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Abstract

This paper is concerned with estimation and inference for di¤erence-in-di¤erence regressions with

errors that exhibit high serial dependence, including near unit roots, unit roots and linear trends.

We propose a couple of solutions based on a parametric formulation of the error covariance. First

stage estimates of autoregressive structures are obtained by using the Han, Phillips and Sul

(2011, 2013a) X-di¤erencing transformation. The X-di¤erencing method is simple to implement

and is unbiased in large N settings. Compared to similar parametric methods, the approach

is computationally simple and requires fewer restrictions on the permissible parameter space of

the error process. Simulations suggest that our methods perform well in the �nite sample across

a wide range of panel dimensions and dependence structures.
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1 Introduction

This paper is concerned with estimating the following di¤erence-in-di¤erence (DD) regression with

�xed e¤ects and autoregressive errors of the form

yit = �i + �t + �Iit + Zit
 + "it; "it =
Pp
j=1 �j"it�1 + uit; (1)

where i = 1; : : : ; N ; t = 1; : : : ; T; �i is �xed e¤ect, �t is common time e¤ect, Iit is the policy variable

or treatment of interest (typically a binary or dummy variable), and Zit is a vector of exogenous

control variables. As emphasized in Bertrand, Du�o and Mullainathan (2004, BDM), serial depen-

dence in the error term "it generates problems for conducting valid statistical inference. Statistical

tests may exhibit a size distortion if the serial dependence is not accounted for when constructing

standard errors. By means of Monte Carlo simulations and pseudo-empirical applications, BDM

show that inference based on the conventional OLS t-statistic over-rejects the null and suggest

using robust covariance estimators to restore the size of the test for large N , small T panels.

BDM point out that much of the DD literature is potentially a¤ected by this problem. Sub-

sequent research has focused on HAC estimation with T ! 1 in order to accommodate panel

datasets with large T . Donald and Lang (2007), Hansen (2007a), Miller, Cameron and Gelbach

(2008), Bester, Conley and Hansen (2011) and Cameron, Miller Gelbach (2011) all study estimators

under large T asymptotics, and suggest various methods to obtain correctly sized tests for cases

when T is larger than N .

Another strand of literature imposes a parametric serial dependence structure in order to simul-

taneously conduct valid inference and to gain more e¢ cient point estimates. Bhargava, Franzini

and Narendranathan (1982) study a feasible generalized least squares (FGLS) method that relies

on least squares (LS) estimation of an AR(1) process in the error. One potential drawback of the

parameteric approach is that it relies on accurate �rst stage estimates of the autoregressive process,

and it is well-known that LS estimators exhibit O
�
T�1

�
bias and that the weak-instrument problem

hampers instrumental variables (IV) methods in certain regions of the parameter space (Blundell

and Bond, 1998). Although both Bhargava, Franzini and Narendranathan (1982) and Hansen

(2007b) correct the LS bias, their proposed method is computationally burdensome (requiring an

iterative algorithm to correct for the bias exactly) and requires restrictions on the permissible para-

meter space in order for the inverted bias function to be unique (see Hansen, 2007b). For example,

regions in the neighborhood of unity where the bias function is non-monotic are excluded.

In this paper we provide some simple but e¤ective methods to improve inference in DD regres-

sions of the form of (1). Our suggested methods are based on the recently developed X-di¤erencing

estimator of autoregressive parameters proposed by Han, Phillips and Sul (2011, 2013a). We then

transform the data using the �tted autoregressive parameters, using either an FGLS or Cochrane-
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Orcutt (CO) transformation, in order to remove serial dependence. Although the CO approach is

less e¢ cient than FGLS (due to the loss of initial observations in each time series), it is practically

attractive and �exible, particularly if the data are highly persistent.

Three key features of our X-di¤erencing-based approaches are appealing. First, the method

is straightforward to apply and can be easily adopted by practitioners. Second, the method can

be applied under fewer restrictions on the parameter space than bias-corrected LS or IV methods

(for example it permits unit roots), and the e¢ ciency gains relative to conventional LS can be

substantial, particularly when the errors follow a unit root process and the CO transformation

is used. This feature is particularly useful given that the typical dependent variable used in DD

regressions - such as wages, consumption, employment, and healthcare expenditures (see BDM) - is

highly persistent. Third, the estimator provides valid inference under a broad range of asymptotic

sequences, requiring only that N (T � p)!1. Under large N frameworks (i.e., when N !1), the
X-di¤erencing method delivers a consistent estimator of the autoregressive parameters, regardless

of the size of T . Under small N frameworks (i.e. when N is �xed in the asymptotics) the method

signi�cantly attentuates the bias of the LS estimator (HPS, 2011). (In large T , small N settings

however, this bias is less of a concern, of course.) These features permit application of the methods

in a variety of sample size settings, including both �long�and �short�panels.

The rest of the paper is constructed as follows. The next section de�nes the serial dependence

issue, and suggsts a solution how to correct this statistical problem. A small Monte Carlo simulation

results are reported in Section 3. Section 4 summarizes the �ndings of this paper. Sample Stata

codes are provided in the appendix.

2 Estimation and Inference for Autoregressive Error Structures

In this section we consider models of the form of (1), where the innovation (uit) to the AR(p)

process ("it) is white noise, and the AR polynomial is permited to have a unit root. There are two

broad approaches considered in the literature for dealing with serial dependence: Correcting the

standard errors of the LS estimator, or LS estimation based on transformed data (such as GLS).

The �rst approach is concerned with constructing covariance estimators that are robust to serial

dependence. Non-parametric covariance estimators such as those based on clustering can often

provide statistical tests with asymptotically correct sizes without relying on parametric assumptions

on the error processes. The cost of this generality is that these require large N . When the number

of groups (or clusters) is small, alternative methods are required. The non-parametric estimators

proposed by Donald and Lang (2007), Hansen (2007a), Miller, Cameron and Gelbach (2008), Bester,

Conley and Hansen (2011) and Cameron, Miller Gelbach (2011) permit both serial dependence and

T to grow in the asymptotics. For example, Hansen (2007a) shows that under �xed N , large
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T asymptotics, using the clustered covariance matrix of Arellano (1987) to estimate the standard

errors leads to a t-statistic that is asymptotically distributed as tN�1. An additional problem under

this approach is a potential e¢ ciency loss if the errors are highly persistent. The OLS estimator

of � (in levels) becomes
p
N rather than

p
NT when either stochastic or nonstochastic trends are

present in the error term, since identi�cation essentially only comes from between group variation.

The second approach transforms the data in order to remove serial dependence before applying

LS. This approach includes feasible generalized least squares (FGLS), weighted least squares and

the CO type correction. Wooldridge (2003) discusses random and �xed e¤ects FGLS when the

covariance matrix is estimated nonparametrically. It is worth noting that the (non-parametric)

random and �xed e¤ects FGLS estimators can be constructed as long as N is much larger than T .

For each element of the T �T covariance matrix (or (T � 1)� (T � 1) matrix if the data have been
di¤erenced to eliminate the �xed e¤ects) can be estimated by using cross sectional average. To

be speci�c, the sth, tth element of the covariance matrix, 
st, of E"i"0i = 
T�T can be estimated

consistently by taking the cross sectional averages of the product of the regression residuals. As

N !1 with T �xed, it is easy to show that


̂st =
1

N

NX
i=1

"̂is"̂it !p 
st

for each t and s. (For the �xed e¤ects FGLS, the sample covariances of the di¤erenced residuals

are to be calculated.) However this nonparametric FGLS method would require the ratio condition

of T 2=N ! 0 as N;T ! 1 since the number of unknown parameters in the 
 matrix is O
�
T 2
�

but the available information is just N:

Parametric assumptions are typicially required if the restrictions on the asymptotic sequence

are relaxed. The AR(p) structure embedded in the error of (1) is an example of such a parametric

structure that has received attention in the extant literature (see, e.g., Kiefer, 1980; Bhargava et al.,

1982; and Hansen, 2007b). However it is well known that the LS estimator of the �js are inconsistent

(or biased in the sense that the inconsistency goes away as T ! 1). If this inconsistency is

not corrected, then naturally the resulting covariance estimator is inconsistent. Bhargava et al.

(1982) reduced the bias by utilizing the panel Durbin-Watson statistic. Meanwhile Hansen (2007b)

proposes an exact mean unbiased (EMU) estimation by using an iterative estimation. The existence

of EMU estimator requires that the binding function be monotonic, where the binding function,

B (�; T ), is de�ned for AR(1) case as

B(�; T ) = �+ E (�̂� �) :

It is well known that the binding function is not monotonic when � is near unity. Also in the AR(p)

case, monotonicity does not generally hold when the sum of �j is near unity.
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The CO type correction also requires a bias correction. To be speci�c, the regression model in

(1), ignoring the Zit
 and �t term, can be rewritten as

yit �
pX
j=1

�jyit�j = �
�
i + �

0@Iit � pX
j=1

�jIit�j

1A+ uit: (2)

If uit is free of serial dependence the limiting distribution of the standard OLS t-statistic becomes

asymptotically standard normal. CO suggest using the regression residuals to estimate the unknown

�js. However, as discussed above, accurate estimation requires either a bias correction of the LS

estimator or use of IV methods.

Another weakness of the above parametric approach is that the lag order is unknown and must

be estimated. This can prove di¢ cult in the presence of �xed e¤ects when T is small (Lee, 2012).

Moreover, as shown by Lee (2006), using a bias correction when the lag order is misspeci�ed can

exacerbate the bias of the LS estimator, rather than attenuate it. We discuss some consistent lag

order selection methods in the following section.

FGLS with X-di¤erencing. We also adopt a parametric approach to dealing with the problem

of serial dependence. However, we di¤er with the extant litertaure in that we make explicit use of

the �X-di¤erencing�method developed by Han, Phillips and Sul (2011, 2013a; HPS hereafter) to

estimate the AR(p) structure. The X-di¤erencing method is a systematic di¤erencing where the

time lags on both sides of the equation are di¤erent, and proves to be e¤ective in removing the

nuisance �xed e¤ects while also preserving the regressor-error uncorrelatedness. Speci�cally, the

panel AR(p) equation yit = �i +
Pp
j=1 �jyit�j + uit is transformed to yit � yis =

Pp
j=1 �j(yit�j �

yis+j) + errorit;s, and then for all t and s such that t� s > p, the transformed regressors and the
transformed error are exactly uncorrelated under the assumption that �yit is covariance stationary

and the AR(p) structure is correct. Now using this transformation, the autoregressive coe¢ cients

are consistently estimated regardless of the relative sizes of N and T: The estimators are consistent

over a broad parameter space that includes unit roots in the autoregressive polynomial and there

are no issues of non-monotonocity near the unit root.

Han, Phillips and Sul (2013b) show that the typical panel BIC estimation fails to identify the

correct lag order. They suggest a couple of modi�ed BICs and also the general to speci�c method

with a data dependent p-value, and show that the suggested methods consistently estimate the

correct lag order.

Once the lag order and the AR coe¢ cients are consistently estimated, the subsequent error

covariance estimation and FGLS are straightforward. Following Hansen (2007b), we assume that

5



the idiosyncratic error term "it of (1) is AR(p), i.e.,

"it =

pX
j=1

�j"it�j + uit; ui;t � iid
�
0; �2

�
(3)

The two procedures we consider are a �xed e¤ects FGLS and a Cochrane-Orcutt (1949) type version,

for which we need �rst to estimate �j consistently. For this, we �rst estimate (1) by least squares

(LS) to get the residuals v̂it = yit � �̂lsIit � Zit
̂ls � �̂t;ls, and then run the pooled OLS regression
on the X-di¤erenced equation

v̂it � v̂is =
pX
j=1

�j(v̂it�j � v̂is+j) + errorit;s

stacked for all i, t and s for t�s > p. Let �̂j denote the resulting estimator. We have the following
result.

Theorem 1. Suppose that yit is generated according to (1) and "it is generated by (3). We assume

that all regressors in (1) are strictly exogenous, and that "it is either (i) covariance stationary, or

(ii) "it = "it�1 + wit, where wit is covariance stationary. Then �̂j is consistent for �j for each j

as N(T � p� 1)!1.

See Appendix for a short proof of Theorem 1. Note that the homogeneity of � and 
 in (1) is

required for the consistency of the X-di¤erencing estimator.

The theorem permits both covariance stationary and unit root processes in the regression errors.

Thus the X-di¤erencing estimation of the AR(p) error structure is applicable under a wider range of

processes than the bias-corrected methods proposed by Bhargava et al. (1982) and Hansen (2007b)

in at least two respects: First, it permits the case of a unit root. It is well known that the LS bias

function is discontinuous at unity, making the bias correction dependent on knowledge of whether

the true process is stationary or intergrated. Second, the restrictions necessary to map from the

LS parameters to the true parameter values are not required (see Proposition 1 in Hansen, 2007b).

In particular, it is well known that the bias function becomes non-montonic in the neighborhood

of unity, meaning that there is no unique mapping for highly persistent but stationary processes.

Although the X-di¤erencing estimator can be applied in the case of unit root errors, GLS

transformation cannot. De�ne � as the sum of AR coe¢ cients, i.e. � =
Pp
j �j : The GLS estimator

does not exist when � = 1 since the covariance matrix is not invertible. Also White�s correction may

not work well unless the cross-sectional dimension is large. The CO approach provides a practical

alternative in this situation.
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Cochrane-Orcutt Transformation with X-di¤erencing. Drop the Zit
 and �t components

from (1) for simplicity. The CO correction with X-di¤erencing method becomes straightforward by

replacing the �j�s by the X-di¤erenced estimator �̂j;x in (2). That is, the CO transformed regression

with X-di¤erencing is

yit �
pP
j=1

�̂j;xyit�j = ~��i + �

 
Iit �

pP
j=1

�̂j;xIit�j

!
+ u+it ; t = p+ 1; : : : ; T; (4)

where u+it is the implied regression error and, importantly, ~�
�
i = (1�

Pp
j=1 �̂j;x)�i is common for all

t � p+ 1. By abandoning the �rst p observations, e¢ ciency is lost on the one hand, but the �xed
e¤ects remain time-constant and the simple LSDV method can be used on the other hand. This

second point is important because it allows us to use the same method for persistent data as well,

in which case the �rst p observations are di¢ cult to handle. Note that the conventional t-statistics

have a N(0; 1) limiting distribution like in standard FGLS estimation due to the consistency of the

X-di¤erencing estimators. The conventional t-statistic is de�ned as

t�̂ =
�̂q

�̂2u( ~X
0 ~X)�1

; for �̂2u =
1

(T � p� 1)N

NX
i=1

TX
t=p+1

(û+it � �u
+
i )
2;

where ~X is the pooled matrix of the within-group transformed regressor, û+it = y+it � �̂ ~I
+
it , and

�u+i = (T � p)�1
PT
t=p+1 û

+
it . Therefore panel robust covariance estimation needs not be used here.

When T is small, the CO type correction is less e¢ cient compared to FGLS since the CO

regressions do not use the �rst p observations. Due to this e¢ ciency gain, the FGLS method has

been popularly used and studied in the broader panel data literature (e.g., Baltagi and Li, 1991 and

1992). Of course, if T is large enough, the e¢ ciency loss by discarding the �rst p observations from

each i under the CO method is neglible. In addition, a strength of the CO approach is that it can

be used in cases when the GLS transformation matrix is not well-de�ned (i.e., when �̂x =
Pp
j=1 �̂j;x

is equal to or exceeds one).

Estimation and Inference for Alternative Dependence Structures

In the previous section, we discussed how to obtain a more accurate and powerful test statistic

by utilizing the X-di¤erencing method. However the asymptotic theory developed in the previous

section is based on the crucial assumption that the error terms follow the data generating process

given in (1). In this section, we consider regression errors that do not follow (1). We consider three

cases.

The �rst case is that the error term does not follow a �nite-order AR(p) but an AR(1), for
example, an ARMA(p,q) process. In this case, all parametric correction methods including Hansen

(2007b) and X-di¤erencing do not work �exactly�. However, both parametric corrections can be used
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to approximate the serial dependence structure by permitting p!1 as T !1: Under this setting,
Lee, Okui and Shintani (2013) consider the inconsistency of various estimators. Particularly they

show that the total bias of the LS estimator can be decomposed into truncation and fundamental

biases, where the truncation bias arises due to the lag truncation and the fundamental bias is the

Nickell (1981) bias (which disappears as T ! 1 but not as N ! 1). (GMM/IV estimators do

not su¤er from the fundamental bias. Hence as long as the truncation bias goes away as T; p!1
jointly, the GMM/IV estimators are consistent.) For the X-di¤erencing estimator, HPS (2013a,

equation (32)) provides a formula that relates the full aggregation of X-di¤erences to the sum of

cross-products (such as shown in the LS estimation) and the remainder for bias correction. It would

thus be natural that Lee et al.�s (2013) results for bias-corrected LS should hold.

To examine the case in more detail, suppose that yit = ai + zit, zit =
P1
j=1 �jzit�j + "it, but

an AR(p) model is �tted by the X-di¤erencing method. That is, ~yit;s � yit � yis is regressed on
~yit�1;s+1; : : : ; ~yit�p;s+p (with pooling over all t and s such that t � s + p + 1). Let ~"it;s denote

the associated error term, i.e., ~"it;s = ~yit;s �
Pp
j=1 �j ~yit�j;s+j . Let 
j = E(zitzit�j), which does

not depend on t due to the maintained stationarity. (We discuss here the case with stationary zit

only.) Then the Yule-Walker equations imply that 
k =
P1
j=1 �j
jk�jj. Because ~yit;s = zit � zis,

the expected cross product of the kth regressor and the regression error is

E(~yit�k;s+k~"it;s) = 2

" 

k �

pP
j=1

�j
jk�jj

!
�
 

t�s�k �

pP
j=1

�j
jt�s�k�jj

!#

= 2
1P

j=p+1
�j(
jk�jj � 
jt�s�k�jj) (5)

for k = 1; : : : p. By the Markov inequality and the fact that (a� b)2 � 2(a2 + b2), we have

jE(~yit�k;s+k~"it;s)j � 4c2p

 
1P
j=0


2j

!1=2
for all k and p, where c2p = (

P1
j=p+1 �

2
j )
1=2. Let �̂1; : : : ; �̂p be the X-di¤erencing estimator, and let

�̂ =
Pp
j=1 �̂j . Also let �

(p) =
Pp
j=1 �j and � = �

(1). Then

�̂� �(p) = 10p�̂�1p (NT 2p )�1
NX
i=1

TX
t=p+2

t�p�1X
s=1

~wit;s;p~"it;s;

where Tp = T�p, �̂p is the denominator matrix divided byNT 2p , and ~wit;s;p = (~yit�1;s+1; : : : ; ~yit�p;s+p)0.
Under the regularity that the smallest eigenvalue of �̂p is bounded away from zero (technicality

that is not dealt with here; see Lee et al., 2013), we have

j�̂� �(p)j2 � pC

NTp

NP
i=1

TP
t=p+2

�
1

Tp

t�p�1P
s=1

~wit;s;p~"it;s

�0�
1

Tp

t�p�1P
s=1

~wit;s;p~"it;s

�
= pO(pc22p) + pOp(n

�1
p ); np � N(T � p);

8



as p!1 and np !1 for some universal constant C <1. Above the �rst bound on the second
line is for the bias, and the second is for the variance. Thus, �̂ = �(p) +Op(pc2p) +Op(p1=2n

�1=2
p ).

As j�� �(p)j � c1p �
P1
j=p+1 j�j j, we have

j�̂� �j = O(c1p) +O(pc2p) +Op(p1=2n�1=2p );

which implies that �̂ is consistent for � as long as p!1 and p=np ! 0 under the su¢ cient regularity

conditions that
P1
j=1 j�j j < 1 and

P1
j=1 j�

2
j < 1. These regularity conditions are satis�ed for

�nite order ARMA processes because then �j decays exponentially with j. Unbiased asymptotic

distribution for (np=p)1=2(�̂��) requires a bit more: (np=p)1=2c1p ! 0 and (pnp)1=2c2p ! 0. Usually

c1p and c2p decay exponentially with p, thus these conditions are casually translated into that p is

not too small compared to the total sample size np = N(T �p). These conditions are much simpler
than those for the estimators considered by Lee et al. (2013) because of the exact uncorrelatedness

of the regressors and the regression error in the X-di¤erenced equations for �nite order panel AR

models. More rigorous treatment would be called for in this regard but is not pursued here.

A second prominent case to consider is a factor error component structure such as that con-

sidered in Pesaran (2006), Bai (2009) and Greenaway-McGrevy, Han and Sul (2012). Error com-

ponent structures can generate forms of serial dependence that are not encompassed within the

set of AR(p) models. For example, the sum of two AR(1) processes can be be equivalently ex-

pressed as an ARMA(2,1) or an AR(1). Using a factor augmented estimator may help simplify
the problem, since the factor component of the error is controlled for in estimation. See for example,

Hagedorn,Karahan, Manovskii and Mitman (2013).

However, for approaches that control for factors to the explained and explanatory variables

(Pesaran 2006, Greenaway-McGrevy et al. 2012, etc.), it is unclear how to estimate the common

factors to binary variables as the common component would not be additive. This issue is left for

future research.

The third case to consider is important for micro panel data but also is a di¢ cult issue for

theoretical econometricians. Suppose that the serial correlation of the error term arises from the

inclusion of a small trend or integrated component. Typical outcome variables of interest in the DD

literature are wages, employment, consumption or medical expenditures, as BDM (2007) point out.

All these variables may exhibit (either stochastic or non-stochastic) trending behavior over time.

In this case, the error term exhibits serious serial correlation. For instructive purposes, consider

the following example.

Example (Trend Non-Stationary)

Assume that the dependent variable, yit, has the following simple latent structure:

yit = ai + bit+ di�t + eit; (6)
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where �t = �t�1 + �t; and all innovations are assumed to be eit � iid
�
0; �2e

�
; bi �

iid
�
b; �2b

�
; and di � iid

�
d; �2d

�
: If di = 0 for all i; then yit is not serially correlated.

Consider estimating the following simple dynamic regression:

yit = ci + �yit�1 + uit:

It is easy to show that the expectation of the within group LS estimator is

E�̂T = 1�
12�2e�

b2 + �2b
�
T 2
+O

�
T�3

�
;

so that as T increases, the estimated AR(1) coe¢ cient approaches unity quite quickly. In

applications however, the mean b and variance �2b of the trend coe¢ cients are su¢ ciently

small so that the point estimate of � is not in the neighborhood of unity, even with large

T:

Of course, as T increases, the dominant term becomes the deterministic trend component so that

the trending behavior can be seen obviously. Also even when there is no deterministic trend

component, as T increases, the integrated series �t becomes the dominant term so that it becomes

easy to detect such nonstationary behavior by using a typical panel unit root test. When T is not

large, it is hard to rely on a formal statistical test to identify whether or not the dependent variable

contains integrated components. However in this case, one can avoid this thorny issue by taking

the �rst di¤erence. That is,

�yit = bi +��t + ��Iit +�uit;

where the �xed e¤ects, bi, capture the heterogeneous trend coe¢ cients. Of course, the new regres-

sion error, �uit, may follow an ARMA(p,q) process rather than an AR(p). In this case, as we

discussed before, one can increase the lag length for a large T:

FD removes the trend, so that GLS is feasible. For persistent but I(0) errors the induced

(negative) serial correlation from over-di¤erencing is corrected in the parametric FGLS or CO

transformation. Although the FD errors do not in general follow a �nite order AR(p) structure

when the errors are AR(p), there should still be substantial e¢ ciency gains from this approach.

In this case lag estimation should be based on methods that �nd the best approximating model

asymptotically (see Lee et al., 2013).

3 Monte Carlo Experiments

In this section we verify our asymptotic claims and investigate the �nite sample performance of the

suggested methods. The data generating process is given by

yit = �Iit + �i + bit+ di�t + eit;
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where

�t = �t�1 + �t; eit =

pX
j=1

�jeit�1 + uit:

We generate variables as follows:

�i � iidN (0; 1) ; uit � iidN (0; 1) ; �t � iidN
�
0; �2�

�
; bi � iidN

�
0; �2b

�
and di � iidN

�
0; �2d

�
:

We set the initial observation of ei0 as iid N(0; 1=(1� �2)) and �0 = 0. The binary variable, Iit, is
generated from

Iit = 1 fxit � 0g where xit = �xit�1 + vit:

Under the alternative, we set � = 0:1. We consider two sets of values of �2b and �
2
d. Under

stationarity, both values are set to zero. Under I(1) errors, we set �b = 0:01 and �2d = 1 but vary

�� from 0.05 to 0.2. These values are estimated from PSID consumption expenditure data.

First we consider the case of stationary models. We consider � = 0:5; 0:8; 0:9 and � = 0:8; 0:9.

Since the over-rejection of the null hypothesis with di¤erent N=T ratios is of interest, broadly two

sets of T and N are considered. We set T = 6 or 100 and vary N . We report selected results here

but all results are reported on the corresponding author�s website.

Table 1 shows the rejection rate under the null hypothesis. �GLS� refers to infeasible GLS

where the true � value is known. Evidently, for small N all estimators except for the within-group

estimator (labeled WG) based on the panel robust covariance estimator reject the null hypothesis at

a rate similar to GLS. Both FGLS and CO methods reject the null hypothesis that � = 0 slightly

less than Hansen�s FGLS estimator when T is small, but the di¤erence is neligible. It is important

to report that the over-rejection rate of the WG estimator is not dependent on the degree of serial

dependence. Even when � is 0.5, the rejection frequencies of the WG estimator are similar to those

for smaller values of �. Hence the �nding of the over-rejection of the null hypothesis by BDM

was not mainly due to high serial dependence of the regression errors but the small-Nstatistical

properties of the panel robust covariance estimator which requires a large N for consistency. As

long as N is large, the serial correlation has a negligible e¤ect, as BDM report.

Table 2 reports the nominal power of the tests. Evidently, all estimators except the WG

estimator with the panel robust covariance estimator perform very well. When T is small, the

performance of CO with X-di¤erencing is worse than GLS but better than WG in terms of variance

for the considered data generating process. Of course, CO needs not be more e¢ cient than WG

especially if the serial correlation in the error term is minor. In terms of power, the performance

of CO with X-di¤erencing is only slightly worse than FGLS estimators even when T is small.

Lastly, Table 3 provides the results for I(1) errors. We consider only three estimators: the

WG estimator, �rst di¤erenced LS estimator (FD) and �rst di¤erenced CO estimator (FD-CO).
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The panel robust covariance estimator is used to construct t-statistics for the �rst two estimators.

Meanwhile the standard t-test is used for the FD-CO. The fourth column in Table 3 reports the

estimated means of the AR(1) coe¢ cient from the Monte Carlo simulation. These are dependent

on the value of �d and T : as either �d or T increases, the expected value of �̂ increases. Note that

the true � is set as 0.2. Evidently, the rejection rate of the null hypothesis of the WG estimator is

reasonable when T is moderately large when the null is true (� = 0). It is a natural result since as

long as N is large, the WG estimator provides accurate rejection rates. In terms of size distortion,

FD-CO performs best. We do not report other FGLS estimators in Table 3 to save the space but

their performances are very much similar to the FD-CO estimator. The power of the LS estimator

does not improve with the size of T , because, as discussed above, the estimator converges at the
p
N rate. Meanwhile both FD and FD-CO estimators reject the null more as T increases.

4 Concluding Remarks

In this paper we propose a simple parametric transformation for LS estimation of DD regressions

that exhibit serially dependent errors. First stage estimates of autoregressive structures in the error

are obtained by using the HPS (2011,2013a) X-di¤erencing transformation of the panel, before

applying a FGLS or CO type estimator of the regression equation. The X-di¤erencing method is

simple to implement and is unbiased in large N settings, and can be applied to both stationary

and unit root error processes.

We also consider the case where the error processes exhibits either a non-stochastic or a stochas-

tic trend. In this case we suggest �rst di¤erencing the data before applying the X-di¤erencing trans-

formation to account for any residual serial dependence in the �rst-di¤erenced series. This method

can account for a wider variety of dependence structures in the error term than X-di¤erencing

in levels, including possible linear trends. The suggested method performs well in Monte Carlo

studies.
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Table 1: Finite Sample Performance of Suggested Estimators for stationary errors

under the null hypothesis: � = 0:8; � = 0:8; � = 0

Variance � 103 Rejection Rates (Nominal: 5%)

X-di¤erencing Hansen X-di¤erencing Hansen

N T WG CO FGLS FGLS GLS WG CO FGLS FGLS GLS

10 6 264.66 169.77 145.35 152.32 140.57 0.164 0.079 0.082 0.095 0.071

25 6 95.35 55.99 48.83 50.25 48.15 0.087 0.064 0.060 0.067 0.059

50 6 45.97 24.72 22.36 22.85 22.25 0.066 0.049 0.051 0.053 0.050

100 6 23.23 13.44 11.84 11.98 11.79 0.069 0.062 0.063 0.063 0.062

200 6 10.96 6.33 5.62 5.68 5.61 0.056 0.047 0.055 0.056 0.056

400 6 5.47 3.19 2.84 2.87 2.84 0.049 0.051 0.053 0.058 0.053

5 100 89.91 14.41 14.37 14.37 14.32 0.209 0.081 0.076 0.075 0.075

6 100 74.91 12.43 12.32 12.33 12.26 0.181 0.086 0.083 0.082 0.083

7 100 59.66 9.80 9.74 9.76 9.72 0.159 0.072 0.071 0.071 0.069

8 100 52.39 7.86 7.80 7.81 7.79 0.131 0.061 0.058 0.059 0.059

9 100 43.92 7.32 7.22 7.22 7.22 0.116 0.063 0.059 0.060 0.058

10 100 39.94 6.21 6.17 6.17 6.18 0.115 0.057 0.055 0.055 0.055
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Table 2: Comparison of powers of tests for stationary errors

under the alternative: � = 0:8; � = 0:8; � = 0:1

Variance � 103 Rejection Rates (nominal 5%)

X-di¤erencing Hansen X-di¤erencing Hansen

N T WG CO FGLS FGLS GLS WG CO FGLS FGLS GLS

10 6 264.66 169.77 145.35 152.32 140.57 0.166 0.091 0.098 0.118 0.094

25 6 95.35 55.99 48.83 50.25 48.15 0.112 0.088 0.096 0.106 0.094

50 6 45.97 24.72 22.36 22.85 22.25 0.103 0.095 0.106 0.116 0.107

100 6 23.23 13.44 11.84 11.98 11.79 0.114 0.142 0.173 0.180 0.172

200 6 10.96 6.33 5.62 5.68 5.61 0.162 0.222 0.277 0.284 0.274

400 6 5.47 3.19 2.84 2.87 2.84 0.275 0.421 0.488 0.492 0.486

5 100 89.91 14.41 14.37 14.37 14.32 0.231 0.176 0.173 0.176 0.173

6 100 74.91 12.43 12.32 12.33 12.26 0.209 0.201 0.199 0.200 0.198

7 100 59.66 9.80 9.74 9.76 9.72 0.182 0.225 0.224 0.221 0.222

8 100 52.39 7.86 7.80 7.81 7.79 0.172 0.226 0.226 0.226 0.226

9 100 43.92 7.32 7.22 7.22 7.22 0.150 0.246 0.245 0.245 0.244

10 100 39.94 6.21 6.17 6.17 6.18 0.141 0.265 0.270 0.269 0.272
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Table 3: Comparison of the �rst-di¤erenced CO with X-di¤erencing

to other estimators: � = 0:2; � = 0:8;

Variance � 103 Rejection Rates

� = 0 �d T N E (�̂) WG FD FD-CO WG FD FD-CO

0.05 10 50 0.926 271.20 37.18 31.54 0.101 0.127 0.084

0.05 25 50 0.940 102.12 12.44 10.33 0.075 0.065 0.057

0.05 50 50 0.945 49.23 5.96 5.07 0.059 0.055 0.055

0.05 100 50 0.948 25.92 3.02 2.54 0.065 0.055 0.065

0.2 10 50 0.937 358.89 37.60 33.46 0.104 0.124 0.080

0.2 25 50 0.950 137.38 14.04 12.30 0.075 0.076 0.069

0.2 50 50 0.954 73.23 6.58 5.76 0.062 0.055 0.055

0.2 100 50 0.954 34.04 3.27 2.96 0.059 0.054 0.067

� = 0:1 0.05 10 50 0.926 266.38 34.10 29.98 0.117 0.173 0.138

0.05 25 50 0.941 99.26 12.34 10.51 0.086 0.186 0.201

0.05 50 50 0.946 48.67 6.23 5.30 0.085 0.261 0.325

0.05 100 50 0.948 24.69 2.98 2.55 0.116 0.434 0.528

0.2 10 50 0.937 374.72 37.07 32.34 0.117 0.164 0.118

0.2 25 50 0.950 134.14 13.45 12.05 0.077 0.170 0.178

0.2 50 50 0.953 67.71 6.75 5.91 0.085 0.252 0.286

0.2 100 50 0.955 35.18 3.29 2.91 0.101 0.438 0.505
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Appendix

Proof of Theorem 1. We have v̂it = vit�X 0
it(�̂ls� �), where vit = �i+ "it. The consistency of

the X-di¤erencing estimator using vit instead of v̂ithas been proved in HPS (2013). Under regularity,

the result follows from the consistency of �̂ls.

Contruction of FGLS Estimator when p � 2. With consistent estimates of �1; : : : ; �p avail-

able, we can then construct an FGLS estimator. When "it is stationary and (3) is satis�ed, let


j = E("it"it�j)=�
2. Then by standard text book algebra 
j are determined by �j as follows:


0 = �1
1 + �2
2 + � � �+ �p
p + 1;


1 = �1
0 + �2
1 + � � �+ �p
p�1;
...


p = �1
p�1 + �2
p�2 + � � �+ �p
0;


j = �1�j�1 + �2
j�2 + � � �+ �p
j�p; j > p:

The �rst p+1 identities are written as 
0:p = (A1+A2)
0:p+(1; 0; : : : ; 0)
0, where 
0:p = (
0; 
1; : : : ; 
p)

0,

A1 is the (p + 1) � (p + 1) matrix whose ith row is (0; �i; �i+1; : : : ; �p; 00) with the �rst 0 being a
scalar, and A2 is the (p+ 1)� (p+ 1) matrix whose ith row is (�i�1; �i�2; : : : ; �1; 00). Taking p = 4
as an illustrative example, we have

A1 =

0BBBBBBB@

0 �1 �2 �3 �4

0 �2 �3 �4 0

0 �3 �4 0 0

0 �4 0 0 0

0 0 0 0 0

1CCCCCCCA
; A2 =

0BBBBBBB@

0 0 0 0 0

�1 0 0 0 0

�2 �1 0 0 0

�3 �2 �1 0 0

�4 �3 �2 �1 0

1CCCCCCCA
:

So (
0; : : : 
p)
0 is the �rst column of (I�A1�A2)�1, and the rest 
j are obtained by recursion. One

can then construct an estimate of 
 = Toeplitz(
0; 
1; : : : ; 
T�1) using �̂j , and do the FGLS after

�rst-di¤erencing in order to eliminate the �xed e¤ects. Speci�cally, letting yi = (yi1; : : : ; yiT )
0,

Xi = (Xi1; : : : ; XiT )
0 and "i = ("i1; : : : ; "iT )

0, we have yi = Xi� + 1�i + "i. Premultiplying the

(T � 1)� T �rst-di¤erencing operator matrix �,

� =

0BBBBB@
�1 1 0 � � � 0 0

0 �1 1 � � � 0 0
...

...
...
. . . 0 0

0 0 0 � � � �1 1

1CCCCCA ;
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so that the tth row of �yi is yit � yit�1, we have �yi = �Xi + �"i, where the �xed e¤ects are

eliminiated. Then the error term �"i has covariance �2�
�0, and the FGLS estimator is

�̂fgls =

�
NP
i=1
X 0
i�

0(�~
�0)�1�Xi

��1 nP
i=1
X 0
i�

0(�~
�0)�1�yi;

where ~
 is obtained by replacing �j with �̂j in the 
j formulae. This estimator generalizes Bhargava

et al.�s (1982) panel AR(1) FGLS to AR(p) and provides a simple alternative (requiring no numerical

solutions and free from the non-monotonocity issue near unit root) to Hansen�s (2007b) procedure.

The �̂fgls estimator has all the properties of FGLS estimators under regularity if (3) is true and "it

is stationary.

The FGLS estimator can also be obtained by the following procedure. The equations are �rst

transformed to

~yit = ~X 0
it� + (1� ��)�i + ~"it (7)

for t = 1; : : : ; T , so that ~"it are serially uncorrelated, where �� =
Pp
j=1 �j . Precisely, for t > p,

~yit = yit �
Pp
j=1 �jyit�j , ~Xit = Xit �

Pp
j=1 �jXit�j and ~"it = uit work, and for t � p, we can

have ~yit = [yit � (yi1; : : : ; yit�1)�t](1 � ��)=(1 � 10�t) and ~Xit and ~"it are similarly obtained,

where �t = ��1t (
t; 
t�1; : : : ; 
1)
0 and �t = Toeplitz(
0; 
1; : : : ; 
t�1). Then ~"it are serially un-

correlated but heteroskedastic. Especially, E~"2it = �2(1 � ��)2ht, where ht = 1 for t > p, and

ht = (��0t; 1)�t(��0t; 1)0=(1 � 10�t)2 for t � p. This heteroskedasticity is unavoidable should the

individual e¤ects remain constant over time. Procedures as simple as LSDV would therefore not

be available, and one should do GLS anyway after eliminating the �xed e¤ects by �rst-di¤erencing.
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