Supplementary text: Direct-coupling analysis of residue co-evolution captures native contacts across many protein families

F. Morcos, A. Pagnani, B. Lunt, A. Bertolino, D. Marks, C. Sander, R. Zecchina, J.N. Onuchic, T. Hwa, and M. Weigt

I. INPUT DATA

Data are given as a multiple sequence alignment (MSA), i.e. a rectangular array with entries coming from a 21-letter alphabet (20 amino acids, 1 gap):

$$
\begin{equation*}
\mathbf{A}=\left(A_{i}^{a}\right), \quad i=1, \ldots, L, \quad a=1, \ldots, M \tag{1}
\end{equation*}
$$

with L being the number of residues in each MSA row (the protein length), and M the number of MSA rows (the number of proteins). For simplicity of notation we assume that the $q=21$ amino acids are translated into consecutive numbers $1, \ldots, q$.

II. SEQUENCE STATISTICS

The aim of the analysis is to detect statistical coupling between the amino-acid occupancies of any two columns of the MSA A. For doing so, we first introduce single site and pair frequency counts,

$$
\begin{equation*}
f_{i}(A)=\frac{1}{M} \sum_{a=1}^{M} \delta_{A, A_{i}^{a}} ; \quad f_{i j}(A, B)=\frac{1}{M} \sum_{a=1}^{M} \delta_{A, A_{i}^{a}} \delta_{B, A_{j}^{a}}, \tag{2}
\end{equation*}
$$

with $1 \leq i, j \leq L, 1 \leq A, B \leq q$, and δ denoting the Kronecker symbol, which equals one if the two indices coincide, and zero else. The first count determines the fraction of proteins which show amino acid A in column i (residue position), the second one the fraction of MSA rows where amino acids A and B co-appear in positions i and j.

A. Reweighted frequency counts

These simple frequency counts represent faithfully the statistical properties of the MSA if and only if rows are drawn independently from the same distribution. Biological sequence data show a strong sampling bias due phylogenetic relations between species, due to the sequencing of different strains of the same species, and due to a bias in the selection of species which are currently sequenced. As a simple correction, we use a reweighting scheme, which we have introduced in [1, 2].

First, we define a similarity threshold $0<x<1$: Two sequences of identity (number of positions with coinciding amino acids) larger than $x L$ are considered to carry almost the same information, smaller sequence identities are considered to carry substantially independent information. In practical tests we have found that values of x around 0.7-0.9 lead to very similar results, we use $x=0.8$.

Second, for each sequence $A^{a}=\left(A_{1}^{a}, \ldots, A_{L}^{a}\right)$ we determine the number of similar sequences $A^{b}=\left(A_{1}^{b}, \ldots, A_{L}^{b}\right)$ via

$$
\begin{equation*}
m^{a}=\left|\left\{b \mid 1 \leq b \leq M, \operatorname{seqid}\left(A^{a}, A^{b}\right) \geq x L\right\}\right| \tag{3}
\end{equation*}
$$

Note that this count is always at least one, since sequence A^{a} is counted itself in m^{a}. For each sequence, we use the weight $1 / \mathrm{m}^{a}$ in the frequency counts, i.e., sequences without similar sequences take weight one, and sequences featuring similar sequences are down-weighted. We redefine the frequency counts as

$$
\begin{align*}
f_{i}(A) & =\frac{1}{\lambda+M_{e f f}}\left(\frac{\lambda}{q}+\sum_{a=1}^{M} \frac{1}{m^{a}} \delta_{A, A_{i}^{a}}\right) \tag{4}\\
f_{i j}(A, B) & =\frac{1}{\lambda+M_{e f f}}\left(\frac{\lambda}{q^{2}}+\sum_{a=1}^{M} \frac{1}{m^{a}} \delta_{A, A_{i}^{a}} \delta_{B, A_{j}^{a}}\right)
\end{align*}
$$

This equation also contains a pseudo-count λ, which is a standard tool in estimating probabilities from counts in biological sequence analysis [3]. It serves to regularize parameters in the case of insufficient data availability, and has an interpretation in terms of Bayesian inference. The total weight of all sequences, $M_{e f f}=\sum_{a=1}^{M} 1 / m^{a}$, can be understood as the effective number of independent sequences.

Note that using $x=1$ would reweight each sequence by the number of times it appears in the MSA, removing thus simple repeats. Lower values for x aim at giving a smaller weight to regions which are more densely sampled, and a higher weight to regions which are less densely sampled.

B. Mutual information as a correlation measure

If two MSA columns i and j were statistically independent, the joint distribution $f_{i j}(A, B)$ would factorize into $f_{i}(A) \times f_{j}(B)$, any deviation from this factorization signals correlations between the columns. Such correlation can be quantified by the mutual information

$$
\begin{equation*}
M I_{i j}=\sum_{A, B} f_{i j}(A, B) \ln \frac{f_{i j}(A, B)}{f_{i}(A) f_{j}(B)} \tag{5}
\end{equation*}
$$

It equals zero if and only if $f_{i j}(A, B)$ factorizes into the single marginals, and it is positive whenever $f_{i j}(A, B)$ does not factorize.

III. MAXIMUM-ENTROPY MODELING

As discussed in the main text, inter-column correlation may be caused by direct statistical coupling, but
also by indirect correlation effects via intermediate MSA columns. As shown in [1], such direct and indirect effects may be disentangled: The idea is to infer a global statistical model $P\left(A_{1}, \ldots, A_{L}\right)$ for entire amino-acid sequences of the protein domain under study. This model has to be coherent to the empirical data, i.e. to generate the empirical single- and two-site frequency counts:

$$
\begin{align*}
P_{i}\left(A_{i}\right) & =\sum_{\left\{A_{k} \mid k \neq i\right\}} P\left(A_{1}, \ldots, A_{L}\right)=f_{i}\left(A_{i}\right) \tag{6}\\
P_{i j}\left(A_{i}, A_{j}\right) & =\sum_{\left\{A_{k} \mid k \neq i, j\right\}} P\left(A_{1}, \ldots, A_{L}\right)=f_{i j}\left(A_{i}, A_{j}\right)
\end{align*}
$$

Beyond these constraints, we aim at the most general, i.e. least constrained model $P\left(A_{1}, \ldots, A_{L}\right)$. It can be determined using the distribution maximizing the entropy

$$
\begin{equation*}
S=-\sum_{\left\{A_{i} \mid i=1, \ldots, L\right\}} P\left(A_{1}, \ldots, A_{L}\right) \ln P\left(A_{1}, \ldots, A_{L}\right) \tag{7}
\end{equation*}
$$

while satisfying the constraints in Eqs. (6). The solution to this optimization problem is standard [4]: after introducing constraints via Lagrange multipliers, we find the analytical form of the distribution:
$P\left(A_{1}, \ldots, A_{L}\right)=\frac{1}{Z} \exp \left\{\sum_{i<j} e_{i j}\left(A_{i}, A_{j}\right)+\sum_{i} h_{i}\left(A_{i}\right)\right\}$.
The Lagrange multipliers $h_{i}(A)$ and $e_{i j}(A, B)$ have a simple interpretation in terms of local amino-acid biases (local fields in statistical-physics language) and statistical residue couplings (coupling strength in statistical-physics language). Their numerical values have to be tuned such that the constraints given by Eqs. (6) are respected. The normalization constant

$$
\begin{equation*}
Z=\sum_{\left\{A_{i} \mid i=1, \ldots, L\right\}} \exp \left\{\sum_{i<j} e_{i j}\left(A_{i}, A_{j}\right)+\sum_{i} h_{i}\left(A_{i}\right)\right\} \tag{9}
\end{equation*}
$$

is called partition function in statistical physics. For later convenience, we also introduce the Hamiltonian

$$
\begin{equation*}
\mathcal{H}=-\sum_{1 \leq i<j \leq L} e_{i j}\left(A_{i}, A_{j}\right)-\sum_{i=1}^{L} h_{i}\left(A_{i}\right) \tag{10}
\end{equation*}
$$

such that our probabilistic model reads $P\left(A_{1}, \ldots, A_{L}\right)=$ $\exp \{-\mathcal{H}\} / Z$.

The major problem in this context is the determination of the marginal distributions $P_{i}(A)$ and $P_{i j}(A, B)$ from $P\left(A_{1}, \ldots, A_{L}\right)$. Doing this exactly by tracing over all other variables A_{i} as written in Eqs. (6) would require an exponential time, which grows like q^{L} with the length of the aligned proteins. Different strategies have already been suggested for tackling this problem (most of them for the restricted Ising model having $q=2$): In [1] we used a message-passing algorithm originally proposed in [5], [6] uses improved Monte Carlo sampling, [79] suggest perturbative expansion schemes, whereas [10]
uses pseudo-likelihoods decoupling inference for different sites. For an overview over the relative performance of these algorithms on artificial data see [11].

It is important to note that the partition function itself contains all necessary information on the marginals, in particular we have

$$
\begin{align*}
\frac{\partial \ln Z}{\partial h_{i}(A)} & =-P_{i}(A) \\
\frac{\partial^{2} \ln Z}{\partial h_{i}(A) \partial h_{j}(B)} & =-P_{i j}(A, B)+P_{i}(A) P_{j}(B) \tag{11}
\end{align*}
$$

For later convenience we introduce the connected correlations

$$
\begin{equation*}
C_{i j}(A, B)=P_{i j}(A, B)-P_{i}(A) P_{j}(B) \tag{12}
\end{equation*}
$$

where indices i, j run from $1, \ldots, L$, whereas A, B from $1, . ., q-1$. The significance of excluding $A, B=q$ will become clear below. Note that we will consider $C_{i j}(A, B)$ as a $L(q-1) \times L(q-1)$-dimensional matrix, i.e. each pair (i, A) is interpreted as a parametrization of a single, joint index.

A. The number of independent parameters

The statistical model in Eq. (8) has $\binom{N}{2} q^{2}+N q$ parameters, but not all of them are independent. In fact, the consistency conditions in Eqs. (6) are also not independent, since the single-site marginals are implied by the two-site marginals, and all distributions are normalized. Careful inspections unveils $\binom{N}{2}(q-1)^{2}+N(q-1)$ independent consistency conditions. We may therefore fix a part of the parameters in Eq. (8). Without loss of generality, we set

$$
\begin{equation*}
e_{i j}(A, q)=e_{i j}(q, A)=h_{i}(q)=0 \tag{13}
\end{equation*}
$$

for all $i, j=1, . ., L$ and $A=1, \ldots q$. Intuitively, this corresponds to a situation where all couplings and biases are measured with respect to the state q. The number of remaining parameters matches now the number of constraints, and the solution of the maximum-entropy model is unique.

B. Small-coupling expansion

The algorithmic approach is based on a systematic small-coupling expansion, i.e., on a Taylor expansion around zero coupling. This expansion was introduced in [12] by Plefka for disordered Ising models (Ising spinglasses, corresponding to binary variables with $q=2$). A more elegant derivation was proposed Georges and Yedidia [13], we generalize their approach to the case of Potts models with $q>2$.

First we introduce the perturbed Hamiltonian

$$
\begin{equation*}
\mathcal{H}(\alpha)=-\alpha \sum_{1 \leq i<j \leq L} e_{i j}\left(A_{i}, A_{j}\right)-\sum_{i=1}^{L} h_{i}\left(A_{i}\right) \tag{14}
\end{equation*}
$$

depending on the additional parameter α. This parameter allows to interpolate between independent variables for $\alpha=0$, and the original model for $\alpha=1$. Furthermore we introduce the so-called Gibbs potential
$-\mathcal{G}(\alpha)=\ln \left[\sum_{\left\{A_{i} \mid i=1, \ldots, L\right\}} e^{-\mathcal{H}(\alpha)}\right]-\sum_{i=1}^{L} \sum_{B=1}^{q-1} h_{i}(B) P_{i}(B)$
as the Legendre transform of the free energy $\mathcal{F}=-\ln Z$. Whereas the free energy depends canonically on the couplings and the fields, the Gibbs potential depends on the couplings and the marginal single-site distributions $P_{i}(A)$, i.e.
$\mathcal{G}(\alpha)=\mathcal{G}\left(\left\{\alpha e_{i j}(A, B)\right\}_{1 \leq i<j \leq L}^{A, B=1, . ., q-1},\left\{P_{i}(A)\right\}_{i=1, \ldots, L}^{A=1, \ldots, q-1}\right)$.
This choice is particularly practical for the following derivation, since it guarantees the first of Eqs. (6) to be valid at any α. Note that the Potts variables in this expression run only up to $q-1$. Due to the gauge of the couplings and the normalization of the marginals, values for $A, B=q$ are not independent variables.

The fields can be found via the standard expression for Legendre transforms, cf. Eq. (11),

$$
\begin{equation*}
h_{i}(A)=\frac{\partial \mathcal{G}(\alpha)}{\partial P_{i}(A)} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(C^{-1}\right)_{i j}(A, B)=\frac{\partial h_{i}(A)}{\partial P_{j}(B)}=\frac{\partial^{2} \mathcal{G}(\alpha)}{\partial P_{i}(A) \partial P_{j}(B)} \tag{18}
\end{equation*}
$$

It is worth pointing out that the previous relations hold at any value of α and are a consequence of the functional form of the Legendre transform defined in Eq. (15). We remind that the matrix C was defined in Eq. (12) to have dimension $L(q-1)$, i.e. Potts-state indices are constrained to values up to $q-1$. This restriction makes C an invertible matrix (at least for non-zero pseudo-count λ), removing trivial linear dependencies resulting from the normalization of $P_{i j}$. Using this last equation, we can calculate the two-point marginal distributions $P_{i j}$ directly from the Gibbs potential by means of two partial derivations and one matrix inversion.

Our aim is to expand this Gibbs potential up to first order in α around the independent-site case $\alpha=0$,

$$
\begin{equation*}
\mathcal{G}(\alpha)=\mathcal{G}(0)+\left.\frac{d \mathcal{G}(\alpha)}{d \alpha}\right|_{\alpha=0} \alpha+\mathcal{O}\left(\alpha^{2}\right) \tag{19}
\end{equation*}
$$

In the following subsections, we calculate the still unknown terms on the right-hand side of this equations, i.e. the Gibbs potential and its first derivative in $\alpha=0$.

C. Independent-site approximation

To start with, let us consider the Gibbs potential in $\alpha=0$. In this case, the Gibbs potential equals the negative entropy of an ensemble of L uncoupled Potts spins
A_{1}, \ldots, A_{L} of given marginals $P_{i}\left(A_{i}\right)$. This claim results from basic statistical mechanics: The free energy equals the average energy (average Hamiltonian) minus the entropy. For $\alpha=0$, the Legendre transform removes the complete average energy.

However, the entropy of uncoupled spins of given distribution is known to be

$$
\begin{align*}
\mathcal{G}(0)= & \sum_{i=1}^{L} \sum_{A=1}^{q} P_{i}(A) \ln P_{i}(A) \\
= & \sum_{i=1}^{L} \sum_{A=1}^{q-1} P_{i}(A) \ln P_{i}(A) \tag{20}\\
& +\sum_{i=1}^{L}\left[1-\sum_{A=1}^{q-1} P_{i}(A)\right] \ln \left[1-\sum_{A=1}^{q-1} P_{i}(A)\right]
\end{align*}
$$

the last line eliminates terms in $P_{i}(q)$ and reduces the expression to the independent variables.

D. Mean-field approximation

To get the first order in Eq. (19), we have to determine $d \mathcal{G}(\alpha) / d \alpha$ in $\alpha=0$. Recalling the definition of the Gibbs potential in Eq. (15), we write

$$
\begin{align*}
\frac{d \mathcal{G}(\alpha)}{d \alpha}= & -\frac{d}{d \alpha} \ln Z(\alpha)-\sum_{i=1}^{L} \sum_{A=1}^{q-1} \frac{d h_{i}(A)}{d \alpha} P_{i}(A) \\
= & -\sum_{\left\{A_{i}\right\}}\left[\sum_{i<j} e_{i j}\left(A_{i}, A_{j}\right)+\sum_{i} \frac{d h_{i}(A)}{d \alpha}\right] \frac{e^{-\mathcal{H}(\alpha)}}{Z(\alpha)} \\
& -\sum_{i=1}^{L} \sum_{A=1}^{q-1} \frac{d h_{i}(A)}{d \alpha} P_{i}(A) \\
= & -\left\langle\sum_{i<j} e_{i j}\left(A_{i}, A_{j}\right)\right\rangle_{\alpha} \tag{21}
\end{align*}
$$

The first derivative of the Gibbs potential with respect to α equals thus the average of the coupling term in the Hamiltonian. At $\alpha=0$, this average can be done easily, since the joint distribution of all variables becomes factorized over the single sites,

$$
\begin{equation*}
\left.\frac{d \mathcal{G}(\alpha)}{d \alpha}\right|_{\alpha=0}=-\sum_{i<j} \sum_{A, B} e_{i j}(A, B) P_{i}(A) P_{j}(B) \tag{22}
\end{equation*}
$$

Plugging this and Eq. (20) into Eq. (19), we find the firstorder approximation of the Gibbs potential. First and second partial derivatives with respect to the marginal distributions $P_{i}(A)$ provide self-consistent equations for the local fields,

$$
\begin{equation*}
\frac{P_{i}(A)}{P_{i}(q)}=\exp \left\{h_{i}(A)+\sum_{\{j \mid j \neq i\}} \sum_{B=1}^{q-1} e_{i j}(A, B) P_{j}(B)\right\} \tag{23}
\end{equation*}
$$

and the inverse of the connected correlation matrix,

$$
\left.\left(C^{-1}\right)_{i j}(A, B)\right|_{\alpha=0}=\left\{\begin{array}{cc}
-e_{i j}(A, B) & \text { for } i \neq j \tag{24}\\
\frac{\delta_{A}, B}{P_{i}(A)}+\frac{1}{P_{i}(q)} & \text { for } i=j
\end{array} .\right.
$$

This last equation allows for solving the original inference problem in mean-field approximation in a single step, without resorting to iterative schemes like gradient decent. Since we want to fit one- and two-site marginal of $P\left(A_{1}, \ldots, A_{L}\right)$ to the empirical values $f_{i}(A)$ and $f_{i j}(A, B)$ derived from the original protein MSA, we just need to determine the empirical connected correlation matrix

$$
\begin{equation*}
C_{i j}^{(e m p)}(A, B)=f_{i j}(A, B)-f_{i}(A) f_{j}(B) \tag{25}
\end{equation*}
$$

and invert this matrix to get the couplings $e_{i j}$. Even if matrix inversion is of complexity $\mathcal{O}\left(L^{3}\right)$ and thus of the same complexity as susceptibility propagation, the meanfield approximation is found to be $10^{3}-10^{4}$ times faster. This results from the simple fact that $>10^{3}$ iteration are needed in susceptibility propagation to reach sufficient precision in fitting the empirical data by the maximumentropy model.

IV. DIRECT INFORMATION AS A DIRECT-COUPLING MEASURE

Given the estimate of the pair couplings $e_{i j}(A, B)$ we would like to rank residue pairs according to their interaction strength. To do so, we need a meaningful mapping from the $(q-1) \times(q-1)$-dimensional coupling matrices
to a single scalar parameter. A way to do this which is independent of the selected gauge, was already proposed in [1]. The quantity introduced there was called direct information (DI) and measures the mutual information due to the direct coupling. To do so, we isolate a pair i, j of positions and introduce a two-site model

$$
\begin{equation*}
P_{i j}^{(d i r)}(A, B)=\frac{1}{Z_{i j}} \exp \left\{e_{i j}(A, B)+\tilde{h}_{i}(A)+\tilde{h}_{j}(B)\right\} \tag{26}
\end{equation*}
$$

with the coupling being the one inferred before. The new fields $\tilde{h}_{i / j}$ are determined by imposing the empirical single-site frequency counts as marginal distributions,

$$
\begin{align*}
& f_{i}(A)=\sum_{B=1}^{q} P_{i j}^{(d i r)}(A, B) \\
& f_{j}(B)=\sum_{A=1}^{q} P_{i j}^{(d i r)}(A, B) \tag{27}
\end{align*}
$$

and $Z_{i j}$ follows by normalization. The direct information is the mutual information associated to $P_{i j}^{(d i r)}$:

$$
\begin{equation*}
D I_{i j}=\sum_{A, B=1}^{q} P_{i j}^{(d i r)}(A, B) \ln \frac{P_{i j}^{(d i r)}(A, B)}{f_{i}(A) f_{j}(B)} \tag{28}
\end{equation*}
$$

In this expression, any indirect effect is obviously removed, only the strength of the direct coupling $e_{i j}(A, B)$ is measured.
[1] M. Weigt, R.A. White, H. Szurmant, J.A. Hoch, and T. Hwa. Identification of direct residue contacts in protein-protein interaction by message passing. Proceedings of the National Academy of Sciences, 106(1):67-72, 2009.
[2] A. Procaccini, B. Lunt, H. Szurmant, T. Hwa, and M. Weigt. Dissecting the specificity of protein-protein interaction in bacterial two-component signaling: Orphans and crosstalks. PLoS ONE, 6(5):e19729, 052011.
[3] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological sequence analysis: Probabilistic models of proteins and nucleic acids. Cambridge Univ Pr, 1998.
[4] D.J.C. MacKay. Information theory, inference, and learning algorithms. Cambridge Univ Pr, 2003.
[5] M. Mézard and T. Mora. Constraint satisfaction problems and neural networks: A statistical physics perspective. Journal of Physiology-Paris, 103(1-2):107 - 113, 2009. Neuromathematics of Vision.
[6] E. Schneidman, M.J. Berry, R. Segev, and W. Bialek. Weak pairwise correlations imply strongly correlated network states in a neural population. Nature, 440(7087):1007-1012, 2006.
[7] S. Cocco, S. Leibler, and R. Monasson. Neuronal couplings between retinal ganglion cells inferred by effi-
cient inverse statistical physics methods. Proceedings of the National Academy of Sciences, 106(33):14058-14062, 2009.
[8] V. Sessak and R. Monasson. Small-correlation expansions for the inverse Ising problem. Journal of Physics A: Mathematical and Theoretical, 42:055001, 2009.
[9] H. Kappen and F.B. Rodriguez. Efficient learning in boltzmann machines using linear response theory. Neural Computation, 10:1137, 1998.
[10] P. Ravikumar, M.J. Wainwright, and J.D. Lafferty. Highdimensional ising model selection using l1-regularized logistic regression. Annals of Statistics, 38:1287, 2010.
[11] Y. Roudi, J.A. Hertz, and E. Aurell. Statistical physics of pairwise probability models. Front. Comput. Neurosci., 3:22, 2009.
[12] T. Plefka. Convergence condition of the tap equation for the infinite-ranged ising spin glass model. Journal of Physics A: Mathematical and General, 15(6):1971, 1982.
[13] A. Georges and J.S. Yedidia. How to expand around mean-field theory using high-temperature expansions. Journal of Physics A: Mathematical and General, 24(9):2173, 1991.

Figure S1. Mean prediction performance for 131 domain families with respect to the top number of ranked contacts. The effect of sampling correction by re-weighting (RW), i.e. clustering redundant sequences for $>80 \%$ identity is beneficial for both MI and DI methods. Results with sampling correction (solid lines) are always better than their counterparts without re-weighting (dashed lines). Using a different threshold e.g, from 80% to 70% does not have a significant influence on the mean TP performance.

Figure S2. Distribution of the ratio Meff /M for the dataset of 131 domain families used in this study. MSA for all these families have a mean value of 8,600 sequences with a mean of 3,600 effective sequences.

Figure S3. Mean prediction performance for 25 eukaryotic domain families with more than 2000 sequences. The figure shows equivalent results as the ones obtained for bacterial sequences (Fig. 2A and Fig. S5). This suggests that the applicability of DI-based predictions to eukayotic is plausible.

Figure S4. A) Distribution of TP rates for the 131 domains studied and computed with the best predicted structures per domain using mfDCA with sampling correction. Results are shown for the top 10,20 and 30 predicted pairs. B) Distribution of TP rates for the 131 domains studied and all PDB structures using mfDCA and sampling correction. Top 10,20 and 30 pairs seem to have a peak of the TP rate distribution around 0.8-0.9.

Figure S5. Histogram of all background pairwise atomic distances for 10 random PDB structures in our dataset. The peak of the distribution around $25 \AA$ explains a small bump observed in Figure 2B near the same distance ($20-25 \AA$) in the distribution.

A

B

Figure S6. Sensitivity analysis of the performance of mfDCA for random sub-alignments of different lengths. Results are shown for two domain families: (A) the Ras domain family (PF00071) and (B) the DNA-recognition domain (Region 2) of the bacterial Sigma-70 factor (Pfam ID PF04542) were selected to assess prediction performance for sequence alignments of size $\mathrm{M}=100,500,1000$ and 3000 , corresponding to Meff values ranging from 72 to 1206 . Curves are averaged over 100 randomly generated sub-alignments fore each M. A number of Meff ~ 250 appears to be necessary to get sensitive results, while using Meff ~ 1000 reaches results similar to the ones using full alignments.

A

Figure S7. A) Protein MexA (PDB ID 1vf7), showing nine secretion and transporter activity domains HlyD domains (PF00529) forming a funnel like structure used as antibiotic efflux. One of two false positives in the top 20 predictions was a multimerization couplet, shown in green and red. B) Side view of the complex with domains in different colors.

Figure S8. Cumulative distribution of the Number of Acceptable Pairs (NAPx) for a given TP rate x normalized by the length of the domain L. The curves show the probability of NAPx to be larger than a given number n for contacts at given TP rates of $0.9,0.8$ and 0.7 . The curves are computed for all 856 PDB structures in the dataset.

Figure S9. A) Family of bacterial tripartite tricarboxylate receptors (PF03401), NAP70 is 600 , i.e., 70% of the top 600 DI pairs correspond to true contacts when mapped to structure PDB ID 2qpq. B) The extracellular solute-binding family (PF00496) mapped to the structure of the periplasmic oligopeptide-binding protein OppA of S. typhimurium (PDB ID 1jet) has a NAP70 of 497. Approximately 350 contacts are true positives.

Figure S10. Comparison of the probability function of the Number of Accepted Pairs (NAP70) to be larger than a certain number of pairs for three methods: DI, Bayesian approach and MI. DI shows a clear improvement against MI (red curve) and the Bayesian approach by Burger et al. (dashed red) which becomes more evident as NAP grows larger.

Figure S11. Performance of mfDCA for different values of the pseudocount parameter λ. Mean TP rates are shown for two domain families (A) the Ras domain family (PF00071) and (B) the DNA-recognition domain (Region 2) of the bacterial Sigma-70 factor (Pfam ID PF04542). The pseudo-count values used depend on the number of effective sequences Meff and a weighting parameter, pseudo-count weight w as $\lambda=\mathrm{w}$ Meff. Mean TP rates are computed for different w values between 0.11 and 9 . A relatively small variance in performance for values of $w>0.5$ is observed with the optimum between 1-1.5. $\lambda=$ Meff was used as a fixed parameter in all the results shown in this study.

Figure S12. Comparison of different DCA approximations for (A) Trypsin (PF00089, PDB 3TGI) and (B) Trypsin inhibitor (PF00014, PDB 5PTI). Whereas all DCA algorithms outperform the contact prediction by mutual information (green line), we find the new mfDCA (blue line) to be superior to the previous mpDCA (red line). Going beyond mfDCA to the next order of the smallcoupling expansion (tapDCA, pink line), cf. Methods, does not systematically improve over mfDCA, but leads to a substantially slower algorithm. The fact that the red curve in panel A finishes at a smaller number of pairs results from the fact, that mpDCA can be run only on subalignments of up to 70 columns due to the algorithmic complexity of the approach.

Table S1. List of PDB structures analyzed in this study.

PDB IDs									
1531	1 gbs	11qp	1 qgs	1vz0	2bkn	2 gd 9	20qg	2z1e	3 e 10
1541	1 gdt	11 r 0	1 qhg	1w55	2bko	2gj3	2oqr	$2 \mathrm{z1f}$	3 e 38
1 a 04	1 gg 4	11s9	1 qhh	1w6s	2bkp	2gjg	20xo	2z1u	3 e 4 r
1a0b	1 gqy	11sp	1qks	1w77	2 bm 4	2 gkg	$20 y o$	2z2l	3 e 4 v
1a0p	1 gu 9	11ss	1 qpz	1w78	2bm5	2 glk	2p19	2 z 2 m	3 e 71
1ae9	1gug	1luc	1qsa	1w8i	2bm6	2 gm 5	2p4g	$2 \mathrm{z4g}$	3e8o
1al3	1 gun	11vw	1qte	1wet	2bm7	2 gms	2p5v	$2 \mathrm{z4p}$	3 eag
1 atg	1gus	1m65	1qtw	1 wmi	2 bnm	2 gmy	2p7o	$2 \mathrm{z6r}$	3 ec 2
1b7e	1gut	1 m 68	1qu7	1woq	2 brc	2 gqp	2paq	2z8x	3 ecc
1b9m	1h3l	1m6k	1 1qwy	1wp1	2byi	2 gsk	2pbq	2z98	3 ech
1b9n	1h4i	1m70	1 qxx	1wpm	2c2a	2 gul	2pfx	2 zab	3 ccp
1bia	1h71	1m7j	1 rlm	1 wpn	2c81	2guf	2ph1	2 zau	3 d dp
1bib	1h7q	1 ma 7	$1 r 1 t$	1wpp	2ce0	2 guh	2pjr	2 zbc	3 eet
1bl0	1h8z	1 mb 3	$1 r 1 u$	1ws 6	2cg4	2 gup	2pkh	2 zc 3	3 efm
1 boo	1h98	1 mdo	1r23	1x74	2ch7	2 gxg	2 pmh	2 zc 4	3eiw
1 bsl	1h9g	1 mkm	$1 r 62$	1x9h	2cvi	2 gza	2 pn 6	2 zcm	3eix
1byi	1h9j	1 mkz	1 r 8 d	1x9i	2 cwq	2h1c	2 pq 7	2 zdp	3eko
1byq	1h9k	1 mm 8	$1 r 8 e$	1 xa 3	2cyy	2h98	2pt7	2zf8	3 elk
1 c 02	1h9m	1 mnz	1r9x	1 xc 3	2d1h	2h99	2 puc	2zie	3 eus
1c52	1h9s	1 moq	1r9y	1 xd 7	2d1v	2h9b	2 pud	2 zif	3 ex 8
1c5k	1hfe	1 muh	1 r 9 z	1xi2	2d5m	2haw	2 px 7	2zig	3eyw
1c75	1 hm 9	1 mur	1ra0	1xja	2d5n	2 hek	2q0o	2 zki	3 ezu
1 cb 7	1hw1	1 mus	$1 r a 5$	1xk6	2d5w	2 heu	2 q 0 t	2 zkz	3f1c
1 ccw	1hxd	1 muw	1 rak	1xk7	2 dbb	2 hkl	2q1z	2 zod	3 f 1 n
1 cp 2	1i0r	1 mv 8	1 req	1xkw	2dek	2 hmt	2q4f	2 zov	3f10
1crx	1ilg	1 mw 8	1 rhc	1 xkz	2df8	2 hmu	2q8p	2zxj	3f1p
1 crz	$1 i 52$	1 mw 9	1rio	1 xma	2dg6	2 hmv	2 qb 6	3 b 4 y	3f2b
1ctj	$1 i 58$	1 n 2 z	1rk6	1xo0	2di3	2 hnh	$2 \mathrm{qb7}$	3b6i	3 f 44
1d4a	1i5n	1n91	$1 r p 3$	1 xoc	2dql	2hoe	2 qb 8	3 b 8 x	3 f 52
1d5y	1i74	1 n 9 n	1 rrm	1xw3	2 dvz	2 hof	2 qcz	3b9o	3f6c
1 dad	1i8o	1 nfp	$1 r t t$	1y0h	2dxw	2 hph	2 qdf	3 bcv	3f6o
1 dae	1i9c	1nki	1rzu	1ylz	2dxx	2 hq 0	2 qdl	3 be 6	3 f 6 v
1 dag	1icr	1 nly	$1 r z v$	1y20	2 e 15	2 hqs	2 qeu	3bem	3f8b
1 dah	1id0	1 nnf	1s5m	1y7m	2 e 1 n	2hs5	2 qgq	3 bg 2	3f8c
1dai	1id1	1 nox	1s5n	1y7y	2 e 4 n	2 hsg	2 qgz	3 bhq	3f8f
1dak	1ihc	1nqe	1s8n	1y80	2e5f	2 hsi	2qi9	3bkh	3 fd 3
1dd9	1ihr	1nw5	1sfx	1 y 82	2e7w	2 hwv	2qj7	3 bkv	3 fgv
1 dde	1ihu	1nw6	1sg0	1y9u	2e7x	2 hxv	2 qm 1	3 bm 7	3fis
1di6	1ii0	1nw7	1si0	1yc9	2e7z	2i0m	2 qmo	3 bpk	3 fms
1di7	1ii9	1nw8	1sig	1 ydx	$2 \mathrm{eb7}$	2i5r	2 qpq	3 bpq	3 fwy
1dlj	1ini	1 nwz	1sly	1ye5	2 ecu	2ia2	2qsx	3 bpv	3 fwz
1 dts	1inj	1ny5	1sqe	1yf2	2efn	2ia4	2 qwx	3 bqx	3fxa
1 dur	1ir6	1ny6	1sqs	1yg2	2 eh 3	2ibd	2qx4	3bre	3 fzv
1e2x	1iuj	101h	1sum	1yio	2 ehl	2ict	2qx6	3bs 3	3 gl 3
1 e 3 u	1ixc	1o2d	1suu	1yiq	2 ehz	2ift	2 qx 8	3 bvp	3 g 50
1 e 4 d	1ixg	1061	1 t 3 t	1ylf	2ek5	2ikk	2 r 01	3 bwg	3 g 7 r
1 e 4 f	1ixh	1069	1t5b	1yoy	2esh	2 ipl	2r0x	3c1q	3 gdi
1 e 4 g	1iz1	1071	1t72	1ysp	2esn	2 ipm	2r1j	3c29	3 gfa
1 e 8 c	1j5y	1oad	1ta9	1ysq	2 esr	2ipn	2r25	3 c 3 w	3 gfv
lecl	1j6u	1oap	1 td 5	1 yvi	2 ewn	2is1	2 r 4 t	3c48	3 gfx
1efa	1 jbg	1odd	1 tf 1	1z05	2 ewv	2is2	2 r 6 g	3 c 57	3 gfy
1efd	1 jbw	lodv	1 tqg	1z19	2 eyu	2is4	2r6o	3c7j	3 gfz
1eg2	1 je8	1oj7	1 tqq	1z7u	2 f00	2is6	2r6v	3 c 85	3 gg 0
1 ek 9	1 jet	1olt	1tv8	1zat	2f 2 e	2is8	2ra5	3 c 8 f	3 gg 1
1esz	1 jeu	1opc	1 tv	1zi0	2f5x	2iu5	2 rb 9	3 c 8 n	3 gg 2
1etk	1 jev	1opx	1 tzb	1zlj	2f6g	2iuy	2 rc 7	3 c 9 u	3 ghj

1eto	1jft	$10 r 7$	1tzc	1zvt	2f6p	2iv7	2rc8	3 can	3gp4
1etv	1jh9	1ot6	1u07	1 zvu	2f7a	2iw1	2 rca	3 ccg	3 gpv
1etw	1jiw	lot9	1u2w	1 zzc	2f7b	2iw4	2 rde	3 cij	3 gr 3
1etx	1 jlj	lota	1u8b	2a0b	2f81	2iwx	2rii	3 cix	3 guv
1ety	1 jnu	lotb	1u8t	2a3n	2f9f	2 jba	2ril	3 ckj	3h4o
1ezw	1 jpu	10xk	1 uaa	2a5h	2 fal	2 jcg	2 rsl	3 ckn	3h5t
1f07	1 jq5	1p2f	1uc8	2a51	2fa5	2 jfg	2uag	3 ckv	3h87
1 flu	1 jyk	1p31	1uc9	2a61	2 fb 2	2nip	2v25	3clo	3 hfi
1f44	1k20	1p3d	1us4	2aa4	2 fbh	2 npn	2v2k	3 cnr	3hh0
1 f48	1 k 2 v	1p7d	1us5	2aac	2 fcj	2 nq 2	2v9y	3 cnv	3 hhh
1f5v	1k38	1p9r	1usc	2ad6	2 fdn	2nq9	2vha	3 cp 5	3hl0
1f9i	1k4f	1p9w	lusf	2ad7	2 fe 1	2 nqh	2vjq	3 ctp	3 hmz
1 fca	1k54	1 pb 0	1uux	2ad8	2 fez	2 nt 3	2vk2	3cuo	3 hn 7
1 fdn	1k56	1 pb 7	1uuy	2aef	2 ff 4	2 nt 4	2vke	3 cwr	3hoi
1 fep	1 kap	1pb8	1uyl	2aej	2 ffu	2008	2 vkr	3 cx 4	3 htv
1fia	1 kb 0	1pjr	1v4y	2afh	2 fhp	$200 y$	2vlg	3 cyi	3hvw
1fip	1 kbu	1 pnz	1v51	2 am 1	2 fn9	2o3j	2vma	3сур	3pyp
1fp6	1 kgs	1 po 0	1v8p	2 anu	2 fnu	204d	2 vmb	3cyq	3uag
1fr3	1 kmo	1pt7	1v96	2 ap 1	2 fpo	207i	2vpz	3d5k	4 aah
1fse	1 kmp	1pvp	1vct	$2 \operatorname{ar0}$	2 fsw	207p	2vsh	3d6z	4 crx
1fxo	1kq3	$1 q 05$	1ve2	2ara	2 fvy	208x	2w27	3d7i	4 req
1g11	1 ku 3	$1 q 06$	1vf7	2 arc	2 fw 0	2099	2w8b	3 dbo	4 uag
1 glm	1 ku 7	$1 q 07$	1 vgt	2azn	2g2c	209a	2w8i	3df7	5 req
1g20	1kv9	1q08	1vgw	2b02	2 g 6 v	2obc	2 yve	3df8	6 req
1g28	1 kw 3	1 q 09	1vhd	2b0p	2g7u	2ofy	2 yx 0	3dma	7 req
1g5p	1kw6	1q0a	1vhv	2b13	2 gai	2ogi	2 yxb	3 dr 4	8abp
1 g 60	1131	1q35	1vim	2b3z	2gaj	2ojh	2 yxo	3 drf	
1 g 60	11j9	1q7e	1vj7	2b44	2 gci	2okc	2 yxz	3drj	
1 g 72	$11 q 9$	1 qg 8	1vke	2 bas	2 gd 0	2olb	2yye	3dsg	
1 g 8 k	1lqk	1 qgq	1vlj	2 bfw	2 gd 2	200c	2yz5	3 du 1	

Table S2. List of Pfam domain families analyzed in this study.

Pfam Domain Names				
ABM	Fe-ADH	Hlyd	PAS	SBP_bac_1
AIRS	FecCD	Hpt	PASTA	SBP_bac_3
AIRS_C	Fer4	HxlR	PAS_3	SBP_bac_5
AP_endonuc_2	Fer4_Nift	IclR	PD 40	SIS
ATP-grasp_3	Flavin_Reduct	IspD	PHP	SLBB
Amidohydro_3	Flavodoxin_2	IstB	PIN	SLT
Arac_binding	FtsA	LacI	PQQ	Sigma54_activat
ArsA_ATPase	GGDEF	LysR_substrate	PadR	Sigma70_r2
AsnC_trans_reg	GSPII_E	MCPsignal	ParBc	Sigma70_r4
B12-binding	GSPII_F	MarR	Pentapeptide	Sigma70_r4_2
BPD_transp_1	GerE	MerR-DNA-bind	Peptidase_M23	Surf_Ag_VNR
Bac_luciferase	Glycos_transf_1	MerR	Peripla_BP_1	TOBE
Bug	Glycos_transf_2	Methylase_S	Peripla_BP_2	TOBE_2
CMD	Glyoxalase	MoCF_biosynth	Phage_integr_N	TP_methylase
CbiA	GntR	Molybdopterin	Phage_integrase	TetR_N
CheW	HATPase_c	Molydop_binding	PhoU	TonB
CoA_transf_3	HD	Mur_ligase	PilZ	TonB_dep_Rec
Cons_hypoth95	HTH_1	Mur_ligase_C	Plasmid_stabil	Toprim
Cytochrom_C	HTH_11	Mur_ligase_M	Plug	Trans_reg_C
DHH	HTH_3	N6_Mtase	ROK	Transpeptidase
DHHA1	HTH_5	N6_N4_Mtase	Radical_SAM	Transposase_11
DNA_gyraseA_C	HTH_8	NMT1	Resolvase	TrkA_N
DegT_DnrJ_Eryc1	HTH_AraC	NTP_transferase	Response_reg	TrmB
EAL	HTH_IclR	Nitroreductase	RibD_C	UDPG_MGDP_dh_N
FCD	HemolysinCabind	OEP	RimK	UTRA
FMN_red	HiskA	OmpA	Rrf2	UvrD-helicase YkuD

Table S3. Pfam domain families and their respective PDB structure with oligomerization TP contacts.

Pfam Domain	PDB structure
AsnC_trans_reg	2z4p
Bac_luciferase	3 b 4 y
CMD	1vke
EAL	2r6o
Flavodoxin_2	1t5b
FMN_red	2a5l, 2q62
Glyoxalase	2p7o
GSPII_E	2 gza
Hlyd	$2 \mathrm{f} 1 \mathrm{~m}, 1 \mathrm{t} 5 \mathrm{e}$
Hpt	1i5n
HTH_IclR	2g7u
HxlR	2 f 2 e
IspD	3f1c
MCPsignal	2ch7
MerR-DNA-bind	3 gp 4
Mur_ligase	2 am 1
Resolvase	2 gm 5
Sigma54_activat	1 ny 6
TOBE	1h9s
TOBE_2	2 awn
TP_methylase	1 vhv

Table S4. Top-30 prediction of mfDCA for the Serine protease data of (41). The first two columns specify the residue pair, the third column provides the DI value, and the last one the native distance in rat trypsin (PDB ID 3tgi). Residues belonging to the sectors defined in (41) are indicated, using the color scheme of (41).

Res. 1	Res. 2	DI	Dist/A
136	201	0.52	2.0
32	40	0.47	2.8
191	220	0.37	2.2
189	226	0.34	3.3
57	195	0.34	2.7
42	58	0.28	2.0
44	52	0.25	4.3
30	139	0.25	2.7
72	77	0.24	3.0
72	78	0.23	8.0
59	104	0.23	3.9
51	105	0.22	3.8
190	213	0.20	3.7
34	40	0.19	3.4
116	127	0.18	23.7
26	157	0.18	4.9
45	209	0.18	3.8
117	127	0.17	23.9
46	112	0.16	4.0
71	78	0.15	8.5
71	79	0.15	6.9
117	122	0.15	13.3
161	184	0.15	3.1
138	213	0.14	4.2
116	122	0.14	13.1
53	209	0.14	3.5
189	228	0.13	3.9
100	179	0.13	2.3
102	195	0.13	6.1
27	157	0.13	3.8

