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I. INPUT DATA

Data are given as a multiple sequence alignment
(MSA), i.e. a rectangular array with entries coming from
a 21-letter alphabet (20 amino acids, 1 gap):

A = (Aa
i ) , i = 1, ..., L, a = 1, ..., M (1)

with L being the number of residues in each MSA row
(the protein length), and M the number of MSA rows
(the number of proteins). For simplicity of notation we
assume that the q = 21 amino acids are translated into
consecutive numbers 1,...,q.

II. SEQUENCE STATISTICS

The aim of the analysis is to detect statistical coupling
between the amino-acid occupancies of any two columns
of the MSA A. For doing so, we first introduce single
site and pair frequency counts,

fi(A) =
1

M

M
∑

a=1

δA,Aa
i
; fij(A, B) =

1

M

M
∑

a=1

δA,Aa
i
δB,Aa

j
,

(2)
with 1 ≤ i, j ≤ L, 1 ≤ A, B ≤ q, and δ denoting the
Kronecker symbol, which equals one if the two indices
coincide, and zero else. The first count determines the
fraction of proteins which show amino acid A in column
i (residue position), the second one the fraction of MSA
rows where amino acids A and B co-appear in positions
i and j.

A. Reweighted frequency counts

These simple frequency counts represent faithfully the
statistical properties of the MSA if and only if rows are
drawn independently from the same distribution. Biolog-
ical sequence data show a strong sampling bias due phy-
logenetic relations between species, due to the sequenc-
ing of different strains of the same species, and due to
a bias in the selection of species which are currently se-
quenced. As a simple correction, we use a reweighting
scheme, which we have introduced in [1, 2].

First, we define a similarity threshold 0 < x < 1: Two
sequences of identity (number of positions with coincid-
ing amino acids) larger than xL are considered to carry
almost the same information, smaller sequence identities
are considered to carry substantially independent infor-
mation. In practical tests we have found that values of x
around 0.7-0.9 lead to very similar results, we use x = 0.8.

Second, for each sequence Aa = (Aa
1 , ..., Aa

L) we deter-
mine the number of similar sequences Ab = (Ab

1, ..., A
b
L)

via

ma =
∣

∣

{

b | 1 ≤ b ≤ M, seqid(Aa, Ab) ≥ xL
}
∣

∣ . (3)

Note that this count is always at least one, since sequence
Aa is counted itself in ma. For each sequence, we use
the weight 1/ma in the frequency counts, i.e., sequences
without similar sequences take weight one, and sequences
featuring similar sequences are down-weighted. We rede-
fine the frequency counts as

fi(A) =
1

λ + Meff

(

λ

q
+

M
∑

a=1

1

ma
δA,Aa

i

)

(4)

fij(A, B) =
1

λ + Meff

(

λ

q2
+

M
∑

a=1

1

ma
δA,Aa

i
δB,Aa

j

)

.

This equation also contains a pseudo-count λ, which is
a standard tool in estimating probabilities from counts
in biological sequence analysis [3]. It serves to regularize
parameters in the case of insufficient data availability,
and has an interpretation in terms of Bayesian inference.

The total weight of all sequences, Meff =
∑M

a=1 1/ma,
can be understood as the effective number of independent
sequences.

Note that using x = 1 would reweight each sequence
by the number of times it appears in the MSA, removing
thus simple repeats. Lower values for x aim at giving
a smaller weight to regions which are more densely sam-
pled, and a higher weight to regions which are less densely
sampled.

B. Mutual information as a correlation measure

If two MSA columns i and j were statistically indepen-
dent, the joint distribution fij(A, B) would factorize into
fi(A) × fj(B), any deviation from this factorization sig-
nals correlations between the columns. Such correlation
can be quantified by the mutual information

MIij =
∑

A,B

fij(A, B) ln
fij(A, B)

fi(A)fj(B)
. (5)

It equals zero if and only if fij(A, B) factorizes into the
single marginals, and it is positive whenever fij(A, B)
does not factorize.

III. MAXIMUM-ENTROPY MODELING

As discussed in the main text, inter-column correla-
tion may be caused by direct statistical coupling, but
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also by indirect correlation effects via intermediate MSA
columns. As shown in [1], such direct and indirect effects
may be disentangled: The idea is to infer a global statis-
tical model P (A1, ..., AL) for entire amino-acid sequences
of the protein domain under study. This model has to
be coherent to the empirical data, i.e. to generate the
empirical single- and two-site frequency counts:

Pi(Ai) =
∑

{Ak|k 6=i}

P (A1, ..., AL) = fi(Ai) (6)

Pij(Ai, Aj) =
∑

{Ak|k 6=i,j}

P (A1, ..., AL) = fij(Ai, Aj) .

Beyond these constraints, we aim at the most general,
i.e. least constrained model P (A1, ..., AL). It can be de-
termined using the distribution maximizing the entropy

S = −
∑

{Ai|i=1,...,L}

P (A1, ..., AL) lnP (A1, ..., AL) (7)

while satisfying the constraints in Eqs. (6). The solution
to this optimization problem is standard [4]: after intro-
ducing constraints via Lagrange multipliers, we find the
analytical form of the distribution:

P (A1, ..., AL) =
1

Z
exp







∑

i<j

eij(Ai, Aj) +
∑

i

hi(Ai)







.

(8)
The Lagrange multipliers hi(A) and eij(A, B) have a sim-
ple interpretation in terms of local amino-acid biases (lo-
cal fields in statistical-physics language) and statistical
residue couplings (coupling strength in statistical-physics
language). Their numerical values have to be tuned such
that the constraints given by Eqs. (6) are respected. The
normalization constant

Z =
∑

{Ai|i=1,...,L}

exp







∑

i<j

eij(Ai, Aj) +
∑

i

hi(Ai)







(9)
is called partition function in statistical physics. For later
convenience, we also introduce the Hamiltonian

H = −
∑

1≤i<j≤L

eij(Ai, Aj) −

L
∑

i=1

hi(Ai) , (10)

such that our probabilistic model reads P (A1, ..., AL) =
exp{−H}/Z.

The major problem in this context is the determina-
tion of the marginal distributions Pi(A) and Pij(A, B)
from P (A1, ..., AL). Doing this exactly by tracing over
all other variables Ai as written in Eqs. (6) would re-
quire an exponential time, which grows like qL with the
length of the aligned proteins. Different strategies have
already been suggested for tackling this problem (most
of them for the restricted Ising model having q = 2): In
[1] we used a message-passing algorithm originally pro-
posed in [5], [6] uses improved Monte Carlo sampling, [7–
9] suggest perturbative expansion schemes, whereas [10]

uses pseudo-likelihoods decoupling inference for different
sites. For an overview over the relative performance of
these algorithms on artificial data see [11].

It is important to note that the partition function itself
contains all necessary information on the marginals, in
particular we have

∂ lnZ

∂hi(A)
= −Pi(A)

∂2 lnZ

∂hi(A) ∂hj(B)
= −Pij(A, B) + Pi(A)Pj(B) . (11)

For later convenience we introduce the connected corre-
lations

Cij(A, B) = Pij(A, B) − Pi(A)Pj(B) , (12)

where indices i, j run from 1, ..., L, whereas A, B from
1, .., q − 1. The significance of excluding A, B = q will
become clear below. Note that we will consider Cij(A, B)
as a L(q−1)×L(q−1)-dimensional matrix, i.e. each pair
(i, A) is interpreted as a parametrization of a single, joint
index.

A. The number of independent parameters

The statistical model in Eq. (8) has
(

N
2

)

q2 + Nq pa-
rameters, but not all of them are independent. In fact,
the consistency conditions in Eqs. (6) are also not inde-
pendent, since the single-site marginals are implied by
the two-site marginals, and all distributions are normal-
ized. Careful inspections unveils

(

N
2

)

(q − 1)2 + N(q − 1)
independent consistency conditions. We may therefore
fix a part of the parameters in Eq. (8). Without loss of
generality, we set

eij(A, q) = eij(q, A) = hi(q) = 0 (13)

for all i, j = 1, .., L and A = 1, ...q. Intuitively, this corre-
sponds to a situation where all couplings and biases are
measured with respect to the state q. The number of
remaining parameters matches now the number of con-
straints, and the solution of the maximum-entropy model
is unique.

B. Small-coupling expansion

The algorithmic approach is based on a systematic
small-coupling expansion, i.e., on a Taylor expansion
around zero coupling. This expansion was introduced
in [12] by Plefka for disordered Ising models (Ising spin-
glasses, corresponding to binary variables with q = 2).
A more elegant derivation was proposed Georges and
Yedidia [13], we generalize their approach to the case
of Potts models with q > 2.

First we introduce the perturbed Hamiltonian

H(α) = −α
∑

1≤i<j≤L

eij(Ai, Aj) −

L
∑

i=1

hi(Ai) , (14)
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depending on the additional parameter α. This param-
eter allows to interpolate between independent variables
for α = 0, and the original model for α = 1. Furthermore
we introduce the so-called Gibbs potential

−G(α) = ln





∑

{Ai|i=1,...,L}

e−H(α)



−

L
∑

i=1

q−1
∑

B=1

hi(B)Pi(B)

(15)
as the Legendre transform of the free energy F = − lnZ.
Whereas the free energy depends canonically on the cou-
plings and the fields, the Gibbs potential depends on
the couplings and the marginal single-site distributions
Pi(A), i.e.

G(α) = G
(

{αeij(A, B)}A,B=1,..,q−1
1≤i<j≤L , {Pi(A)}A=1,...,q−1

i=1,...,L

)

.

(16)
This choice is particularly practical for the following
derivation, since it guarantees the first of Eqs. (6) to be
valid at any α. Note that the Potts variables in this ex-
pression run only up to q − 1. Due to the gauge of the
couplings and the normalization of the marginals, values
for A, B = q are not independent variables.

The fields can be found via the standard expression for
Legendre transforms, cf. Eq. (11),

hi(A) =
∂G(α)

∂Pi(A)
, (17)

and

(

C−1
)

ij
(A, B) =

∂hi(A)

∂Pj(B)
=

∂2G(α)

∂Pi(A) ∂Pj(B)
. (18)

It is worth pointing out that the previous relations hold
at any value of α and are a consequence of the functional
form of the Legendre transform defined in Eq. (15). We
remind that the matrix C was defined in Eq. (12) to
have dimension L(q− 1), i.e. Potts-state indices are con-
strained to values up to q − 1. This restriction makes C
an invertible matrix (at least for non-zero pseudo-count
λ), removing trivial linear dependencies resulting from
the normalization of Pij . Using this last equation, we
can calculate the two-point marginal distributions Pij di-
rectly from the Gibbs potential by means of two partial
derivations and one matrix inversion.

Our aim is to expand this Gibbs potential up to first
order in α around the independent-site case α = 0,

G(α) = G(0) +
dG(α)

dα

∣

∣

∣

∣

α=0

α + O(α2) . (19)

In the following subsections, we calculate the still un-
known terms on the right-hand side of this equations,
i.e. the Gibbs potential and its first derivative in α = 0.

C. Independent-site approximation

To start with, let us consider the Gibbs potential in
α = 0. In this case, the Gibbs potential equals the neg-
ative entropy of an ensemble of L uncoupled Potts spins

A1, ..., AL of given marginals Pi(Ai). This claim results
from basic statistical mechanics: The free energy equals
the average energy (average Hamiltonian) minus the en-
tropy. For α = 0, the Legendre transform removes the
complete average energy.

However, the entropy of uncoupled spins of given dis-
tribution is known to be

G(0) =

L
∑

i=1

q
∑

A=1

Pi(A) lnPi(A)

=

L
∑

i=1

q−1
∑

A=1

Pi(A) lnPi(A) (20)

+

L
∑

i=1

[

1 −

q−1
∑

A=1

Pi(A)

]

ln

[

1 −

q−1
∑

A=1

Pi(A)

]

;

the last line eliminates terms in Pi(q) and reduces the
expression to the independent variables.

D. Mean-field approximation

To get the first order in Eq. (19), we have to determine
dG(α)/dα in α = 0. Recalling the definition of the Gibbs
potential in Eq. (15), we write

dG(α)

dα
= −

d

dα
lnZ(α) −

L
∑

i=1

q−1
∑

A=1

dhi(A)

dα
Pi(A)

= −
∑

{Ai}





∑

i<j

eij(Ai, Aj) +
∑

i

dhi(A)

dα





e−H(α)

Z(α)

−

L
∑

i=1

q−1
∑

A=1

dhi(A)

dα
Pi(A)

= −

〈

∑

i<j

eij(Ai, Aj)

〉

α

. (21)

The first derivative of the Gibbs potential with respect
to α equals thus the average of the coupling term in the
Hamiltonian. At α = 0, this average can be done eas-
ily, since the joint distribution of all variables becomes
factorized over the single sites,

dG(α)

dα

∣

∣

∣

∣

α=0

= −
∑

i<j

∑

A,B

eij(A, B)Pi(A)Pj(B) . (22)

Plugging this and Eq. (20) into Eq. (19), we find the first-
order approximation of the Gibbs potential. First and
second partial derivatives with respect to the marginal
distributions Pi(A) provide self-consistent equations for
the local fields,

Pi(A)

Pi(q)
= exp







hi(A) +
∑

{j|j 6=i}

q−1
∑

B=1

eij(A, B)Pj(B)







(23)
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and the inverse of the connected correlation matrix,

(

C−1
)

ij
(A, B)

∣

∣

∣

α=0
=

{

−eij(A, B) for i 6= j
δA,B

Pi(A) + 1
Pi(q)

for i = j
. (24)

This last equation allows for solving the original inference
problem in mean-field approximation in a single step,
without resorting to iterative schemes like gradient de-
cent. Since we want to fit one- and two-site marginal of
P (A1, ..., AL) to the empirical values fi(A) and fij(A, B)
derived from the original protein MSA, we just need to
determine the empirical connected correlation matrix

C
(emp)
ij (A, B) = fij(A, B) − fi(A) fj(B) (25)

and invert this matrix to get the couplings eij . Even if
matrix inversion is of complexity O(L3) and thus of the
same complexity as susceptibility propagation, the mean-
field approximation is found to be 103−104 times faster.
This results from the simple fact that > 103 iteration are
needed in susceptibility propagation to reach sufficient
precision in fitting the empirical data by the maximum-
entropy model.

IV. DIRECT INFORMATION AS A

DIRECT-COUPLING MEASURE

Given the estimate of the pair couplings eij(A, B) we
would like to rank residue pairs according to their inter-
action strength. To do so, we need a meaningful mapping
from the (q − 1)× (q − 1)-dimensional coupling matrices

to a single scalar parameter. A way to do this which is
independent of the selected gauge, was already proposed
in [1]. The quantity introduced there was called direct

information (DI) and measures the mutual information
due to the direct coupling. To do so, we isolate a pair i, j
of positions and introduce a two-site model

P
(dir)
ij (A, B) =

1

Zij
exp

{

eij(A, B) + h̃i(A) + h̃j(B)
}

(26)
with the coupling being the one inferred before. The
new fields h̃i/j are determined by imposing the empirical
single-site frequency counts as marginal distributions,

fi(A) =

q
∑

B=1

P
(dir)
ij (A, B)

fj(B) =

q
∑

A=1

P
(dir)
ij (A, B) , (27)

and Zij follows by normalization. The direct information

is the mutual information associated to P
(dir)
ij :

DIij =

q
∑

A,B=1

P
(dir)
ij (A, B) ln

P
(dir)
ij (A, B)

fi(A) fj(B)
. (28)

In this expression, any indirect effect is obviously re-
moved, only the strength of the direct coupling eij(A, B)
is measured.
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Figure S1. Mean prediction performance for 131 domain families with respect to the top number
of ranked contacts. The effect of sampling correction by re-weighting (RW), i.e. clustering
redundant sequences for > 80% identity is beneficial for both MI and DI methods. Results with
sampling correction (solid lines) are always better than their counterparts without re-weighting
(dashed lines). Using a different threshold e.g, from 80% to 70% does not have a significant
influence on the mean TP performance.
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Figure S2. Distribution of the ratio Meff /M for the dataset of 131 domain families 
used in this study. MSA for all these families have a mean value of 8,600 sequences
with a mean of 3,600 effective sequences.



Figure S3. Mean prediction performance for 25 eukaryotic domain families with 
more than 2000 sequences. The figure shows equivalent results as the ones 
obtained for bacterial sequences (Fig. 2A and Fig. S5). This suggests that the 
applicability of DI-based predictions to eukayotic is plausible.
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Figure S4. A) Distribution of TP rates for the 131 domains studied and computed with 
the best predicted structures per domain using mfDCA with sampling correction. 
Results are shown for the top 10,20 and 30 predicted pairs. B) Distribution of TP rates
for the 131 domains studied and all PDB structures using mfDCA and sampling 
correction. Top 10,20 and 30 pairs seem to have a peak of the TP rate distribution 
around 0.8-0.9.
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Figure S5. Histogram of all background pairwise atomic distances for 10 
random PDB structures in our dataset. The peak of the distribution around 25 Å 
explains a small bump observed in Figure 2B near the same distance (20-25 Å) 
in the distribution.
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Figure S6. Sensitivity analysis of the performance of mfDCA for random sub-alignments 
of different lengths. Results are shown for two domain families: (A) the Ras domain family
(PF00071) and (B) the DNA-recognition domain (Region 2) of the bacterial Sigma-70 
factor (Pfam ID PF04542) were selected to assess prediction performance for sequence
alignments of size M=100, 500, 1000 and 3000, corresponding to Meff values ranging from 
72 to 1206. Curves are averaged over 100 randomly generated sub-alignments fore each M.
A number of Meff ~ 250 appears to be necessary to get sensitive results, while using 
Meff ~ 1000 reaches results similar to the ones using full alignments.
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Figure S7. A) Protein MexA (PDB ID 1vf7), showing nine secretion and transporter
activity domains HlyD domains (PF00529) forming a funnel like structure used as 
antibiotic efflux. One of two false positives in the top 20 predictions was a 
multimerization couplet, shown in green and red. B) Side view of the complex with 
domains in different colors.
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Figure S8. Cumulative distribution of the Number of Acceptable Pairs (NAPx) for a 
given TP rate x normalized by the length of the domain L. The curves show the 
probability of NAPx to be larger than a given number n for contacts at given TP rates 
of 0.9, 0.8 and 0.7. The curves are computed for all 856 PDB structures in the dataset.
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Figure S9. A) Family of bacterial tripartite tricarboxylate receptors (PF03401), NAP70 
is 600, i.e.,70% of the top 600 DI pairs correspond to true contacts when mapped to 
structure PDB ID 2qpq. B) The extracellular solute-binding family (PF00496) mapped to 
the structure of the periplasmic oligopeptide-binding protein OppA of S. typhimurium 
(PDB ID 1jet) has a NAP70 of 497. Approximately 350 contacts are true positives.
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three methods: DI, Bayesian approach and MI. DI shows a clear impro-
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et al. (dashed red) which becomes more evident as NAP grows larger.
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Figure S11. Performance of mfDCA for different values of the pseudocount 
parameter λ . Mean TP rates are shown for two domain families (A) the Ras
domain family (PF00071) and (B) the DNA-recognition domain (Region 2) of
the bacterial Sigma-70 factor (Pfam ID PF04542). The pseudo-count values 
used depend on the number of effective sequences Meff and a weighting pa-
rameter, pseudo-count weight w as λ = w Meff. Mean TP rates are computed 
for different w values between 0.11 and 9. A relatively small variance in perfor-
mance for values of w > 0.5 is observed with the optimum between 1-1.5. 
λ = Meff was used as a fixed parameter in all the results shown in this study.



Figure S12. Comparison of different DCA approximations for (A) Trypsin (PF00089,
PDB 3TGI) and (B) Trypsin inhibitor (PF00014, PDB 5PTI). Whereas all DCA algorithms
outperform the contact prediction by mutual information (green line), we find the new 
mfDCA (blue line) to be superior to the previous mpDCA (red line). Going beyond mfDCA
to the next order of the smallcoupling expansion (tapDCA, pink line), cf. Methods, does 
not systematically improve over mfDCA, but leads to a substantially slower algorithm. 
The fact that the red curve in panel A finishes at a smaller number of pairs results from 
the fact, that mpDCA can be run only on subalignments of up to 70 columns due to the 
algorithmic complexity of the approach.



Table S1. List of PDB structures analyzed in this study. 

PDB IDs 
153l 
154l 
1a04 
1a0b 
1a0p 
1ae9 
1al3 
1atg 
1b7e 
1b9m 
1b9n 
1bia 
1bib 
1bl0 
1boo 
1bsl 
1byi 
1byq 
1c02 
1c52 
1c5k 
1c75 
1cb7 
1ccw 
1cp2 
1crx 
1crz 
1ctj 
1d4a 
1d5y 
1dad 
1dae 
1dag 
1dah 
1dai 
1dak 
1dd9 
1dde 
1di6 
1di7 
1dlj 
1dts 
1dur 
1e2x 
1e3u 
1e4d 
1e4f 
1e4g 
1e8c 
1ecl 
1efa 
1efd 
1eg2 
1ek9 
1esz 
1etk 

1gbs 
1gdt 
1gg4 
1gqy 
1gu9 
1gug 
1gun 
1gus 
1gut 
1h3l 
1h4i 
1h7l 
1h7q 
1h8z 
1h98 
1h9g 
1h9j 
1h9k 
1h9m 
1h9s 
1hfe 
1hm9 
1hw1 
1hxd 
1i0r 
1i1g 
1i52 
1i58 
1i5n 
1i74 
1i8o 
1i9c 
1icr 
1id0 
1id1 
1ihc 
1ihr 
1ihu 
1ii0 
1ii9 
1ini 
1inj 
1ir6 
1iuj 
1ixc 
1ixg 
1ixh 
1iz1 
1j5y 
1j6u 
1jbg 
1jbw 
1je8 
1jet 
1jeu 
1jev 

1lqp 
1lr0 
1ls9 
1lsp 
1lss 
1luc 
1lvw 
1m65 
1m68 
1m6k 
1m70 
1m7j 
1ma7 
1mb3 
1mdo 
1mkm 
1mkz 
1mm8 
1mnz 
1moq 
1muh 
1mur 
1mus 
1muw 
1mv8 
1mw8 
1mw9 
1n2z 
1n9l 
1n9n 
1nfp 
1nki 
1nly 
1nnf 
1nox 
1nqe 
1nw5 
1nw6 
1nw7 
1nw8 
1nwz 
1ny5 
1ny6 
1o1h 
1o2d 
1o61 
1o69 
1o7l 
1oad 
1oap 
1odd 
1odv 
1oj7 
1olt 
1opc 
1opx 

1qgs 
1qhg 
1qhh 
1qks 
1qpz 
1qsa 
1qte 
1qtw 
1qu7 
1qwy 
1qxx 
1r1m 
1r1t 
1r1u 
1r23 
1r62 
1r8d 
1r8e 
1r9x 
1r9y 
1r9z 
1ra0 
1ra5 
1rak 
1req 
1rhc 
1rio 
1rk6 
1rp3 
1rrm 
1rtt 
1rzu 
1rzv 
1s5m 
1s5n 
1s8n 
1sfx 
1sg0 
1si0 
1sig 
1sly 
1sqe 
1sqs 
1sum 
1suu 
1t3t 
1t5b 
1t72 
1ta9 
1td5 
1tf1 
1tqg 
1tqq 
1tv8 
1tvl 
1tzb 

1vz0 
1w55 
1w6s 
1w77 
1w78 
1w8i 
1wet 
1wmi 
1woq 
1wp1 
1wpm 
1wpn 
1wpp 
1ws6 
1x74 
1x9h 
1x9i 
1xa3 
1xc3 
1xd7 
1xi2 
1xja 
1xk6 
1xk7 
1xkw 
1xkz 
1xma 
1xo0 
1xoc 
1xw3 
1y0h 
1y1z 
1y20 
1y7m 
1y7y 
1y80 
1y82 
1y9u 
1yc9 
1ydx 
1ye5 
1yf2 
1yg2 
1yio 
1yiq 
1ylf 
1yoy 
1ysp 
1ysq 
1yvi 
1z05 
1z19 
1z7u 
1zat 
1zi0 
1zlj 

2bkn 
2bko 
2bkp 
2bm4 
2bm5 
2bm6 
2bm7 
2bnm 
2brc 
2byi 
2c2a 
2c81 
2ce0 
2cg4 
2ch7 
2cvi 
2cwq 
2cyy 
2d1h 
2d1v 
2d5m 
2d5n 
2d5w 
2dbb 
2dek 
2df8 
2dg6 
2di3 
2dql 
2dvz 
2dxw 
2dxx 
2e15 
2e1n 
2e4n 
2e5f 
2e7w 
2e7x 
2e7z 
2eb7 
2ecu 
2efn 
2eh3 
2ehl 
2ehz 
2ek5 
2esh 
2esn 
2esr 
2ewn 
2ewv 
2eyu 
2f00 
2f2e 
2f5x 
2f6g 

2gd9 
2gj3 
2gjg 
2gkg 
2glk 
2gm5 
2gms 
2gmy 
2gqp 
2gsk 
2gu1 
2guf 
2guh 
2gup 
2gxg 
2gza 
2h1c 
2h98 
2h99 
2h9b 
2haw 
2hek 
2heu 
2hkl 
2hmt 
2hmu 
2hmv 
2hnh 
2hoe 
2hof 
2hph 
2hq0 
2hqs 
2hs5 
2hsg 
2hsi 
2hwv 
2hxv 
2i0m 
2i5r 
2ia2 
2ia4 
2ibd 
2ict 
2ift 
2ikk 
2ipl 
2ipm 
2ipn 
2is1 
2is2 
2is4 
2is6 
2is8 
2iu5 
2iuy 

2oqg 
2oqr 
2oxo 
2oyo 
2p19 
2p4g 
2p5v 
2p7o 
2paq 
2pbq 
2pfx 
2ph1 
2pjr 
2pkh 
2pmh 
2pn6 
2pq7 
2pt7 
2puc 
2pud 
2px7 
2q0o 
2q0t 
2q1z 
2q4f 
2q8p 
2qb6 
2qb7 
2qb8 
2qcz 
2qdf 
2qdl 
2qeu 
2qgq 
2qgz 
2qi9 
2qj7 
2qm1 
2qmo 
2qpq 
2qsx 
2qwx 
2qx4 
2qx6 
2qx8 
2r01 
2r0x 
2r1j 
2r25 
2r4t 
2r6g 
2r6o 
2r6v 
2ra5 
2rb9 
2rc7 

2z1e 
2z1f 
2z1u 
2z2l 
2z2m 
2z4g 
2z4p 
2z6r 
2z8x 
2z98 
2z9b 
2zau 
2zbc 
2zc3 
2zc4 
2zcm 
2zdp 
2zf8 
2zie 
2zif 
2zig 
2zki 
2zkz 
2zod 
2zov 
2zxj 
3b4y 
3b6i 
3b8x 
3b9o 
3bcv 
3be6 
3bem 
3bg2 
3bhq 
3bkh 
3bkv 
3bm7 
3bpk 
3bpq 
3bpv 
3bqx 
3bre 
3bs3 
3bvp 
3bwg 
3c1q 
3c29 
3c3w 
3c48 
3c57 
3c7j 
3c85 
3c8f 
3c8n 
3c9u 

3e10 
3e38 
3e4r 
3e4v 
3e7l 
3e8o 
3eag 
3ec2 
3ecc 
3ech 
3ecp 
3edp 
3eet 
3efm 
3eiw 
3eix 
3eko 
3elk 
3eus 
3ex8 
3eyw 
3ezu 
3f1c 
3f1n 
3f1o 
3f1p 
3f2b 
3f44 
3f52 
3f6c 
3f6o 
3f6v 
3f8b 
3f8c 
3f8f 
3fd3 
3fgv 
3fis 
3fms 
3fwy 
3fwz 
3fxa 
3fzv 
3g13 
3g5o 
3g7r 
3gdi 
3gfa 
3gfv 
3gfx 
3gfy 
3gfz 
3gg0 
3gg1 
3gg2 
3ghj 



1eto 
1etv 
1etw 
1etx 
1ety 
1ezw 
1f07 
1f1u 
1f44 
1f48 
1f5v 
1f9i 
1fca 
1fdn 
1fep 
1fia 
1fip 
1fp6 
1fr3 
1fse 
1fxo 
1g1l 
1g1m 
1g20 
1g28 
1g5p 
1g60 
1g6o 
1g72 
1g8k 

1jft 
1jh9 
1jiw 
1jlj 
1jnu 
1jpu 
1jq5 
1jyk 
1k20 
1k2v 
1k38 
1k4f 
1k54 
1k56 
1kap 
1kb0 
1kbu 
1kgs 
1kmo 
1kmp 
1kq3 
1ku3 
1ku7 
1kv9 
1kw3 
1kw6 
1l3l 
1lj9 
1lq9 
1lqk 
 

1or7 
1ot6 
1ot9 
1ota 
1otb 
1oxk 
1p2f 
1p31 
1p3d 
1p7d 
1p9r 
1p9w 
1pb0 
1pb7 
1pb8 
1pjr 
1pnz 
1po0 
1pt7 
1pvp 
1q05 
1q06 
1q07 
1q08 
1q09 
1q0a 
1q35 
1q7e 
1qg8 
1qgq 
 

1tzc 
1u07 
1u2w 
1u8b 
1u8t 
1uaa 
1uc8 
1uc9 
1us4 
1us5 
1usc 
1usf 
1uux 
1uuy 
1uyl 
1v4y 
1v51 
1v8p 
1v96 
1vct 
1ve2 
1vf7 
1vgt 
1vgw 
1vhd 
1vhv 
1vim 
1vj7 
1vke 
1vlj 

1zvt 
1zvu 
1zzc 
2a0b 
2a3n 
2a5h 
2a5l 
2a61 
2aa4 
2aac 
2ad6 
2ad7 
2ad8 
2aef 
2aej 
2afh 
2am1 
2anu 
2ap1 
2ar0 
2ara 
2arc 
2azn 
2b02 
2b0p 
2b13 
2b3z 
2b44 
2bas 
2bfw 

2f6p 
2f7a 
2f7b 
2f8l 
2f9f 
2fa1 
2fa5 
2fb2 
2fbh 
2fcj 
2fdn 
2fe1 
2fez 
2ff4 
2ffu 
2fhp 
2fn9 
2fnu 
2fpo 
2fsw 
2fvy 
2fw0 
2g2c 
2g6v 
2g7u 
2gai 
2gaj 
2gci 
2gd0 
2gd2 

2iv7 
2iw1 
2iw4 
2iwx 
2jba 
2jcg 
2jfg 
2nip 
2npn 
2nq2 
2nq9 
2nqh 
2nt3 
2nt4 
2o08 
2o0y 
2o3j 
2o4d 
2o7i 
2o7p 
2o8x 
2o99 
2o9a 
2obc 
2ofy 
2ogi 
2ojh 
2okc 
2olb 
2ooc 

2rc8 
2rca 
2rde 
2rii 
2ril 
2rsl 
2uag 
2v25 
2v2k 
2v9y 
2vha 
2vjq 
2vk2 
2vke 
2vkr 
2vlg 
2vma 
2vmb 
2vpz 
2vsh 
2w27 
2w8b 
2w8i 
2yve 
2yx0 
2yxb 
2yxo 
2yxz 
2yye 
2yz5 

3can 
3ccg 
3cij 
3cix 
3ckj 
3ckn 
3ckv 
3clo 
3cnr 
3cnv 
3cp5 
3ctp 
3cuo 
3cwr 
3cx4 
3cyi 
3cyp 
3cyq 
3d5k 
3d6z 
3d7i 
3dbo 
3df7 
3df8 
3dma 
3dr4 
3drf 
3drj 
3dsg 
3du1 
 

3gp4 
3gpv 
3gr3 
3guv 
3h4o 
3h5t 
3h87 
3hfi 
3hh0 
3hhh 
3hl0 
3hmz 
3hn7 
3hoi 
3htv 
3hvw 
3pyp 
3uag 
4aah 
4crx 
4req 
4uag 
5req 
6req 
7req 
8abp 

 
 
 

 

 

 

 

 

 

 



 
 
Table S2. List of Pfam domain families analyzed in this study. 

Pfam Domain Names 

ABM 
AIRS 
AIRS_C 
AP_endonuc_2 
ATP-grasp_3 
Amidohydro_3 
AraC_binding 
ArsA_ATPase 
AsnC_trans_reg 
B12-binding 
BPD_transp_1 
Bac_luciferase 
Bug 
CMD 
CbiA 
CheW 
CoA_transf_3 
Cons_hypoth95 
Cytochrom_C 
DHH 
DHHA1 
DNA_gyraseA_C 
DegT_DnrJ_EryC1 
EAL 
FCD 
FMN_red 
 

Fe-ADH 
FecCD 
Fer4 
Fer4_NifH 
Flavin_Reduct 
Flavodoxin_2 
FtsA 
GGDEF 
GSPII_E 
GSPII_F 
GerE 
Glycos_transf_1 
Glycos_transf_2 
Glyoxalase 
GntR 
HATPase_c 
HD 
HTH_1 
HTH_11 
HTH_3 
HTH_5 
HTH_8 
HTH_AraC 
HTH_IclR 
HemolysinCabind 
HisKA 

HlyD 
Hpt 
HxlR 
IclR 
IspD 
IstB 
LacI 
LysR_substrate 
MCPsignal 
MarR 
MerR-DNA-bind 
MerR 
Methylase_S 
MoCF_biosynth 
Molybdopterin 
Molydop_binding 
Mur_ligase 
Mur_ligase_C 
Mur_ligase_M 
N6_Mtase 
N6_N4_Mtase 
NMT1 
NTP_transferase 
Nitroreductase 
OEP 
OmpA 
 

PAS 
PASTA 
PAS_3 
PD40 
PHP 
PIN 
PQQ 
PadR 
ParBc 
Pentapeptide 
Peptidase_M23 
Peripla_BP_1 
Peripla_BP_2 
Phage_integr_N 
Phage_integrase 
PhoU 
PilZ 
Plasmid_stabil 
Plug 
ROK 
Radical_SAM 
Resolvase 
Response_reg 
RibD_C 
RimK 
Rrf2 
 

SBP_bac_1 
SBP_bac_3 
SBP_bac_5 
SIS 
SLBB 
SLT 
Sigma54_activat 
Sigma70_r2 
Sigma70_r4 
Sigma70_r4_2 
Surf_Ag_VNR 
TOBE 
TOBE_2 
TP_methylase 
TetR_N 
TonB 
TonB_dep_Rec 
Toprim 
Trans_reg_C 
Transpeptidase 
Transposase_11 
TrkA_N 
TrmB 
UDPG_MGDP_dh_N 
UTRA 
UvrD-helicase 
YkuD 

 

 

 

 

 

 

 

 

 



 
 
Table S3. Pfam domain families and their respective PDB structure with 

oligomerization TP contacts. 

Pfam Domain  PDB structure 

AsnC_trans_reg 
Bac_luciferase 
CMD 
EAL 
Flavodoxin_2 
FMN_red 
Glyoxalase 
GSPII_E 
HlyD 
Hpt 
HTH_IclR 
HxlR 
IspD 
MCPsignal 
MerR-DNA-bind 
Mur_ligase 
Resolvase 
Sigma54_activat 
TOBE 
TOBE_2 
TP_methylase 

2z4p 
3b4y 
1vke 
2r6o 
1t5b 
2a5l, 2q62 
2p7o 
2gza 
2f1m,1t5e 
1i5n 
2g7u 
2f2e 
3f1c 
2ch7 
3gp4 
2am1 
2gm5 
1ny6 
1h9s 
2awn 
1vhv 

 

 

 

 

 

 

 

 

 



Table S4. Top-30 prediction of mfDCA for the Serine protease data of (41). The first 
two columns specify the residue pair, the third column provides the DI value, and the 
last one the native distance in rat trypsin (PDB ID 3tgi). Residues belonging to the 
sectors defined in (41) are indicated, using the color scheme of (41). 

	
  

Res. 1 Res. 2 DI Dist/Å 
136 
32 

191 
189 
57 
42 
44 
30 
72 
72 
59 
51 

190 
34 

116 
26 
45 

117 
46 
71 
71 

117 
161 
138 
116 
53 

189 
100 
102 
27 

201 
40 

220 
226 
195 
58 
52 

139 
77 
78 

104 
105 
213 
40 

127 
157 
209 
127 
112 
78 
79 

122 
184 
213 
122 
209 
228 
179 
195 
157 

0.52 
0.47 
0.37 
0.34 
0.34 
0.28 
0.25 
0.25 
0.24 
0.23 
0.23 
0.22 
0.20 
0.19 
0.18 
0.18 
0.18 
0.17 
0.16 
0.15 
0.15 
0.15 
0.15 
0.14 
0.14 
0.14 
0.13 
0.13 
0.13 
0.13 

2.0 
2.8 
2.2 
3.3 
2.7 
2.0 
4.3 
2.7 
3.0 
8.0 
3.9 
3.8 
3.7 
3.4 

23.7 
4.9 
3.8 

23.9 
4.0 
8.5 
6.9 

13.3 
3.1 
4.2 

13.1 
3.5 
3.9 
2.3 
6.1 
3.8 
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