Write Activity Reduction on Non-volatile Memories via Data Migration and Recomputation for Embedded CMPs

Jingtong Hu, Student Member, IEEE, Chun Jason Xue, Member, IEEE, Qingfeng Zhuge, Wei-Che Tseng, and Edwin H.-M. Sha, Senior Member, IEEE

Abstract—Recent advances in circuit and process technologies have pushed Non-volatile Memory (NVM) technologies into a new era. These technologies exhibit appealing properties such as low power consumption, non-volatility, shock-resistivity, and high density. However, there are challenges to which we need answers in the road of applying non-volatile memories as main memory in computer systems. First, when compared with DRAM, NVMs have a limited number of write/erase cycles. Second, write activities on NVM are more expensive than DRAM memory in terms of energy consumption and access latency. Both challenges will benefit from the reduction of the write activities on the NVM.

In this paper, we target embedded Chip Multiprocessors (CMPs) with Scratch Pad Memory (SPM) and non-volatile main memory. We introduce data migration and recomputation techniques to reduce the number of write activities on NVMs. Experimental results show that the proposed methods can reduce the number of writes by 58.46% on average, which means that the NVM can last 2.8 times as long as before. For PCM, the lifetime is extended from 2.5 years to about 7 years on average and 15 years at the most. Also, the finish time of programs is reduced by an average of 38.07%.

Index Terms—Non-volatile memory, Flash Memory, Phase Change Memory, CMP, SPM, Data migration, Data recomputation

1 INTRODUCTION

Recent advances in non-volatile memory (NVM) technologies, including flash memory [35], [6], [1], [39], [16], [44], [43], Phase Change Memory (PCM) [47], [25], [9], [50], [38], [13], and Magnetic RAM (MRAM) [11], [31], [46], [45], [8], [30], have made them desirable to be applied as main memory due to their low-cost, shock-resistivity, non-volatility, high density and power-economy properties [29], [39], [50]. In addition, non-volatile memories are more reliable than DRAMs because of their resilience to single event upsets. They have been backed by key industry manufacturers such as Intel, Numonyx, STMicroelectronics, Samsung, IBM and TDK [24], [2], [42]. However, all these technologies have two similar drawbacks: a limited number of write/erase cycles when compared with DRAM memory and the slowness of writes compared to reads. In this paper, we propose optimization techniques to reduce the number of write activities on NVMs when they are applied as main memory on embedded CMPs.

Chip multiprocessors (CMPs) have arisen as the de facto design for modern high-performance embedded processors. Many new embedded architectures, including some CMPs, are employing small on-chip memory components that are managed by software, either by application program or through automated compiler support. Such on-chip memories, frequently referred to as Scratch-Pad Memories (SPMs), are shown to be both performance and power efficient as compared to their hardware-managed cache counterparts [26], [41], [21], [3]. Example CMP systems employing SPM include TI’s TNETV3010 CMP [23] and IBM’s Cell processor [14].

With smartly managed SPM, we can reduce the write activities to the NVM when it is applied as main memory. Our architectural model consists of a CMP equipped with SPMs and an off-chip non-volatile main memory, as shown in Fig. 1. Each processor accesses its local SPM with low latency, while fetching data from other SPMs takes relatively longer time. We use NVM as the main memory, which has a higher read access latency γ and a much higher write access latency σ (α < β < γ < σ). The memory address space is partitioned between the on-chip SPMs and the off-chip NVM. In this paper, “main memory” refers to the non-volatile main memory.

Both run-time dynamic and compiler-based static approaches can be adopted to optimize the code to reduce the number of write activities. When compared with static approaches, run-time approaches have access to more run-time information and are more adaptable to changing workloads. However, the deadline constraints of embedded applications require...
the optimization process to be very fast, and such strict requirements cannot be attained through run-time techniques. Although pure run-time techniques can be adopted for write activity reduction without deadline constraints, they impose appreciable overhead in collecting program information and making runtime optimization decisions. Given the inefficiency of run-time techniques, it is essential to exploit static, compiler-derived information. Compared to run-time techniques, compiler-directed scheduling offers three advantages. (1) Compiler-directed techniques are more cost effective, as it imposes neither run-time scheduling overhead nor communication overhead for collecting program information. (2) Aggressive heuristics can be applied as scheduling is performed offline at compile time (3) Worse-case performance can be guaranteed for real-time applications since scheduling is not dependent on run-time events.

Due to these reasons, two compiler-based optimization techniques: data migration and data recomputation are proposed in this paper to reduce write activities on NVM. These two techniques take a schedule as input and generate an optimized schedule with a fewer number of write activities to the main memory. In data migration, data is stored temporarily on other cores’ SPMs rather than written back to the main memory. If the data block migrated is a dirty block, we call it a write-saving data migration. If the data block migrated is a clean block, we call it a read-saving data migration. In data recomputation, we reduce the number of write activities by discarding the data which should have been written back to the main memory and recomputing this data when it is needed again. Date recomputation is conducted only when the recomputation reduces the costs. If the data discarded is a dirty data block, we call it a write-saving recomputation. If the data discarded is a clean data block, we call it a read-saving recomputation. The limited SPM space on each core is fully exploited for write activity reduction through the combination of data migration and recomputation in this paper.

The main contributions of this paper are:

- We model the data migration problem as a shortest path problem.
- We propose a method which can find the optimal data migration path with the minimal cost for both dirty data and clean data.
- We propose write-saving data recomputation and read-saving data recomputation to reduce the number of write activities on the non-volatile main memory.
- We combine data migration and data recomputation together to reduce the number of write activities which improves the program completion time and extends non-volatile memories’ lifetime.

Our purpose is to minimize the negative impact when applying NVM as the main memory while retaining all the benefits, which will lead to the practical adoption of them as the main memory in mobile and embedded systems. The proposed methods can significantly reduce the program’s completion time and extend the lifetime of non-volatile memories at the same time. Experimental results show that the proposed methods can reduce the number of writes by 58.46% on average, which means that the NVM can last 2.8 times longer. For PCM, the lifetime is extended from 2.5 years to about 7 years on average and 15 years at most. Also, the completion time of programs is reduced by 38.07% on average.

The rest of this paper is organized as follows: Section 2 discusses the work related to our research. Section 3 presents the computational model. A motivational example is shown in Section 4. The data migration technique is presented in Section 5.2 and the data recomputation technique is presented in Section 5.3. These two techniques are combined in Section 5.4. The experimental results are shown in Section 6 and finally we conclude the discussion in Section 7.

2 RELATED WORK

Scratch Pad Memory (SPM), a software-controlled on-chip memory, has replaced hardware controlled cache in many embedded systems. ARM10E, Analog Devices ADSPTS2015, Motorola M-core MMC221, Renesas SH-X3, and TI’s TMX320C6xxx are examples of such embedded processors. There are several reasons for this fact. One of the reasons is that [4] has shown that SPM has 34% smaller area and 40% lower power consumption than a cache of the same capacity. They also showed that the runtime measured in cycles was 18% better with a SPM using a simple static knapsack-based allocation algorithm. Besides the hardware advantage of SPM, most embedded system applications have compiler analyzable data access patterns and an optimizing compiler would be in a better position than hardware to manage data transfers across memory hierarchies [19], [20], [18], [21], [22], [32], [7], [33]. Furthermore, SPM can guarantee real-time access, which is appealing to real-time embedded systems [40]. Given the power, cost, performance and real time advantages of SPM, we expect that systems without caches will take over embedded systems in the future.

Several works have been done to extend non-volatile memories’ lifetime and improve the efficiency of write from the aspect of hardware. In [29], Lee et al. proposed an application-specific main memory design using flash memory. While [29] took a compiled application as input, in this paper, we take the compilation of applications into account to reduce write activities for NVM. Zhou et al. [50] achieved the goals of extending lifetime for PCM by removing redundant bit-writes, row shifting, and page swapping. Lee et
al. [27] achieved the same goal for PCM with buffer reorganization, partial writes, and process scaling. Zhou et al. [49] proposed early write termination to reduce high write energy for MRAM. Chang et al. [5] proposed an efficient static wear leveling design to enhance the endurance for flash memory. All above works targeted optimization at the hardware design level.

Besides the works that are aimed at optimizing hardware design, there are also some works that are aimed at optimizing software. Zhang and Li [48] achieved the same goals from the aspect of operating systems. They proposed an OS level paging scheme to improve PCM write performance and lifetime while in our paper we propose compiler-based optimization. In [34], Park et al. proposed a compiler optimization to improve flash memory’s lifetime and efficiency. In their work, flash memory was used as a secondary storage while in this paper we target the architecture that adopt NVM as main memory. In [37], Park et al. proposed page replacement algorithm for systems with flash memory as the secondary storage. Again, their architecture was different from ours.

Data recomputation has been used by various researchers to achieve different goals. Kandemir et al. [17] proposed duplicating computation to reduce communications between different processors in multiprocessor systems. Koc et al. [26] used data recomputation to reduce off-chip memory access costs. They only considered read-saving recomputation. As shown by our experimental results, their methods cannot reduce the number of writes, limiting their usefulness on non-volatile memories. Data migration has been used in CMPs with on-chip network and hardware controlled cache [12]. In [12], Eisley et al. tried to keep as much data on-chip as possible and hoped that it will be used later. In our method, we only choose to keep on-chip those data that will be used and decide how to efficiently route the data to the appropriate core that will use this data. So more useful data will be kept on-chip smartly and migrate to the right processor. Data Routing has been used in Park et al. [36] to help scheduling on the Coarse-Grained Re-configurable Architecture (CGRA). Their hardware architecture is different from ours and the purpose and details of their algorithms are totally different. In their routing technique, they considered two main objectives: minimize the number of routing resources used and avoid using resources that will block future routes. Their techniques cannot be applied in our problem.

3 HARDWARE AND COMPUTATION MODEL

The architecture that this paper targets is virtually shared scratch pad memory (VS-SPM) [21], as shown in Fig. 1. The processor consists of many cores. Each core is equipped with an SPM. Each core has fast access to its own SPM and slow access to other core’s SPMs. The interconnection between the cores can be a bus, a network-on-chip, or other connections, as long as each core can access its own SPM and other cores’ SPMs.

In this paper, we target application-specific embedded systems in which tasks are statically placed into each core and there is no operating system. Thus, we do not consider migrations of tasks.

![Fig. 1. Target system architecture model with 4 cores.](image)

Formally, the input considered in this paper is a graph $G = (V, E, P, R, W, t)$. $V = \{v_1, v_2, v_3, \ldots, v_n\}$ is the set of n tasks. $E \subseteq V \times V$ is the set of edges where $(u, v) \in E$ means that task u must be scheduled before task v. $P = \{p_1, p_2, p_3, \ldots, p_m\}$ is the set of m data blocks that are accessed by the tasks. $R : V \rightarrow P^*$ is the function where $R(v)$ is the set of data blocks that task v reads from. $W : V \rightarrow P^*$ is the function where $W(v)$ is the set of data blocks that task v writes to. $t(v)$ represents the computation time of task v when all the required data is in the SPM. Please note that the dependencies are captured by the edges. R and W do not capture dependencies by themselves.

The output is a schedule of tasks, SPM data block replacement, and NVM read and write operations.

Please note that our techniques can mainly be applied to applications with many loops from which we can obtain the data access priori to scheduling. Applications that have this characteristic include digital signal processing, image and video processing, etc.

4 MOTIVATION EXAMPLE

In this section, we use an example to illustrate the data migration and recomputation techniques.

Assume there are three cores in our system as shown in Fig. 2. Each SPM has two data blocks. An example input graph is shown in Fig. 3. The input graph has 9 tasks. Each task has a read set and a write set which indicate the data blocks that this task needs to read and write. We assume that “GW1”, “IW1”, and “FW1” are the final results and have to be written to the main memory.

We partition the input graph and schedule the tasks with list scheduling for our example. Assume we assign task A, D, and G to Core 1, tasks B, E, H, and I to Core 2, and tasks C and F to Core 3. We can get a
shown in Table 1. In the initial schedule, core 2 eviction 800 clock cycles. The execution time of each node is 80 clock cycles and a core writing data to NVM takes 5 clock cycles, a core reading data from NVM takes clock cycles, a core accessing other cores’ SPM takes 2 clock cycles, and a core accessing its own SPM takes 2 clock cycles. The content of the second SPM block at each step.

In each core, the first row shows the instructions that are executed. The second row shows the content of the first SPM block at each step and the third row shows the content of the second SPM block at each step.

In Table 2, the second row shows computation steps. In the initial schedule, core 2 eviction 800 clock cycles. The execution time of each node is 80 clock cycles and a core writing data to NVM takes 5 clock cycles, a core reading data from NVM takes clock cycles, a core accessing other cores’ SPM takes 2 clock cycles, and a core accessing its own SPM takes 2 clock cycles.

In Table 2, the second row shows the instructions that are executed. The second row shows the content of the first SPM block at each step and the third row shows the content of the second SPM block at each step.

In Table 2, the second row shows computation steps. In the initial schedule, core 2 eviction 800 clock cycles. The execution time of each node is 80 clock cycles and a core writing data to NVM takes 5 clock cycles, a core reading data from NVM takes clock cycles, a core accessing other cores’ SPM takes 2 clock cycles, and a core accessing its own SPM takes 2 clock cycles.

In Table 2, the second row shows computation steps. In the initial schedule, core 2 eviction 800 clock cycles. The execution time of each node is 80 clock cycles and a core writing data to NVM takes 5 clock cycles, a core reading data from NVM takes clock cycles, a core accessing other cores’ SPM takes 2 clock cycles, and a core accessing its own SPM takes 2 clock cycles.

In Table 2, the second row shows computation steps. In the initial schedule, core 2 eviction 800 clock cycles. The execution time of each node is 80 clock cycles and a core writing data to NVM takes 5 clock cycles, a core reading data from NVM takes clock cycles, a core accessing other cores’ SPM takes 2 clock cycles, and a core accessing its own SPM takes 2 clock cycles.

In Table 2, the second row shows computation steps. In the initial schedule, core 2 eviction 800 clock cycles. The execution time of each node is 80 clock cycles and a core writing data to NVM takes 5 clock cycles, a core reading data from NVM takes clock cycles, a core accessing other cores’ SPM takes 2 clock cycles, and a core accessing its own SPM takes 2 clock cycles.

In Table 2, the second row shows computation steps. In the initial schedule, core 2 eviction 800 clock cycles. The execution time of each node is 80 clock cycles and a core writing data to NVM takes 5 clock cycles, a core reading data from NVM takes clock cycles, a core accessing other cores’ SPM takes 2 clock cycles, and a core accessing its own SPM takes 2 clock cycles.

In Table 2, the second row shows computation steps. In the initial schedule, core 2 eviction 800 clock cycles. The execution time of each node is 80 clock cycles and a core writing data to NVM takes 5 clock cycles, a core reading data from NVM takes clock cycles, a core accessing other cores’ SPM takes 2 clock cycles, and a core accessing its own SPM takes 2 clock cycles.

In Table 2, the second row shows computation steps. In the initial schedule, core 2 eviction 800 clock cycles. The execution time of each node is 80 clock cycles and a core writing data to NVM takes 5 clock cycles, a core reading data from NVM takes clock cycles, a core accessing other cores’ SPM takes 2 clock cycles, and a core accessing its own SPM takes 2 clock cycles.

In Table 2, the second row shows computation steps. In the initial schedule, core 2 eviction 800 clock cycles. The execution time of each node is 80 clock cycles and a core writing data to NVM takes 5 clock cycles, a core reading data from NVM takes clock cycles, a core accessing other cores’ SPM takes 2 clock cycles, and a core accessing its own SPM takes 2 clock cycles.

In Table 2, the second row shows computation steps. In the initial schedule, core 2 eviction 800 clock cycles. The execution time of each node is 80 clock cycles and a core writing data to NVM takes 5 clock cycles, a core reading data from NVM takes clock cycles, a core accessing other cores’ SPM takes 2 clock cycles, and a core accessing its own SPM takes 2 clock cycles.
Data flow of “DW1” after data migration
Data flow of “DW1” after data recomputation
Initial data flow of “DW1”

Fig. 2. Example system with three cores.

Fig. 3. Example input graph.

the tasks is reduced by 28.44%. One of the write activities to NVM is eliminated.

After we have schedule 2, knowing that a read from NVM is much cheaper than a write to NVM, we can take advantage of this read-write asymmetry to further improve performance. At step 3 of the initial schedule of core 2, we discard the data block “BW1”. When core 1 needs “BW1” at step 4, we read the data block “BR1” from the main memory and recompute task B. Then core 1 has the block “BW1” which is needed for its execution. At step 7 of the initial schedule of core 1, we discard the data block “DW1”. When core 2 needs “DW1” at step 8, we read the data block “BW1” from Core 1’s SPM and recompute task D. Then core 2 has the block “DW1” which is needed for its execution. The data flow of block “DW1” is shown in Fig. 2 by a green solid line. The new schedule using data recomputation is shown as the third schedule in Table 4. In this schedule the tasks need 1185 clock cycles to finish. Compared with the initial schedule, the completion time is reduced by 57.07% and 2 of the write activities to the NVM are eliminated.

Comparing the completion time of tasks by using data migration and data recomputation, we find that data recomputation saves more time than data migration for data block “BW1” and data migration saves more time than data recomputation for data block “DW1”. Thus, we decide to recompute “BW1”, but migrate “DW1”. The final schedule is shown as the fourth schedule of Table 5. In the final schedule, the total completion time is 1180 clock cycles. Compared with the initial schedule, the final schedule length is reduced by 57.25%. At the same time, we eliminate almost half of the write activities on NVM. A comparison of schedules employing different techniques is shown in Table 6.

Table 6

Comparison between schedules

<table>
<thead>
<tr>
<th>Tech.</th>
<th>Initial Sched.</th>
<th>Migration</th>
<th>Recomputation</th>
<th>Migr & Recomp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (cycles)</td>
<td>2760</td>
<td>1885</td>
<td>1185</td>
<td>1180</td>
</tr>
<tr>
<td>Write Activities (number)</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

In this section, we first introduce the scheduling algorithm used in Section 5.1. Then we present the data migration technique in Section 5.2. Then data recomputation technique is presented in Section 5.3. Finally, in Section 5.4 we present how to combine these data migration and recomputation techniques to achieve the best results.

5.1 Scheduling Task Graphs

Different scheduling algorithm can be used to schedule the task graphs and data accesses. In this paper, list scheduling is used to schedule task graphs and Least Recently Used (LRU) algorithm is used to schedule the data. Given the task graphs, the output is a schedule of tasks and SPM access instructions. The schedules follow the dependency constraint of the task graphs.

5.2 Data Migration

After a legal schedule is obtained from list scheduling, the data migration technique is applied to avoid write activities to the NVM. In data migration, the data evicted to the NVM in the input schedule is temporarily stored on some other processors’ SPM which still has free space. Data migration exploits the available SPM spaces in other cores. Data migration does not change the existing content in the SPMs.

Since the contents of the SPMs are known once the input schedule is given, we can know the number of available spaces in each SPM at each clock cycle.
We can capture the data migration problem’s input in a table as shown in Fig. 4. In Fig. 4, each cell has a number in it. The number stands for how many free data blocks this core has at this clock cycle. For example, the cell at the second row and second column has a “1” in it. It means that core 1’s SPM has 1 free space at clock cycle 1. The shadowed cells indicate that the core’s SPM has no free space at that clock cycle. In this example, core 1 produces a data block at clock cycle 1 and core 5 needs this data block at clock cycle 5. The green circles stand for the source and the sink of this data block. We want to find a path from core 1 to core 5 with the fewest number of migrations, which also means the least time. From Fig. 4, we can see that different cores have free spaces at different clock cycles. There are many paths that we can take to migrate the data block from core 1 at clock cycle 1 to core 5 at clock cycle 5. The blue line in Fig. 4 shows a feasible path that the data block can be migrated from core 1 to core 5. The data block is written to core 2’s SPM at clock cycle 2 by core 1. Then at clock cycle 3, core 2 writes this data block to core 3’s SPM. At clock cycle 4, core 3 writes this data block to core 5’s SPM and it will stay in core 5’s SPM until it is used. This data block migration takes 3 steps in this path. However, this is not the path with the minimum number of migrations. The path with the minimum number of migrations is shown as the red line in the table. The data is moved from core 1 to core 2 at clock cycle 2, and then moved from core 2 to core 5 at clock cycle 3. Only 2 migrations are needed. In the following sections, we will formally define the data migration problem in CMPs with SPM and proposal a polynomial method to solve it efficiently.

We formally define the data migration problem as the following:

Definition 5.1: Given the free spaces available at each core at each clock cycle, the producer of the data, and the consumer of the data, find the data migration path with the minimum number of migration steps.

This problem can be modeled as a graph problem. For example, the table as shown in Fig. 4 can be transformed to a graph as shown in Fig. 5(a). Each segment (a, b, c, ...) in Fig. 5(a) stands for a continuous period in which a core has free spaces in its SPM or a core can evict a clean data block to make free spaces. Each segment corresponds to a continuous period of at least two cycles. Since one cycle is not enough for a data migration, in the graph, we do not construct segments for periods of only one cycle. Also, the length of a segment should be the same as the length of the free period in the SPM. The position of each segment is the same as the continuous period shown in Fig. 4. If two cores have free spaces in its SPM at the same clock cycle, it means that data can be migrated between these two cores at that clock cycle. We connect two segments with a dashed line if the corresponding cores have free space at the same clock cycle. We call these two segments adjacent segments. We call each dashed line a hop. The data migration problem becomes the problem of finding a path from the producer of the data the to the consumer of the data with the least number of hops.

From Fig. 5(a), we can further transform it into a graph problem. We construct a graph $G' = < V', E', w >$. For each segment in Fig. 5(a), we add a node v_i into V'. For each hop in Fig. 5(a), we add an edge $e: (v_i, v_j)$ into E'. $w(e)$ represents the cost to migrate data from one core to another core. $w(e)$ is defined in Equation 1. $w(e)$ equals to the time of accessing other SPM if the destination node v_j has free spaces. $w(e)$ is set to be the time of accessing other SPM plus the time of reading from non-volatile if the destination node v_j needs to evict a clean page to have free spaces. Because v_j needs to read that clean page back after the migration.

After constructing graph G', we show that if we can find a shortest path from the producer node v_p to the consumer node v_c, we find a feasible migration path with the minimal cost in the original table.

$$w(e) = \begin{cases}
5\mu s & \text{if in edge } e : (v_i, v_j), \ v_j \text{ has free space} \\
85\mu s & \text{if } v_j \text{ evicts a clean page to have space}
\end{cases} \quad (1)$$

Definition 5.2: Illegal Migration: if a data block is migrated from an SPM free space to another SPM free
space from an earlier time, we say that it is an illegal migration.

For example, in Fig. 5(b), migration along path \(p \) (\(b \rightarrow d \rightarrow c \rightarrow a \)) is an illegal migration. Because the data cannot be migrated from the 5th clock cycle to the 1st clock cycle. Also we call \(p \) an illegal migration path.

![Fig. 6. Illegal migration path.](image)

Lemma 5.1: The shortest path we find in graph \(G' \) does not contain an illegal migration path.

Proof: We will proof this by contradiction. For the sake of contradiction, let us assume we find a shortest path \(SP \) in \(G' \) which is \(v_p \rightarrow a \rightarrow b' \rightarrow v_c \) as shown in Fig. 6. Path \(p \) (\(a \rightarrow b \)) is an illegal path. Path \(b \rightarrow v_c \) is a legal path. We claim that there must be a node \(b' \) in \(b \rightarrow v_c \) that is adjacent to node \(a \). Because we know that \(v_p \) is always at a time earlier than that of \(v_c \), node \(a \) is also at an earlier time than that of node \(v_c \). Path \(p \) is an illegal path, which implies that \(b \) is at a earlier time than \(a \). For a data block from node \(b \) to migrate to \(v_c \), the data block must go through a node \(b' \) that has free SPM spaces at the same time as \(a \). Let the edge between \(a \) and \(b' \) be \(p' \). Then in the \(G' \) we have a path \((v_p \rightarrow a \rightarrow b' \rightarrow v_c) \) which is shorter than \(SP \). Thus, it is a contradiction that \(SP \) is a shortest path in \(G' \). Therefore, the shortest path we find in graph \(G' \) does not contain an illegal migration path.

Theorem 5.2: The shortest path in graph \(G \) corresponds to a feasible migration path with minimum cost in the original table.

Proof: From the way we construct graph \(G' \), it is easy to see that a shortest path in \(G' \) corresponds to a migration path with minimum migration cost in the original table. Also from Lemma 5.1, we know that every shortest path we find is a feasible migration path.

To find the shortest path in graph \(G' \), we can use the Bellman-Ford algorithm. The time complexity of the Bellman-Ford algorithm is \(O(V \times E) \). The red line in Fig. 5(b) is the shortest path in this graph and this corresponds to the path with minimum cost, shown by the red lines in Fig. 4.

5.3 Data Recomputation

In this section, we present the details of the data recomputation technique. The input to the recomputation algorithm is a legal schedule of computation tasks and SPM management. The output of the recomputation algorithm is a schedule with a fewer number of write activities to main memory.

The main idea of the recomputation algorithm is that, if there is an SPM block which is written to the NVM by core \(C_p \) and read back to one of the cores \(C_i \) later, we can discard this SPM block write in \(C_p \), then read the necessary data from the SPM or main memory to recompute the SPM block when it is needed in \(C_i \). In our cost model, we assume that each processor can access its own SPM, any of the other cores’ SPMs, and the off-chip main memory. The cost of reading/writing its own SPM is \(\alpha \), the cost of reading/writing other cores’ SPMs is \(\beta \), the cost of reading the main memory is \(\gamma \), and the cost of writing to the main memory is \(\sigma \) (\(\alpha < \beta < \gamma < \sigma \)). The cost of computation is \(\tau \). We compare the costs before and after recomputation. We will conduct recomputation only if the recomputation reduces costs.

For write-saving recomputation, the original cost can be computed with Equation 2 and the new cost can be computed with Equation 3. In Equation 3, the first summation is the cost to read the required data from its own SPM; the second summation is the cost of reading the required data in other cores’ SPMs; the third summation is the cost reading the required data in the main memory and the last summation is the cost of recomputing the needed data. We will do write-saving recomputation only when the cost of recomputation is smaller than the original cost. Recall that a write activity to NVM is much more expensive than a read from NVM. Thus, a write-saving recomputation can always save some cost in terms of execution time (for flash memory) or energy consumption (for PCM). In the meantime, the lifetime of the NVM is extended.

\[
Cost_o = \sigma + \gamma
\]

\[
Cost = \sum_{own \ SPM} \alpha + \sum_{other \ SPM} \beta + \sum_{main \ memory} \gamma + \sum \tau
\]

For read-saving recomputation, the original cost is to read data from main memory \(\gamma \). The new cost can be computed as shown in Equation 4. Similar to write-saving recomputation, we will do the read-saving recomputation only when the cost after recomputation is smaller than the original cost. In [26], Koc et al. only consider read-saving recomputation. They target loop intensive applications which consist of loops and multi-dimensional arrays. As shown by our experimental results, if the programs do not have many loops, read-saving recomputation cannot save many reads. The reason is that if the applications do not have many loops and arrays, it is difficult to find the data required for recomputation in the SPMs.

\[
Cost_o = \sum_{own \ SPM} \alpha + \sum_{other \ SPM} \beta + \sum \tau
\]
Algorithm 5.1 Write Reducing Algorithm (WReduce)

Input: A schedule of tasks and SPM replacement.
Output: New schedule with fewer write activity on NVM.
1: for each dirty data block cp written to main memory in Core i in the original schedule do
2: recom_save[i] ← σ + γ;
3: migr_save[i] ← σ + γ;
4: for each read cp activities from main memory in Core j after it is written in the original schedule do
5: if cannot recompute cp then
6: can_recom ← false;
7: else
8: recom_save[j] = the cost to recompute cp;
9: end if
10: end for
11: for each read cp activities from main memory after it is written in the original schedule do
12: find the migration path with the method in Section 5.2;
13: if can migrate from previous core k to this core l then
14: migr_save[k] = β;
15: else
16: try to recompute cp;
17: if fails to recompute cp then
18: can_migrate ← false;
19: else
20: migr_save[l] = the cost to recompute cp;
21: end if
22: end if
23: end for
24: choose the method that produces a shorter schedule;
25: end for
26: for each clean data block cp that is used later do
27: do read-saving data migration or read-saving data recomputation depends on which method produces shorter schedule;
28: end for

5.4 Combine Data Migration and Data Recomputation

In this section, we combine data migration and data recomputation to produce code that leads to the least number of write activities and the shortest completion time. The Write Reducing Algorithm (WReduce) is shown in Algorithm 5.1.

The main idea for Algorithm 5.1 is that for each dirty data block, which is written to the NVM, we will compute the cost of recomputation and the cost of data migration and then choose the method that produces the schedule with less completion time. We first consider dirty block migration and writesaving recomputation. Then we consider clean block migration and read-saving recomputation. They are done in this order because we want to give priority to dirty block migration and write-saving recomputation. When write-saving data migration and recomputation is conducted first, the free spaces in SPMs are allocated to them first so there are more chances that we can conduct write-saving data migration and recomputation. The time complexity for Algorithm 5.1 is O(n^3), where n is the number of steps in the original schedule.

6 Experiments

In this section, the effectiveness of the data migration and data recomputation algorithms is evaluated.

We use the NVM simulator NVsim [10], which is a PCM-supporting variant of the CACTI tool, to estimate the read/write latencies for a given size of SRAM and PCM. We use 45 nm technology with the tool. Simulation is done in a custom simulator which is similar to TI’s TNETV3010 [23]. The NVSim-obtained PCM and SRAM memory model is integrated into our simulator. In this set of experiments, the system has 4 cores, and each core has an SPM with the capacity of 16 KB. The PCM main memory size is 32 MB. The target system specifications used for our experiments are shown in Table 7.

TABLE 7
Target system specification.

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU/Core</td>
<td>Number of cores: 4 , frequency: 1.0 GHz</td>
</tr>
<tr>
<td>On-chip SRAM</td>
<td>Size: 16 KB, local access latency: 3.95 ns,</td>
</tr>
<tr>
<td></td>
<td>remote access latency: 9.88 ns.</td>
</tr>
<tr>
<td>Main memory</td>
<td>PCM, Size: 32 MB, read latency: 42.71ns,</td>
</tr>
<tr>
<td></td>
<td>write latency(SET/RESET): 261.52/121.52 ns.</td>
</tr>
</tbody>
</table>

The benchmarks from DSPstone [51] and Mediabench [28] are used in our experiments. DSPstone is a set of digital signal processing benchmarks and Mediabench is a set of multimedia benchmarks. We compile the benchmarks with gcc and extract the task graphs and the read/write sets from gcc. Then the task graphs and access sets are fed into our simulator. The number of tasks, dependency edges, size of read and write sets of each benchmark are shown in Table 8 and 9. The experimental results are shown in the following sections.

TABLE 8
Size of DSPStone benchmarks.

<table>
<thead>
<tr>
<th>Bench.</th>
<th>Tasks</th>
<th>Edges</th>
<th>Size of read sets</th>
<th>Size of write sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>4_lattice-unit</td>
<td>101</td>
<td>98</td>
<td>197</td>
<td>106</td>
</tr>
<tr>
<td>4lattic</td>
<td>26</td>
<td>23</td>
<td>47</td>
<td>31</td>
</tr>
<tr>
<td>ab-lat</td>
<td>15</td>
<td>2</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>allpole-unit</td>
<td>34</td>
<td>36</td>
<td>63</td>
<td>39</td>
</tr>
<tr>
<td>allpole</td>
<td>15</td>
<td>17</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>deq-unit</td>
<td>23</td>
<td>24</td>
<td>41</td>
<td>28</td>
</tr>
<tr>
<td>deq</td>
<td>11</td>
<td>12</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>elf</td>
<td>34</td>
<td>47</td>
<td>63</td>
<td>39</td>
</tr>
<tr>
<td>elf2</td>
<td>34</td>
<td>47</td>
<td>63</td>
<td>39</td>
</tr>
<tr>
<td>elffilter-unit</td>
<td>66</td>
<td>79</td>
<td>127</td>
<td>71</td>
</tr>
<tr>
<td>elffilter</td>
<td>34</td>
<td>47</td>
<td>63</td>
<td>39</td>
</tr>
<tr>
<td>er-lat</td>
<td>16</td>
<td>14</td>
<td>27</td>
<td>21</td>
</tr>
<tr>
<td>iir-unit</td>
<td>20</td>
<td>19</td>
<td>35</td>
<td>25</td>
</tr>
<tr>
<td>iir</td>
<td>8</td>
<td>7</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>rls-lat</td>
<td>19</td>
<td>23</td>
<td>33</td>
<td>24</td>
</tr>
<tr>
<td>rls-lat2</td>
<td>19</td>
<td>23</td>
<td>33</td>
<td>24</td>
</tr>
<tr>
<td>volt</td>
<td>27</td>
<td>26</td>
<td>49</td>
<td>32</td>
</tr>
</tbody>
</table>

6.1 Completion time reduction

Tables 10 and 11 show completion time comparison of different algorithms with DSPStone and Mediabench benchmarks, respectively. The first column gives the benchmarks’ names. The second column shows the finish time of schedules generated by list scheduling. The third column shows the finish time of schedules
generated by Koc [26]'s algorithm. The fourth column shows the finish time of schedules generated by the WReduce algorithm. The fifth column shows the improvement of the WReduce algorithm compared with list scheduling. The sixth column shows the improvement of the WReduce algorithm compared with Koc's algorithm.

We can see from Table 10 that for DSPStone the WReduce algorithm can reduce the schedule length by 40.63% on average. Compared with Koc’s algorithm, the WReduce algorithm reduces schedule length by 18.29% on average. Table 11 shows that for MediaBench the WReduce algorithm can reduce the schedule length by 35.51% compared with list scheduling and by 21.22% compared with Koc’s algorithm on average.

Fig. 7 and 8 give a visual comparison of the completion time among different algorithms for DSPStone and MediaBench, respectively.

6.2 Number of writes reduction and lifetime extension

<table>
<thead>
<tr>
<th>TABLE 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of writes comparison of DSPStone.</td>
</tr>
<tr>
<td>Bench</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>adpcm</td>
</tr>
<tr>
<td>epic</td>
</tr>
<tr>
<td>g723</td>
</tr>
<tr>
<td>ghostscript</td>
</tr>
<tr>
<td>jpeg</td>
</tr>
<tr>
<td>mesa</td>
</tr>
<tr>
<td>mpeg2</td>
</tr>
<tr>
<td>pegwit</td>
</tr>
<tr>
<td>P8P</td>
</tr>
<tr>
<td>rasta</td>
</tr>
<tr>
<td>Average Improvement</td>
</tr>
</tbody>
</table>

![Fig. 7. Completion time comparison of DSPStone.](image7)

![Fig. 8. Completion time comparison of MediaBench.](image8)
Tables 12 and 13 show the experimental results of the number writes on NVM for DSPStone and Mediabench, respectively. The second column shows the number of writes of these benchmarks on NVM with list scheduling or Koc’s algorithm. Since Koc’s algorithm does not save any number of writes on the main memory, its number of writes is exactly the same as list scheduling. The third column shows the number of writes on NVM with the WReduce algorithm. The fourth column shows the improvement of number of writes on NVM of the WReduce algorithm compared with list scheduling and Koc’s algorithm. The fifth column shows the expected lifetime improvement ratio of WReduce algorithm over list scheduling or Koc’s algorithm. Fig. 9 and 10 give a visual comparison of the number of write activities.

Let M stand for the maximum erase counts of the NVM, W_1 stands for the number of write activities on NVM when using the first technique, and W_2 stands for the number of write activities on NVM when using the second technique. Then the lifetime improvement ratio of the second technique is computed by $\left(\frac{M}{W_2} - \frac{M}{W_1} \right)$.

The sixth column of Tables 12 and 13 show the saved number of reads from the main memory by Koc’s algorithm. The seventh column shows the saved number of reads from the main memory by the WReduce algorithm. From the tables we can see that the WReduce algorithm can reduce more number of reads from the main memory than Koc’s algorithm. The number of reads does not affect NVM’s lifetime, but it does affect the finish time of the programs.

6.3 Different configuration

In Fig. 11 and 12, we present the completion time improvement of benchmark “ab-lat” when using different number of cores in the system and different SPM sizes. From Fig. 11, we can see that as the number of cores increases, the completion time decreases.
of cores increases in the system, the completion time improvement decreases. The reason is that, the time saved by WReduce spreads among different cores. So the saving in total completion time is reduced. From Fig. 12, we can see that as the size of SPM increases, the improvement increases. The reason is that when more free spaces available in the system, more data migration and data recomputation can be performed. However, at a certain point, the algorithm has found all the data migrations and recomputations so the improvement plateaus.

7 Conclusion

In this paper, we propose code optimization techniques to reduce the number of write activities on non-volatile memories when they are applied as main memory. The proposed methods can significantly reduce the program’s completion time and extend the lifetime of non-volatile memories at the same time. Our purpose is to minimize the negative impact when applying NVM as the main memory while retaining all the benefits, which will lead to the practical adoption of them as the main memory in mobile and embedded systems. The experimental results show that the proposed methods can reduce the number of writes by 58.46% on average, which means that the NVM can last 2.8 times as long as before. For PCM, the lifetime is extended from 2.5 years to about 7 years on average and 15 years at the most. Also, the completion time of programs is reduced by 38.07% on average.

Acknowledgment

This work is partially supported by NSF CNS-1015802, Texas NHARP 009741-0020-2009, NSFC 60728206, Changjiang Honorary Chair Professor Scholarship and grants from City University of Hong Kong [Project No.9041505 (CityU 123609)][Project No.9681001].

References

Jingtong Hu
Jingtong Hu is currently a Ph.D. student in the Department of Computer Science, University of Texas at Dallas. He received his B.E. degree from School of Computer Science and Technology, Shandong University, China in 2007. His research interests include wireless sensor network, memory optimization, non-volatile memory, and high level synthesis.

Chun Jason Xue
Chun Jason Xue received B.S. degree in Computer Science and Engineering from University of Texas at Arlington in May 1997, and M.S. and Ph.D. degree in computer Science from University of Texas at Dallas, in Dec 2002 and May 2007, respectively. He is now an Assistant Professor in the Department of Computer Science at the City University of Hong Kong. His research interests include memory and parallelism optimization for embedded systems, software/hardware codesign for parallel systems and computer security.

Wei-Che Tseng
Wei-Che Tseng is currently a Ph.D. student in the Department of Computer Science, University of Texas at Dallas. He received his B.S. degree from Department of Electrical Engineering in University of Texas at Dallas in 2007. His research interests include computer architecture, high level synthesis, memory optimization, and wireless sensor networks.

Edwin H.-M. Sha
Edwin H.-M Sha received Ph.D. degree from the Department of Computer Science, Princeton University, Princeton, NJ, in 1992. Since 2000, he has been a tenured full professor in the Department of Computer Science at the University of Texas at Dallas. He has published more than 250 research papers in refereed conferences and journals. He has served as an editor for many journals, and as program committee and Chairs for numerous international conferences. He received Oak Ridge Association Junior Faculty Enhancement Award, Teaching Award, Microsoft Trustworthy Computing Curriculum Award, NSF CAREER Award and NSFC Overseas Distinguished Young Scholar (B) Award. His web page can be found at http://www.utdallas.edu/~edsha.