• Π4:

a ← not b.

• Π5:

a ← not b.

b ← not a.

• Π2:

p ← p.

• Π8:

p ← not p.

• Initially: Characterizing not was thought to be the main problem, especially when

dealing with non-stratified programs.

• New Insight: Clark’s completion is a good and intuitive semantics for not ; but has

problems with positive loops.
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Answer Set Programming. Some Building Block results

Analyzing AnsProlog programs using ‘splitting’

• Purpose: Break down an AnsProlog program to smaller components in such a way

that the analysis of the components can be carried over to the whole program.

• ‘Splitting’ is more general than the notions of ‘stratification’ and ‘local stratification’.

Those programs have a unique answer set.

• The program

p ← a.

p ← b.

a ← not b.

b ← not a.

can be split to two layers.
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Answer Set Programming. Some Building Block results

• A splitting set for an AnsProlog program Π is any set U of atoms such that, for every

rule r ∈ Π of the form L0 ← L1, . . . , Lm,not Lm+1, . . . ,not Ln. if Lo ∈ U then

lit(r) = {L1, . . . , Ln} ⊆ U . If U is a splitting set for Π, we also say that U splits Π.

The set of rules r ∈ Π such that lit(r) ⊆ U is called the bottom of Π relative to the

splitting set U and denoted by botU(Π). The subprogram Π \ botU(Π) is called the

top of Π relative to U and denoted topU(Π).

• Consider the following program Π1:

a ← b,not c.

b ← c,not a.

c ←.

The set U = {c} splits Π1 such that the last rule constitutes botU(Π1) and the first

two rules form topU(Π1).

• Once a program is split into top and bottom with respect to a splitting set, we can

compute the answer sets of the bottom part and for each of these answer sets, we can

further simplify the top part by partial evaluation before analyzing it further.
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Answer Set Programming. Some Building Block results

• Consider the following program:

p ← not q.

p ← not p.

q ← not r.

r ← not q.

{q, r} is a splitting set and the only answer set of the above program is {r, p}.
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Answer Set Programming. Some knowledge representation examples

Normative statements and exceptions

• Normative statements are statements of the form “normally elements belonging to a

class c have the property p.”

A good representation of normative statements should at least allow us to easily

‘incorporate’ information about exceptional elements of c with respect to the property

c.

• “Normally birds Fly. Tweety and Sam are birds.”

flies(X) ← bird(X),not ab(X).

bird(tweety) ←.

bird(sam) ←.

• Adding “Sam is a penguin, and penguins are exceptional birds that do not fly,” in an

elaboration tolerant manner:

bird(X) ← penguin(X).

ab(X) ← penguin(X).

penguin(sam) ←.
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Answer Set Programming. Some knowledge representation examples

• Adding “Ostriches are exceptional birds that do not fly,” in an elaboration tolerant

manner:

bird(X) ← ostrich(X).

ab(X) ← ostrich(X).

• Weak defaults: For wounded birds we can not conclude whether they fly or not.

• AnsProlog is not quite appropriate for this. We need to be able to eliminate the

embedded CWA and allow specification of CWA in a case by case basis.

• Expand AnsProlog to allow classical negation ¬.

• An example:

cross ← not train

vs

cross ← ¬train
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Answer Set Programming. Some knowledge representation examples

AnsProlog¬ programs

• Syntax: A collection of rules of the form L0 ← L1, . . . , Lm,not Lm+1, . . . ,not Ln.

where Li’s are literals.

• Semantics of a program Π: Given in terms of answer sets of the program ground(Π).

– Answer sets of AnsProlog¬,−not programs (where m = n for all rules):

∗ The minimal set of literals S (made up of atoms in the Herbrand base of the

program) such that:

· for any rule L0 ← L1, . . . , Lm. in the program , if {L1, . . . , Lm} ⊆ S then

L0 ∈ S, and

· if S contains a pair of complementary literals then S consists of all literals.

(called Lit)

– Gelfond-Lifschitz transformation: as before

– Answer sets: S is an answer set of an AnsProlog program Π if S is the answer set

of the AnsProlog¬,−not program ΠS.
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Answer Set Programming. Some knowledge representation examples

AnsProlog¬ examples

AnsProlog¬ programs Their answer sets

{p ← q. ¬p ← r. q ← .} {q, p}
{p ← q. ¬p ← r. r ← .} {r,¬p}

{p ← q. ¬p ← r.} {}
{p ← q. ¬p ← r. q ← . r ← .} Lit

{¬p ← . p ← ¬q. }
{¬p ← . q ← ¬p. }

{¬q ← not p. }
{a ← not b. b ← not a. q ← a. ¬q ← a.}
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Answer Set Programming. Some knowledge representation examples

Explicit CWA and wounded birds

• Birds and penguins

flies(X) ← bird(X),not ab(X).

bird(X) ← penguin(X).

ab(X) ← penguin(X).

bird(tweety) ←.

penguin(sam) ←.

¬bird(X) ← not bird(X).

¬penguin(X) ← not penguin(X).

¬ab(X) ← not ab(X).

¬flies(X) ← penguin(X).

¬flies(X) ← ¬bird(X).

• Advantage of the above representation: To remove CWA about a predicate, just

remove the explicit CWA rule for that predicate.
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Answer Set Programming. Some knowledge representation examples

• Incorporating the new knowledge: “John is an wounded bird and wounded birds are

weak exceptions” by adding the following rules.

wounded bird(john) ←.

¬wounded bird(X) ← not wounded bird(X).

bird(X) ← wounded bird(X).

ab(X) ← wounded bird(X).
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Answer Set Programming. Some knowledge representation examples

OWA: i.e., no CWA

• Earlier: CWA about birds, penguins, ab and wounded birds, OWA about flies.

• Now: Assume that our information about birds, penguins, ab and wounded birds is

incomplete.

• After removing explicit CWA about birds, penguins, ab and wounded birds.

flies(X) ← bird(X),not ab(X).

bird(X) ← penguin(X).

ab(X) ← penguin(X).

bird(tweety) ←.

penguin(sam) ←.

¬flies(X) ← penguin(X).

¬flies(X) ← ¬bird(X).

wounded bird(john) ←.

bird(X) ← wounded bird(X).

ab(X) ← wounded bird(X).
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Answer Set Programming. Some knowledge representation examples

• et is a bird. Does it fly?

– Earlier representation will answer yes!

– But, now that we no longer have CWA about being a penguin, its possible that et

might be a penguin. We now need to be more conservative in our reasoning.

flies(X) ← bird(X),not ab(X).

bird(X) ← penguin(X).

ab(X) ← not ¬penguin(X).

bird(tweety) ←.

penguin(sam) ←.

¬penguin(X) ← ¬bird(X).

¬flies(X) ← penguin(X).

¬flies(X) ← ¬bird(X).

wounded bird(john) ←.

¬wounded bird(X) ← ¬bird(X).

bird(X) ← wounded bird(X).

ab(X) ← not ¬wounded bird(X).

bird(et).
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Answer Set Programming. Some knowledge representation examples

Allowing for explicit negative information

• Suppose we have explicit information about the non-flying ability of certain birds.

• Adding such information such as

{¬fly(tweety),¬penguin(tweety),¬wounded bird(tweety)} should not lead to

inconsistency. But it does!

• Such a breakdown can be avoided by replacing the rule

flies(X) ← bird(X),not ab(X).

by the rule:

flies(X) ← bird(X),not ab(X),not ¬flies(X).

In addition, for exceptions we only need to have the rule:

¬flies(X) ← exceptional bird(X).

and no longer need a rule of the form:

ab(X) ← not ¬exceptional bird(X).

For weak exceptions we will need the rule:

ab(X) ← not ¬weakly exceptional bird(X).
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Answer Set Programming. Some knowledge representation examples

Systematic removal of CWA : an example

• Transitive Closure:

anc(X, Y ) ← parent(X, Y ).

anc(X, Y ) ← parent(X, Z), anc(Z, Y ).

It assumes complete information about parent and gives a complete definition of

ancestor.

• Consider the case that where the objects are fossils of dinosaurs dug at an

archaeological site, and for pairs of objects (a, b) we can sometimes determine

par(a, b) through tests, sometimes determine ¬par(a, b), and sometimes neither.

How do we define when anc is true and when it is false.
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Answer Set Programming. Some knowledge representation examples

• To define when anc is true we keep the old rules.

anc(X, Y ) ← parent(X, Y ).

anc(X, Y ) ← parent(X, Z), anc(Z, Y ).

Next we define a predicate m par(X, Y ) which encodes when X may be a parent of

Y .

m par(X, Y ) ← not ¬par(X, Y ).

Using m par we now define m anc(X, Y ) which encodes when X may be an ancestor

of Y .

m anc(X, Y ) ← m par(X, Y ).

m anc(X, Y ) ← m par(X, Z), m anc(Z, Y ).

Now we use m anc to define when ¬anc(X, Y ) is true.

¬anc(X, Y ) ← not m anc(X, Y ).
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Answer Set Programming. Some knowledge representation examples

Reasoning about what is known and what is not

(1) eligible(X) ← highGPA(X).

(2) eligible(X) ← special(X), fairGPA(X).

(3) ¬eligible(X) ← ¬special(X),¬highGPA(X).

(4) interview(X) ← not eligible(X),not ¬eligible(X).

(5) fairGPA(john) ←.

(6) ¬highGPA(john) ←.
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BASIC DECLARATIVE PROBLEM SOLVING MODULES



Answer Set Programming. Basic Declarative Problem Solving Modules

Constraints

• Π:

a ← not b.

b ← not a.

• Π has two answer sets {a} and {b}.
• Now suppose we would like to incorporate the constraint r :

← a.

to prune any answer set where a is true.

• To achieve this we can add the following rule.

p ← not p, a.

to Π.
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Answer Set Programming. Basic Declarative Problem Solving Modules

• In general an integrity constraint r written as

← l1, . . . , lm,not lm+1, . . . ,not ln,

where lis are literals, forbids answer sets which contain the literals l1, . . . , lm and do

not contain the literals lm+1, . . . , ln.

• r can be simulated by adding the following rule to the program.

p ← not p, l1, . . . , lm,not lm+1, . . . ,not ln.

where p does not appear in the original program.

• r can also be simulated by adding the following rules to the program.

p ← l1, . . . , lm,not lm+1, . . . ,not ln.

q ← not p.

q ← not q.

where p and q do not appear in the original program.
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Enumeration

• Finite enumeration:

p1 ← not n p1.

n p1 ← not p1.
...

pn ← not n pn.

n pn ← not pn.

• General enumeration but at least one:

chosen(X) ← possible(X),not not chosen(X).

not chosen(X) ← possible(X),not chosen(X).

some ← chosen(X).

← not some.

• Consider {possible(a), possible(b), possible(c)}.
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• Choice: General enumeration with exactly one:

Our goal is to have a program which has answer sets with the following as subsets.

S1 = {chosen(a),¬chosen(b),¬chosen(c)}
S2 = {¬chosen(a), chosen(b),¬chosen(c)}
S3 = {¬chosen(a),¬chosen(b), chosen(c)}
¬chosen(X) ← chosen(Y ), X 
= Y .

chosen(X) ← possible(X),not ¬chosen(X).

• Choice using AnsProlog:

diff chosen than(X) ← chosen(Y ), X 
= Y .

chosen(X) ← possible(X),not diff chosen than(X).

• Choice in Smodels syntax:

1{chosen(X) : possible(X)}1.
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Propositional Satisfiability: an illustration

• S = {p1 ∨ p2 ∨ p3, p1 ∨ ¬p3,¬p2 ∨ ¬p4}.
• The AnsProlog program Π(S) consists of the following:

p1 ← not n p1. n p1 ← not p1.

p2 ← not n p2. n p2 ← not p2.

p3 ← not n p3. n p3 ← not p3.

p4 ← not n p4. n p4 ← not p4.

c1 ← p1. c1 ← p2. c1 ← p3. ← not c1.

c2 ← p1. c2 ← n p3. ← not c2.

c3 ← n p2. c3 ← n p4. ← not c3.

• S is satisfiable iff Π(S) has an answer set.

• Basic idea: enumerate possibilities; add constraints.
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N-queens: naming queens and placing them one by one

1. Declarations:

queen(1) ← . . . . queen(n) ← .

row(1) ← . . . . row(n) ←.

col(1) ← . . . . col(n) ←.

2. Enumeration:

2.1. For each locations (X, Y ) and each queen I , either I is in location (X, Y ) or not.

at(I, X, Y ) ← queen(I), row(X), col(Y ),not not at(I, X, Y ).

not at(I, X, Y ) ← queen(I), row(X), col(Y ),not at(I, X, Y ).

2.2. For each queen I it is placed in at most one location.

← queen(I), row(X), col(Y ), row(U), col(Z), at(I, X, Y ), at(I, U, Z), Y 
= Z.

← queen(I), row(X), col(Y ), row(Z), col(V ), at(I, X, Y ), at(I, Z, V ), X 
= Z.

2.3. For each queen I it is placed in at least one location.

placed(I) ← queen(I), row(X), col(Y ), at(I, X, Y ).

← queen(I),not placed(I).
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2.4. No two queens are placed in the same location.

← queen(I), row(X), col(Y ), queen(J), at(I, X, Y ), at(J, X, Y ), I 
= J .

3. Elimination:

3.1. No two distinct queens in the same row.

← queen(I), row(X), col(Y ), col(V ), queen(J), at(I, X, Y ), at(J, X, V ), I 
= J .

3.2. No two distinct queens in the same column.

← queen(I), row(X), col(Y ), row(U), queen(J), at(I, X, Y ), at(J, U, Y ), I 
= J .

3.3. No two distinct queens attack each other diagonally.

← row(X), col(Y ), row(U), col(V ), queen(I), queen(J), at(I, X, Y ),

at(J, U, V ), I 
= J, abs(X − U) = abs(Y − V ).
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N-queens: Similar to last one but now using Choice rules

1. Declarations: As in the previous formulation.

2. Enumeration:

2.1. Choice using other at(I, X, Y ) which intuitively means that the queen I has

been placed in a location other than (X, Y ).

other at(I, X, Y ) ← queen(I), row(X), col(Y ), row(U), col(Z),

at(I, U, Z), Y 
= Z.

other at(I, X, Y ) ← queen(I), row(X), col(Y ), row(Z), col(V ),

at(I, Z, V ), X 
= Z.

at(I, X, Y ) ← queen(I), row(X), col(Y ),not other at(I, X, Y ).

2.2. No two queens are placed in the same location. (Same as in 2.4 in the last slide.)

← queen(I), row(X), col(Y ), queen(J), at(I, X, Y ), at(J, X, Y ), I 
= J .

3. Elimination: As in the previous formulation.
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N-queens: a solution without naming queens

1. Declarations: The simpler domain specification is as follows:

row(1) ← . . . . row(n) ←.

col(1) ← . . . . col(n) ←.

2. Enumeration:

2.1. A queen should not be placed in (X, Y ) if there is a queen placed in the same row.

not in(X, Y ) ← row(X), col(Y ), col(Y Y ), Y 
= Y Y, in(X, Y Y )

2.2. A queen should not be placed in (X, Y ) if there is a queen placed in the same

column.

not in(X, Y ) ← row(X), col(Y ), row(XX), X 
= XX, in(XX, Y )

2.3. A queen must be placed in (X, Y ) if it is not otherwise prevented.

in(X, Y ) ← row(X), col(Y ),not not in(X, Y )

3. Elimination: No two queens attack each other diagonally.

← row(X), col(Y ), row(XX), col(Y Y ), X 
= XX, Y 
= Y Y,

in(X, Y ), in(XX, Y Y ), abs(X − XX) = abs(Y − Y Y ).
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AnsPrologor : Syntax and Semantics

• Syntax: A collection of rules of the form

L0 or . . . or Lk ← Lk+1, . . . , Lm,not Lm+1, . . . ,not Ln.

where Li’s are atoms.

• Semantics of a program Π: Given in terms of answer sets of the program ground(Π).

– Answer sets of AnsProlog−not,or programs (where m = n for all rules):

∗ The minimal models of the program.

– Gelfond-Lifschitz transformation: as before

– Answer sets: S is an answer set of an AnsPrologor program Π if S is an answer

set of the AnsProlog−not,or program ΠS.

• Translating AnsPrologor to AnsProlog:
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– For head-cycle free programs:

Replace L0 or . . . or Lk ← Body. by

L0 ← Body,not L1, . . . ,not Lk.
...

Lk ← Body,not L1, . . . ,not Lk−1.

– Consider

a or b

a ← b

b ← a

Only answer set is {a, b}.
– The AnsProlog translation

a ← not b

b ← not a

a ← b

b ← a

has no answer sets.
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Satisfiability of Universal-existential QBFs using AnsPrologor

• The QBF

∀p1, . . . pk. ∃q1, . . . , ql. (φ1(p1, . . . , pk, q1, . . . , ql) ∧ . . . ∧ φn(p1, . . . , pk, q1, . . . , ql)),

where φi’s are disjunction of propositional literals, is satisfiable iff not satisfied is

false in all answer sets of the following program:

p1 or p′1 ←. . . . pk or p′k ←.

q1 or q′1 ←. . . . ql or q′l ←.

not satisfied ← φ̂1. . . . not satisfied ← φ̂n.

q1 ← not satisfied.

q′1 ← not satisfied.

. . .

ql ← not satisfied.

q′l ← not satisfied.
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• Intuition: For a given interpretation Ip of the ps if for some interpretation Iq of the qs

the formula F = φ1 ∧ . . . ∧ φn is satisfied then it forces out any answer set due to Ip

and Iq′ which does not satisfy F as the later will be forced to have all combination of

qis making it non-minimal.

• Thus AnsPrologor can express Π2P problems while AnsProlog can only express Π1P

problems.
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Sorting using AnsProlog

• Smallest largest and next:

not smallest(X) ← p(X), p(Y ), less than(Y, X).

smallest(X) ← p(X),not not smallest(X).

not largest(X) ← p(X), p(Y ), less than(X, Y ).

largest(X) ← p(X),not not largest(X).

not next(X, Y ) ← X = Y .

not next(X, Y ) ← less than(Y, X).

not next(X, Y ) ← p(X), p(Y ), p(Z), less than(X, Z), less than(Z, Y ).

next(X, Y ) ← p(X), p(Y ),not not next(X, Y ).

• q(1, X) ← smallest(X).

q(i + 1, X) ← q(i, Y ), next(Y, X).

• Grounding of the above leads to O(n3) ground rules. Can we do better?
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Aggregation within AnsProlog¬

• Consider the following database, where sold(a, 10, Jan1) means that 10 units of item

a was sold on Jan 1.

sold(a, 10, Jan1) ←.

sold(a, 21, Jan5) ←.

sold(a, 15, Jan16) ←.

sold(b, 16, Jan4) ←.

sold(b, 31, Jan21) ←.

sold(b, 15, Jan26) ←.

sold(c, 24, Jan8) ←.

We would like to answer queries such as: “List all items of which more than 50 units

(total) were sold, and the total quantity sold for each.”

• The encoding in AnsProlog¬.
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1. Assigning numbers to each tuple of sold while grouping them based on their item.

I.e., we would like the answer sets to contain the following facts (or similar ones

with a different numbering).

assigned(a, 10, 1) ←.

assigned(a, 21, 2) ←.

assigned(a, 15, 3) ←.

assigned(b, 16, 1) ←.

assigned(b, 31, 2) ←.

assigned(b, 15, 3) ←.

assigned(c, 24, 1) ←.

The AnsProlog program with such answer sets has the following three groups of

rules:

1.1. Unique assignment of numbers to each pair of item, and units.

assigned(X, Y, J) ← sold(X, Y, D),not ¬assigned(X, Y, J).

¬assigned(X, Y, J) ← assigned(X, Y ′, J), Y 
= Y ′.
¬assigned(X, Y, J) ← assigned(X, Y, J ′), J 
= J ′

1.2. Among the tuples corresponding to each item there is no gap in the number

assignment.

numbered(X, J) ← assigned(X, Y, J).
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← numbered(X, J + 1),not numbered(X, J), J ≥ 1.

1.3. The following rules ensure that for each item, there is a tuple that is assigned

the number 1.

one is assigned(X) ← assigned(X, Y, 1).

← sold(X, Y, D),not one is assigned(X).

2. Initializing and updating the aggregate operations. Depending on the aggregate

operators the initialize and update facts describe how to start the aggregation

process, when the first tuple in each grouping is encountered, and how the

aggregate value is updated when additional tuples are encountered.

2.1. Sum:

initialize(sum, Y, Y ) ←.

update(sum, W, Y, W + Y ) ←.

2.2. initialize(sum, Y, Y ) means that for the aggregate sum, during the

aggregation process when the tuple ( , Y ) that is assigned the initial number

(which is 1) is considered, Y is the value from which the aggregation starts.

2.3. The aggregation starts from the tuple assigned 1, and runs though the other

tuples in the linear order of their assignment.

2.4. The fact, update(sum, W, Y, W + Y ) is used in that process and intuitively

means that while doing the aggregation sum, if the next tuple (based on the
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ordering of its assignment) is ( , Y ), and the current accumulated value is W ,

then after considering this tuple the accumulated value is to be updated to

W + Y .

2.5. Count:

initialize(count, Y, 1).

update(count, W, Y, W + 1) ←.

2.6. Min:

initialize(min, Y, Y ) ←.

update(min, W, Y, W ) ← W ≤ Y .

update(min, W, Y, Y ) ← Y ≤ W .

3. Using the predicates initialize and update we can define other aggregate

operators of our choice. Thus, AnsProlog allows us to express user-defined

aggregates.

4. The following three rules describe how the initialize and update predicates are

used in computing the aggregation. The first rule uses initialize to account for

the tuple that is assigned the number 1, and the second rule encodes the

aggregate computation when we already have computed the aggregate up to the

Jth tuple, and we encounter the J+1th tuple.
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aggr(Aggr name, 1, X, Z) ← assigned(X, Y, 1), initialize(Aggr name, Y, Z).

aggr(Aggr name, J + 1, X, Z) ← J > 0, aggr(Aggr name, J, X, W ),

assigned(X, Y, J + 1),

update(Aggr name, W, Y, Z).

5. Computing new aggregate predicates: Once the aggregation is done, we can define

new predicates for the particular aggregation that we need. Following are some

examples of the encoding of such predicates.

5.1. Total sold per item:

total sold per item(X, Q) ← aggr(sum, J, X, Q),

not aggr(sum, J + 1, X, Y ).

5.2. Number of transactions per item:

number of transactions per item(X, Q) ← aggr(count, J, X, Q),

not aggr(count, J + 1, X, Y ).

5.3. Minimum amount (other than zero) sold per item:

min sold per item(X, Q) ← aggr(min, J, X, Q),

not aggr(min, J + 1, X, Y ).

• Using the above program the answer sets we will obtain will contain the following:

total sold per item(a, 46). total sold per item(b, 62). total sold per item(c, 24).
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Answer Set Programming. Coming together of KR, R and DPS: reasoning about actions and planning

A: A simple action language

• Syntax:

– Domain description (D): A collection of effect propositions of the form:

a causes f if p1, . . . , pn,¬q1, . . . ,¬qr

where a is an action, f is a fluent literal, and p1, . . . , pn, q1, . . . , qr are fluents.

– Observations(O):

∗ General observations (Oracles): f after a1, . . . , am

∗ Initial observations: initially f

– Queries(Q): f after a1, . . . , am

• Semantics: Defining D |=O Q
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Examples of various kinds of reasoning in A

• Temporal projection:

– D = {load causes loaded; shoot causes ¬alive if loaded}
– O = { initially alive}.
– D 
|=O ¬alive after shoot

– D |=O ¬alive after load, shoot

– O′ = { initially alive; initially loaded}
– D |=O′ ¬alive after shoot

• Reasoning about the initial situation

– O1 = { initially alive; ¬alive after shoot}
– D |=O1 initially loaded
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• Observation assimilation:

– generalizes temporal projection and reasoning about the initial situation

– D = {load causes loaded; shoot causes ¬alive if loaded}
– O2 = { initially alive; loaded after shoot}
– D |=O2 ¬alive after shoot.

• Planning

– O = { initially alive} and O′ = { initially alive; initially loaded}
– The goal: G = {¬alive}
– shoot is a plan for G with respect to (D, O′)
– shoot is not a plan for G with respect to (D, O)

– load; shoot is a plan for G with respect to (D, O).
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Implementing temporal projection using AnsProlog: π1

• Assumption: Observations are only about the initial state and are complete.

• Translating effect propositions: For every effect proposition of the form

a causes f if p1, . . . , pn,¬q1, . . .¬qr, if f is a fluent then have the following rule

holds(f, res(a, S)) ←
holds(p1, S), . . . , holds(pn, S),not holds(q1, S), . . . ,not holds(qr, S).

else, if f is the negative fluent literal ¬g then have the following rule:

ab(g, a, S) ← holds(p1, S), . . . , holds(pn, S),not holds(q1, S), . . . ,not holds(qr, S).

• Translating observations: For every value proposition of the form initially f , if f is

a fluent then have the following:

holds(f, s0) ←.

• Inertia rule:

holds(F, res(A, S)) ← holds(F, S),not ab(F, A, S).
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• An Example:

– D = {load causes loaded; shoot causes ¬alive if loaded}
– O3 = { initially alive; initially ¬loaded}
– The AnsProlog rules will be:

holds(loaded, res(load, S)) ←.

ab(alive, shoot, S) ← holds(loaded, S).

holds(alive, s0) ← .

holds(F, res(A, S)) ← holds(F, S),not ab(F, A, S).

– Notation: [an, . . . , a1] denotes the situation res(an . . . res(a1, s0) . . .).

– From the program we can entail holds(alive, [load]), and holds(loaded, [load]),

and ¬holds(alive, [shoot, load]).

• Proposition: Let D be a consistent domain description and O be an initial state

complete set of observations such that (D, O) is consistent. Let f be a fluent.

(i) D |=O f after a1, . . . , an iff π1(D, O) |= holds(f, [an, . . . , a1]).

(ii) D |=O ¬f after a1, . . . , an iff π1(D, O) 
|= holds(f, [an, . . . , a1])
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Implementing temporal projection using AnsProlog¬: π2

• Assumption: Observations are only about the initial state and are complete.

• Translating effect propositions: For every effect proposition of the form

a causes f if p1, . . . , pn,¬q1, . . .¬qr, if f is a fluent then we have:

holds(f, res(a, S)) ← holds(p1, S), . . . , holds(pn, S),

¬holds(q1, S), . . . ,¬holds(qr, S).

ab(f, a, S) ← holds(p1, S), . . . , holds(pn, S),¬holds(q1, S), . . . ,¬holds(qr, S).

else, if f is the negative fluent literal ¬g then we have:

¬holds(g, res(a, S)) ← holds(p1, S), . . . , holds(pn, S),

¬holds(q1, S), . . . ,¬holds(qr, S).

ab(g, a, S) ← holds(p1, S), . . . , holds(pn, S),¬holds(q1, S), . . . ,¬holds(qr, S).
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• Translating observations: For every value proposition of the form initially f , if f is

a fluent then we have:

holds(f, s0) ←.

else, if f is the negative fluent literal ¬g then we have:

¬holds(g, s0) ←.

• Inertia rules:

holds(F, res(A, S)) ← holds(F, S),not ab(F, A, S).

¬holds(F, res(A, S)) ← ¬holds(F, S),not ab(F, A, S).

• Proposition: Let D be a consistent domain description and O be an initial state

complete set of observations such that (D, O) is consistent. Let f be a fluent.

(i) D |=O f after a1, . . . , an iff π2(D, O) |= holds(f, [an, . . . , a1]).

(ii) D |=O ¬f after a1, . . . , an iff π2(D, O) |= ¬holds(f, [an, . . . , a1]).
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Temporal projection in AnsProlog¬ in presence of incompleteness: π3

• An Example where the previous encoding falters:

– D = {load causes loaded; shoot causes ¬alive if loaded}
– O4 = { initially alive}.
– The earlier AnsProlog¬ implementation will consist of:

holds(loaded, res(load, S)) ←.

ab(loaded, load, S) ←.

¬holds(alive, res(shoot, S)) ← holds(loaded, S).

ab(alive, shoot, S) ← holds(loaded, S).

holds(alive, s0) ← .

holds(F, res(A, S)) ← holds(F, S),not ab(F, A, S).

¬holds(F, res(A, S)) ← ¬holds(F, S),not ab(F, A, S).

– The program will incorrectly entail holds(alive, [shoot]), while

D 
|=O4 alive after shoot.
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• A conservative encoding:

– Translating effect propositions: The effect propositions in D are translated as

follows and are collectively referred to as πef
3 .

For every effect proposition of the form a causes f if p1, . . . , pn,¬q1, . . . , qr, if f

is a fluent then we have:

holds(f, res(a, S)) ← holds(p1, S), . . . , holds(pn, S),

¬holds(q1, S), . . . ,¬holds(qr, S).

ab(f, a, S) ← not ¬holds(p1, S), . . . ,not ¬holds(pn, S),

not holds(q1, S), . . . ,not holds(qr, S).

else, if f is the negative fluent literal ¬g then we have:

¬holds(g, res(a, S)) ← holds(p1, S), . . . , holds(pn, S),

¬holds(q1, S), . . . ,¬holds(qr, S).

ab(g, a, S) ← not ¬holds(p1, S), . . . ,not ¬holds(pn, S),

not holds(q1, S), . . . ,not holds(qr, S).

– Observations and inertia rules are as before.
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• Proposition: Let D be a consistent domain description and O be an initial state

complete set of observations such that (D, O) is consistent. Let f be a fluent.

(i) D |=O f after a1, . . . , an iff π3(D, O) |= holds(f, [an, . . . , a1]).

(ii) D |=O ¬f after a1, . . . , an iff π3(D, O) |= ¬holds(f, [an, . . . , a1]).

• Proposition: Let D be a consistent domain description, and O be a (possibly

incomplete) set of observations about the initial state such that (D, O) is consistent.

Let f be a fluent.

(i) If π3(D, O) |= holds(f, [an, . . . , a1]) then D |=O f after a1, . . . , an.

(ii) If π3(D, O) |= ¬holds(f, [an, . . . , a1]) then D |=O ¬f after a1, . . . , an.
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Assimilating observations using enumeration and constraints: π4

• Assumption: Observations are not necessarily about the initial state and do not have

to be complete.

• Translating effect propositions: For every effect proposition of the form

a causes f if p1, . . . , pn,¬q1, . . .¬qr, if f is a fluent then we have:

holds(f, res(a, S)) ← holds(p1, S), . . . , holds(pn, S),

¬holds(q1, S), . . . ,¬holds(qr, S).

ab(f, a, S) ← holds(p1, S), . . . , holds(pn, S),¬holds(q1, S), . . . ,¬holds(qr, S).

else, if f is the negative fluent literal ¬g then we have:

¬holds(g, res(a, S)) ← holds(p1, S), . . . , holds(pn, S),

¬holds(q1, S), . . . ,¬holds(qr, S).

ab(g, a, S) ← holds(p1, S), . . . , holds(pn, S),¬holds(q1, S), . . . ,¬holds(qr, S).

• Inertia rules:

holds(F, res(A, S)) ← holds(F, S),not ab(F, A, S).

¬holds(F, res(A, S)) ← ¬holds(F, S),not ab(F, A, S).
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• Enumeration:

holds(F, s0) ← not ¬holds(F, s0).

¬holds(F, s0) ← not holds(F, s0).

• Translating observations: For an observation of the form f after a1, . . . , am, if f is a

fluent then we have:

← not holds(f, [am, . . . , a1]).

else if f is the fluent literal ¬g, then we have:

← not ¬holds(g, [am, . . . , a1]).

• Proposition: Let D be a consistent domain description, and O be a set of observations

such that (D, O) is consistent. Let f be a fluent.

(i) π4(D, O) |= holds(f, [an, . . . , a1]) iff D |=O f after a1, . . . , an.

(ii) π4(D, O) |= ¬holds(f, [an, . . . , a1]) iff D |=O ¬f after a1, . . . , an.
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A narrative-based formulation of temporal projection: π2.nar

• Translating effect propositions: For every effect proposition of the form

a causes f if p1, . . . , pn,¬q1, . . .¬qr, if f is a fluent then we have:

holds(f, T + 1) ← occurs(a, T ), holds(p1, T ), . . . , holds(pn, T ),

not holds(q1, T ), . . . , not holds(qr, T ).

ab(f, a, T ) ← occurs(a, T ), holds(p1, T ), . . . , holds(pn, T ),

not holds(q1, T ), . . . , not holds(qr, T ).

else, if f is the negative fluent literal ¬g then we have:

not holds(g, T + 1) ← occurs(a, T ), holds(p1, T ), . . . , holds(pn, T ),

not holds(q1, T ), . . . , not holds(qr, T ).

ab(g, a, T ) ← occurs(a, T ), holds(p1, T ), . . . , holds(pn, T ),

not holds(q1, T ), . . . , not holds(qr, T ).
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• Translating observations: For every value proposition of the form initially f , if f is

a fluent then we have:

holds(f, 1) ←.

else, if f is the negative fluent literal ¬g then we have:

not holds(g, 1) ←.

• Inertia rules: Besides the above we have the following inertia rules:

holds(F, T + 1) ← occurs(A, T ), holds(F, T ),not ab(F, A, T ).

not holds(F, T + 1) ← occurs(A, T ), not holds(F, T ),not ab(F, A, T ).

• Proposition: Let D be a consistent domain description and O be an initial state

complete set of observations such that (D, O) is consistent. Let f be a fluent.

(i) D |=O f after a1, . . . , an iff

π2.nar(D, O) ∪ {occurs(a1, 1), . . . , occurs(an, n)} |= holds(f, n + 1).

(ii) D |=O ¬f after a1, . . . , an iff

π2.nar(D, O) ∪ {occurs(a1, 1), . . . , occurs(an, n)} |= not holds(f, n + 1)
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From reasoning with narratives to Answer Set Planning: π2.planning

• We have all the rules from the narrative reasoning program π2.nar.

• Choice rules: We have the following choice rules that make sure that one and only one

action occurs at each time point up to l.

not occurs(A, T ) ← occurs(B, T ), A 
= B.

occurs(A, T ) ← T ≤ l,not not occurs(A, T ).

• Goal: Finally we have the following constraint, for our goal h.

← not holds(h, l + 1).
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• Proposition: Let D be a consistent domain description, O be an initial state complete

set of observations such that (D, O) is consistent, l be the length of the plan that we

are looking for, and h be a fluent which is the goal.

(i) If there is a sequence of actions a1, . . . , al such that D |=O h after a1, . . . , al then

there exists a consistent answer of π2.planning(D, O, h, l) containing

{occurs(a1, 1), . . . , occurs(al, l)} as the only facts about occurs.

(ii) If there exists a consistent answer of π2.planning(D, O, h, l) containing

{occurs(a1, 1), . . . , occurs(al, l)} as the facts about occurs then

D |=O h after a1, . . . , al.
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More on reasoning about actions and planning

• Allowing executability conditions: executable drive if has car

• Allowing static constraints:

– move to(Y ) causes at(Y ).

– A person can only be at one place at one time.

– initially at(A).

– Impact of move to(B)?

– marry(Y ) causes married to(Y )

– A person can only be married to one person at one time.

– initially married to(A).

– Impact of marry(B)?

– Classical logic: Both constraint written the same way.

– In AnsProlog*:

¬at(Y ) ← at(X), X 
= Y .

← married to(X), married to(Y ), X 
= Y .
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• Concurrent actions: when to inherit and when not to.

{close} causes ¬opened

{open} causes opened

{paint} causes painted.

• Planning with hierarchical (HTN), temporal (LTL) and procedural constraints

(Golog).

– HTN: hierarchical task networks

– LTL: Linear temporal logic.

– Golog.

• Agent architecture based on observation assimilation, projection and planning from

the current situation.

– Observe the world and add the observations to the agent’s set of observations (O).

– Construct a plan from the current moment of time to achieve the goal.

– Execute the first action of the plan and add this execution as an observation to the

set O.
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• Action based explanation: Explaining observations by what might have happened.

• Action based diagnosis

– Assume that initially all components were fine.

– Find missing action occurrences that explain the observations.

– Determine what components are bad in the current situation.
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Answer Set Programming. Computing Answer Sets

Direct algorithms

• Branch-n-bound using Well-founded semantics

• SLG approach

• Smodels algorithm

• DLV algorithm

• Algorithms based on graphs and colorings
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Well-founded semantics for AnsProlog programs

• For an AnsProlog program Π, let ΓΠ(S) denote the answer set of ΠS.

• Thus S is an answer set of Π if S = ΓΠ(S).

• Well-founded semantics of AnsProlog programs is given by {lfp(Γ2
Π), gfp(Γ2

Π)}
• I.e., for an atom p we have Π |=wf p iff p ∈ lfp(Γ2

Π) and Π |=wf ¬p iff p 
∈ gfp(Γ2
Π).

• Since fixpoints of ΓΠ are also fixpoints of Γ2
Π, the well-founded semantics is an

approximation of the answer set semantics for AnsProlog programs.

• Proposition: Let Π be an AnsProlog program and A be an atom.

(i) A ∈ lfp(Γ2
Π) implies Π |= A.

(ii) A 
∈ gfp(Γ2
Π) implies Π 
|= A.

• p ← a.

p ← b.

a ← not b.

b ← not a.
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wfs-bb: an illustration

• Consider the following program P :

r1 : a ←.

r2 : b ← a.

r3 : d ← not e.

r4 : e ← not d, c.

r5 : f ← g, a.

r6 : g ← f, d.

r7 : h ← not h, f .

r8 : i ← not j, b.

r9 : j ← not i,not c.

ra : k ← not l, i.

rb : l ← not k, j.

• WFS = 〈{a, b, d}, {c, e, f, g, h}〉
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Answer set computation using SAT solvers

• Basic Idea: Compile the program to an appropriate propositional theory and compute

its models.

• Tight programs: An AnsProlog program Π is said to be tight (or positive order

consistent), if there exists a function λ from HBΠ to the set of natural numbers such

that for every L0 ← L1, . . . , Lm,not Lm+1, . . . ,not Ln in ground(Π), and for every

1 ≤ i ≤ m: λ(L0) > λ(Li).

• Proposition: For any propositional AnsProlog program, if Π is tight then X is an

answer set of Π iff X is a model of Comp(Π).

• An AnsProlog¬,⊥ program Π is said to be tight on a set X of literals, if there exists

a partial mapping λ with domain X from literals to the set of natural numbers such

that for every rule L0 ← L1, . . . , Lm,not Lm+1, . . . ,not Ln in ground(Π), if

L0, . . . , Lm ∈ X , then for every 1 ≤ i ≤ m: λ(L0) > λ(Li).

• p ← p.

This program is obviously not tight. But it is tight on the set of literals {}.
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• Proposition: For any AnsProlog¬,⊥ program Π and any consistent set X of literals

such that Π is tight on X , X is an answer set of Π iff X is closed under and

supported by Π.

• Proposition: For any propositional AnsProlog program and any set X of atoms such

that Π is tight on X , X is an answer set of Π iff X is a model of Comp(Π).

• What if the above two approaches do not work?

– Transform the program to a tight program. (Lin and Reiter.)

– Transform the program by finding strongly connected components and adding

rules corresponding to it to make the program inherently tight – a necessary and

sufficient condition for the equivalence between answer sets and models of

Comp(Π). (Lin and Jicheng Zhao.)

– Add additional propositional formulas to Comp(Π).

∗ Ben-Eliyahu and Dechter find strongly connected components and use it to

construct new formulas.

∗ Lin and Y. Zhao find positive loops and add loop formulas.
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Loop formulas

• Definition: A set of atoms L is said to be a loop in a program Π, if for every pair p, q

in L, there is a positive path from p to q in the dependency graph of Π.

• Definition: Let L be a loop with respect to a program Π, then R+(L, Π), the set of

rules in Π with head in L that are involved in L is

{r | r ∈ Π, head(r) ∈ L, body(r) ∩ L 
= ∅}.
• Definition: Let L be a loop with respect to a program Π, then R−(L, Π), the set of

rules in Π with head in L that are not involved in L is

{r | r ∈ Π, head(r) ∈ L, body(r) ∩ L = ∅}.
• Intuition behind loop formulas: “If none of the atoms in the loop can be proved using

other rules, then these atoms must be false.”
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• Definition: Let L = {p1, . . . , pn} be a loop with respect to a program Π, and let

R−(L, Π) consist of the following rules:

p1 ← body11. . . . p1 ← body1k1.
...

pn ← body1n. . . . p1 ← body1kn.

Then the loop formula corresponding to L is

¬(body11 ∨ body1k1 ∨ . . . ∨ bodyn1 ∨ bodynkn) ⊃ (¬p1 ∧ . . . ∧ ¬pn)

• Proposition: Let Π be an AnsProlog program and LF (Π) be the set of all the loop

formulas for all the loops in Π. S is an answer set of Π iff S is a model of

Comp(Π) ∪ LF (Π).

• Consider the program p ← p.

Comp(Π) = {p ⇔ p}.
• The number of loop formulas may be exponential in the size of the program.

• ASSAT does not find all the loop a-priori.
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So why not use Propositional logic in the first place?

• Propositional logic is good for machines in that it is easier to find models for it.

• But AnsProlog is good for people in terms of ease of knowledge representation; is

more elaboration tolerant; is non-monotonic. ...

• It is proven that AnsProlog can not be translated to propositional logic with an

exponential blow up in the worst case.

• Best of both worlds: Program in AnsProlog; Compile to propositional logic to obtain

answer sets whenever it is necessary and is feasible.
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Some existing systems

• Smodels: Core syntax is AnsProlog; has additional features.

• DLV: Core syntax is AnsPrologor ; has additional features.

• ASSAT: Core syntax is AnsProlog.

• Prolog

• Cmodels

• NoMoRe
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Programming using Smodels: http://www.tcs.hut.fi/Software/smodels/

• Graph Colorability: The graph is described by the facts with respect to predicates

vertex and edge and the given set of colors are expressed using the predicate col.

vertex(1..4).

edge(1,2). edge(1,3). edge(2,3).

edge(1,4). edge(2,4).

% edge(3,4).

col(a;b;c).

1 { color(X,C) : col(C) } 1 :- vertex(X).

:- edge(X,Y), col(C), color(X,C), color(Y,C).

:- edge(Y,X), col(C), color(X,C), color(Y,C).

hide col(X). hide vertex(Y). hide edge(X,Y).
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• Knapsack problem: We have five items (1-5) and each item has a cost (or size) and

value associated with it. We have a sack with a given capacity (12) and the goal is to

select a subset of the items which can fit the sack while maximizing the total value.

item(1..5).

weight val(1) = 5. weight val(2) = 6. weight val(3) = 3. weight val(4) = 8.

weight val(5) = 2.

weight cost(1) = 4. weight cost(2) = 5. weight cost(3) = 6. weight cost(4) = 5.

weight cost(5) = 3.

in sack(X) :- item(X), not not in sack(X).

not in sack(X) :- item(X), not in sack(X).

val(X) :- item(X), in sack(X).

cost(X) :- item(X), in sack(X).

cond1 :- [ cost(X) : item(X) ] 12.

:- not cond1.

maximize { val(X) : item(X) }.
hide item(X). hide not in sack(X). hide cost(X). hide val(X).
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• Single Unit Combinatorial Auction: Bidders are allowed to bid on a bundle of items.

The auctioneer has to select a subset of the bids so as to maximize the price it gets,

and making sure that it does not accept multiple bids that have the same item as each

item can be sold only once.

The auctioneer has the set of items {1, 2, 3, 4}, and the buyers submit bids

{a, b, c, d, e} where a constitutes of 〈{1, 2, 3}, 24〉, meaning that the bid a is for the

bundle {1, 2, 3} and its price is $24. and so on.

bid(a;b;c;d;e).

item(1..4).

in(1,a). in(2,a). in(3,a). in(2,b). in(3,b). in(3,c). in(4,c). in(2,d). in(3,d). in(4,d).

in(1,e). in(4,e).

weight sel(a) = 24. weight sel(b) = 9. weight sel(c) = 8. weight sel(d) = 25. weight

sel(e) = 15.

sel(X) :- bid(X), not not sel(X).

not sel(X) :- bid(X), not sel(X).

:- bid(X), bid(Y), sel(X), sel(Y), not eq(X,Y), item(I), in(I,X), in(I,Y).

maximize [ sel(X) : bid(X) ].

hide bid(X). hide not sel(X). hide item(X). hide in(X,Y).
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Programming using DLV: http://www.dbai.tuwien.ac.at/proj/dlv/

• Single Unit Combinatorial auction using weak constraints

bid(a). bid(b). bid(c). bid(d). bid(e).

in(1,a). in(2,a). in(3,a). in(2,b). in(3,b). in(3,c). in(4,c). in(2,d). in(3,d). in(4,d).

in(1,e). in(4,e).

sel(X) v not sel(X) :- bid(X).

:- sel(X), sel(Y), X != Y, in(I,X), in(I,Y).

:∼ not sel(a). [24:1]

:∼ not sel(b). [9:1]

:∼ not sel(c). [8:1]

:∼ not sel(d). [25:1]

:∼ not sel(e). [15:1]
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Programming Tricks

• Neither Smodels nor DLV allow function symbols or explicit sets and lists.

• Aggregation in Smodels

sold(a, 10, jan1). sold(a, 21, jan5). sold(a, 15, jan16). sold(b, 16, jan4). sold(b, 31,

jan21). sold(b, 15, jan26). sold(c, 24, jan8).

item(a;b;c). number(1..100). date(jan1;jan5;jan16;jan4;jan21;jan26;jan8).

weight sold(X,Y,Z) = Y.

total sold(I, N) :- item(I), number(N), N [ sold(I, X, D) : number(X) : date(D) ] N.

total sell transactions(I, N) :- item(I), number(N),

N { sold(I, X, D) : number(X) : date(D) } N.
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• Sets

causes(a, f, s).

set(s).

in(p1, s).

...

in(pn, s).

• Lists of arbitrary depth: p([a, [b, [c, d])

p(l).

head(l,a). body(l, l1).

head(l1, b). body(l1, l2).

head(l2, c). body(l2, l3).

head(l3, d). body(l3, nil).
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Correct query answering using Prolog

• Pure Prolog: Syntax of AnsProlog and semantics of Prolog.

• Pure Prolog semantics is based on

(i) SLDNF resolution with the leftmost selection rule (i.e., LDNF resolution) where

by only the leftmost literal in each query is marked selected;

(ii) but ignoring floundering;

(iii) omitting occur check during unification; and

(iv) selecting input rules during resolution from the beginning of the program to the

end.

• Theorem: If an AnsProlog program Π is well moded for some input-output

specification and there is no rule in Π whose head contains more than one occurrence

of the same variable in its output positions then Π is occur check free with respect to

any ground query.

• Theorem: If an AnsProlog program Π is well moded for some input-output

specification and all predicate symbols occurring under not are moded completely by

input then a ground query to Π does not flounder.
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• Proposition: If Π is an acceptable AnsProlog program and Q is a ground query then

all SLDNF derivations – with left most selection – of Q (with respect to Π) are finite

and therefore the Pure Prolog interpreter terminates on Q.

• Summary: One way to show that the Pure prolog semantics of a program agrees with

the AnsProlog semantics is by showing that the conditions in above three results are

satisfied.
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Complexity vs Expressiveness

• Let L be a sub-class of AnsProlog*, Π be a program in L, Din be a set of ground facts

in L, and A be a literal.

– Data complexity of L: Complexity of checking Din ∪ Π |= A, in terms of the

length of the input 〈Din, A〉, given a fixed Π in L.

– Program complexity of L: Complexity of checking Din ∪ Π |= A, in terms of the

length of the input 〈Π, A〉, given a fixed Din in L.

– Combined complexity of L: Complexity of checking Din ∪ Π |= A, in terms of the

length of the input 〈Π, Din, A〉.
• Given an AnsProlog* program Π the recognition problem associated with it is to

determine if Π ∪ I |= A, given some facts I and a ground literal A. Alternatively, the

recognition problem of Π is to determine membership in the set

{〈I, A〉 : Π ∪ I |= A}.
• An AnsProlog* program Π is said to be in complexity class C if the recognition

problem associated with Π is in C.
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• An AnsProlog* sub-class L is data-complete for complexity class C (or equivalently,

the data complexity class of L is C-complete) if

(i) (membership): each program in L is in C, and

(ii) (hardness): there exists a program in L for which the associated recognition

problem is complete with respect to the class C.

• Expressiveness: An AnsProlog* sub-class L is said to capture the complexity class C

if

(i) each program in L is also in C, and

(ii) every problem of complexity C can be expressed in L.

• L is data-complete in C does not imply that L captures C.

Even though there may exist queries in L for which the associated recognition

problem is complete with respect to the class C, there may be problems in the class C

which can not be expressed in L.

• L captures C does not imply that L is data-complete in C.

This is because even though L captures C there may not exist a problem that is

C-complete.
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Summary of the complexity results of AnsDatalog* sub-classes

AnsDatalog* Class Complexity Type Complexity Class

AnsDatalog−not Data complexity P-complete

AnsDatalog−not Program complexity EXPTIME-complete

Stratified AnsDatalog Data complexity P-complete

Stratified AnsDatalog Program complexity EXPTIME-complete

AnsDatalog (under WFS) Data complexity P-complete

AnsDatalog (under WFS) Program complexity EXPTIME-complete

AnsDatalog (answer set existence) complexity of SM(Π) 
= ∅ NP-complete

AnsDatalog Data complexity coNP-complete

AnsDatalog Program complexity coNEXPTIME complete

AnsDatalog¬ Existence of answer set NP-complete

AnsDatalog¬ Data complexity coNP-complete

AnsDatalogor ,−not Deciding Π |=GCWA A coNP-complete

AnsDatalogor ,−not Deciding Π |=GCWA ¬A Π2P-complete

AnsDatalogor Data complexity Π2P-complete

AnsDatalogor Program complexity coNEXPTIMENP-comp.
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Summary of expressiveness of AnsDatalog* sub-classes

AnsDatalog* Sub-class Relation Complexity Class

(or a non-AnsProlog* class)

Datalog+ ⊂
= P

Datalog+ (on ordered databases) captures P

Datalog+ equal FPL+(∃)

Stratified AnsDatalog ⊂
= FPL

Non-recursive range restr AnsDatalog equal relational algebra

Non-recursive range restr AnsDatalog equal relational calculus

Non-recursive range restr AnsDatalog equal FOL (without function symbols)

AnsDatalog (under WFS) equal FPL

Stratified AnsDatalog (on ordered databases) captures P

AnsDatalog under WFS (on ordered databases) captures P

AnsDatalog under brave semantics captures NP

AnsDatalog captures coNP

AnsDatalogor ,−not,
= (under brave semantics) captures Σ2P

AnsDatalogor ,−not,
= captures Π2P

AnsDatalogor (under brave semantics) captures Σ2P

AnsDatalogor captures Π2P
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Complexity and expressiveness of programs with function symbols

AnsProlog* Class Complexity type Complexity Class

(With Functions)

AnsProlog−not complexity r.e. complete

AnsProlog−not (without recursion) complexity NEXPTIME-complete

AnsProlog−not (with restrictions1) complexity PSPACE-complete

Stratified AnsProlog (n levels of stratification) complexity Σ0
n+1-complete

Non-recursive AnsProlog Data complexity P

AnsProlog (under WFS) complexity Π1
1-complete

AnsProlog complexity Π1
1 complete

AnsPrologor ,−not under GCWA Π0
2 complete

AnsPrologor complexity Π1
1-complete

AnsProlog* Class relation Complexity Class

AnsProlog (under WFS) captures Π1
1

AnsProlog captures Π1
1

AnsPrologor captures Π1
1
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AnsProlog* vs Classical logic

• Propositional theories can be easily mapped to AnsProlog.

• There is no rule-modular mapping from propositional AnsProlog to propositional logic.

– A mapping T (.) from the language L1 to L2 is said to be rule-modular if for any

theory (or program) Π in L1, for each set (possibly empty) of atomic facts F , the

“models” of Π ∪ F and T (Π) ∪ F coincide.

• Classical logic vs AnsProlog*

– Since the semantics of AnsProlog* is based on the Herbrand universe and answer

sets of AnsProlog programs are Herbrand Interpretations there is often a mismatch

between classical theories and AnsProlog* programs if we do not restrict ourselves

to Herbrand models.
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– T1 : ontable(a) ∧ ontable(b)

– Π1 obtained by translating T1

ontable(X) ← not n ontable(X).

n ontable(X) ← not ontable(X).

good model ← ontable(a), ontable(b).

← not good model.

Query Q given by ∀X.ontable(X).

– Π1 |= ∀X.ontable(X).

– But T1 
|= ∀X.ontable(X).

– Note: While using resolution with respect to T1 and Q, the clauses obtained from

T1 ∪ {¬Q} is the set {ontable(a), ontable(b),¬ontable(c)} – where c is a skolem

constant, which does not lead to a contradiction.

– Way out: In AnsProlog* judiciously introduce skolem constants derived by

transforming the query into a clausal form as done during resolution.
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Description logic vs AnsProlog*

• A straightforward translation of {child = ∃ childof, son = male � child} to

AnsProlog would be the following rules.

r1 : child(X) ← childof(X, Y ).

r2 : son(X) ← male(X), child(X).

• But while {child = ∃ childof, son = male � child, son(a)} |=dl child(a),

{r1, r2, son(a)} 
|= child(a).

• Besides r1 and r2, a correct AnsProlog translation will consist of the following rules:

r3 : male(X) ← top(X),not female(X).

r4 : female(X) ← top(X),not male(X).

r5 : childof(X, Y ) ← top(X), top(Y ), X 
= Y,not not childof(X, Y ).

r6 : not childof(X, Y ) ← top(X), top(Y ), X 
= Y,not childof(X, Y ).

r7 : ← childof(X, Y ), childof(Y, X).

and facts about the predicate top listing all elements belonging to the concept �.
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• Now to assimilate son(a) we need to add the following:

r8 : ← not son(a).

whose effect is to eliminate all potential answer sets which do not contain son(a).
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Answer Set Programming. Conclusion and some future directions

Conclusion

• Being able to represent and reason with knowledge is one of the two key components

of AI systems.

• AnsProlog* is a good candidate as the ‘core’ of a knowledge representation language –

satisfies all the ‘desirable’ criteria that we listed.

• The compilation to propositional logic approach of computing answer sets adds a new

dimension to their fast computation.

• Still lot more needs to be done.
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Emerging and Future directions

• Further development of the language. The ‘core’ is there, need features such as

cardinality constraints, sets, aggregates, preference between rules, etc.

• As language is broadened, need to expand the building block results.

• Need better systems: Smodels and dlv work only with function free programs, and

Prolog works with a very restricted subset.

• Integration of probability with logic.

• Integration with other knowledge representation languages and/or borrowing their

features: description logic, constraints of the kind in CLP, higher level syntax such as

in F-logic, function symbols and numbers as in Prolog.

• Discovering efficient encodings for polynomially solvable problem.

• Emerging applications: Semantics Web, data and knowledge integration.

• Inductive AnsProlog* or learning AnsProlog* rules from data; using knowledge

encoded in AnsProlog* during learning.

• Using it in more, bigger and eye-catching application domains.
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