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Abstract

It is widely believed that the pooled within group (WG) estimator consistently estimates

the mean of a cross section of heterogeneous slope coe¢ cients. In this paper we show that

the WG estimator is inconsistent when the heterogeneous slope coe¢ cients are correlated with

the variances of the regressors. In order to establish whether the WG estimator is consistent in

practice we propose a new poolability test based on the di¤erence between the WG estimator and

the mean group (MG) estimator. Extensions to instrumental variables methods are explored.

By the means of Monte Carlo simulations, we show that the proposed poolability test works

well in the �nite sample.
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1 Introduction

This paper deals with the popular panel �xed e¤ects; or di¤erence-in-di¤erence (DID), regression

given by (for example, with one regressor case)

yit = ai + �t + �xit + uit; i = 1; :::; n; t = 1; :::; T;

where ai and �t are individual and time �xed e¤ects, respectively. When the time series observa-

tions (T ) are much larger than the number of cross sectional units (n) ; homogeneity of the slope

coe¢ cients is testable. As Baltagi, Bresson and Pirotte (2008) point out, the homogeneity restric-

tion, however, is frequently rejected. However, when n is much larger than T; it has been popular

practice to pool the cross sectional and time series information as a general homogeneity test is not

available.

Under the presence of the heterogeneity of the slope coe¢ cients, pooling the observations is

widely-believed to be harmless. In fact, in the treatment literature, the pooled slope coe¢ cient is

interpreted as an �average�treatment e¤ect since the individual treatment e¤ects can be heteroge-

neous. As Baltagi and Gri¢ n (1997) and Woodridge (2005) point out, the standard �xed-e¤ects,

or within group (WG), estimator consistently estimates the average of the heterogeneous slope

coe¢ cients.

Meanwhile, Pesaran and Smith (1995) and Pesaran, Shin and Smith (1999) proposed the so-

called mean group (MG) estimator which is the simple cross sectional average of the time series

least squares (LS) estimators. Maddala, Trost, Li and Joutz (1997) considered a model average or

shrinkage estimator by utilizing both time series LS estimators and the WG estimator. See Baltagi,

Bresson and Pirotte (2002, 2004, 2008) and Baltagi, Gri¢ n and Xiong (2000) for further discussion.

More importantly Haque, Pesaran and Sharma (2000) pointed out that the WG estimator becomes

inconsistent if the heterogeneous slope coe¢ cients are correlated with the variance of the regressors.

If the heterogeneous slope coe¢ cients are correlated with the variances of the regressors, then

imposing the homogeneity restriction leads to inconsistent estimation. Hence it is desirable to test

the validity of the homogeneity restriction before the WG estimation is used, but there is no test

available.

This paper proposes a simple test for the validity of the homogeneity restriction. The MG

estimator remains consistent regardless of the potential correlation between the variances of the

regressors and heterogeneous slope coe¢ cients. The validity of the homogeneity restriction can be

examined by evaluating whether or not the WG estimators are statistically di¤erent from the MG

estimators. The test tells the practitioner that they should not use the WG estimator when the

null hypothesis is rejected. The asymptotic properties of the proposed test are studied under large

n with any size of T: As long as n!1; the limiting distribution of the proposed test is standard
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normal regardless of the size of T:

In the next section, we provide some economic examples demonstrating how the variances of

the regressors can be correlated with the slope coe¢ cients. Section 3 provides the asymptotic

properties of the suggested test. Section 4 reports the results of Monte Carlo studies and presents

one empirical example. Section 5 concludes.

2 Preliminaries and Economic Examples

Throughout this section, we consider a single regressor case for notational simplicity and clear

exposition. Consider the following linear regression with a single regressor.

yit = ai + �t + �ixit + eit; (1)

Imposing the homogeneity restriction on (1) leads to

yit = ai + �t + �xit + uit; for uit = xit (�i � �) + eit: (2)

As long as the slope coe¢ cient, �i; is not dependent on the variance of xit; the WG estimator

becomes consistent even when �i 6= � for some i:

Next consider the following possibility where the regression coe¢ cient, �i; becomes correlated

with the variance of xit: That is,

� = Cov
�
�i; �

2
x;i

�
6= 0; (3)

where �2x;i is the variance of the regressor xit; that is �
2
x;i =E(T � 1)

�1PT
t=1

�
xit � T�1

PT
t=1 xit

�2
:

Here we provide two empirical examples where the regression coe¢ cients may be correlated

with the variances of the regressors.

Example 1: Treatment E¤ects with Missing Doses

In medical science the e¤ectiveness of a new medicine has been evaluated by means of

experiments. When a subject (or patient) has not taken the new medicine regularly,

the subject may not receive the full advantage of the new medicine. As the number of

missing doses increases, the treatment e¤ect of the new medicine may decrease. Let Iit

be the treatment of the new medicine. If a subject takes the medicine at time t, Iit = 1:

Otherwise Iit = 0: Then the frequency of missed doses becomes the variance of the

regressor, Iit: Among many others, see Hernandez-Hernandez, et al. (1996) as example,

where they investigated the blood pressure e¤ects of missing a dose of a prescribed

medicine. In addition, there have been a number of studies regarding the e¤ects of the
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frequency of doses. For example, the treatment e¤ect of taking 1,500 mg of antibiotics

once a day has been found to di¤er from that of taking 500 mg of antibiotics three times

a day. See Dunn et al. (2005).

Example 2: Income Uncertainty and Precautionary Saving

It is widely well known that an increase in income uncertainty leads to a higher rate of

saving. See Canallero (1990) and Guiso, Jappelli and Terlizzese (1992) for more detailed

discussions. Suppose that a researcher wants to estimate the marginal propensity to

consume (MPC) and runs the following panel regression by imposing the homogeneity

restriction on the slope coe¢ cients.

cit = ai + �t + �wit + uit;

where cit is the log consumption for an individual i at time t; and wit is the log wealth

or income. It is natural to assume that the slope coe¢ cient � is heterogeneous across

individuals as some people spend consistently more money than others. Hence the re-

gression error uit may include (�i � �)wit as an additive term. If the higher variance
or uncertainty of wealth leads to lower MPC (see Kimball (1990) for more additional

discussions), then the slope coe¢ cients become dependent on the variances of the inde-

pendent variables.

When the slope coe¢ cients are correlated with the variances of the regressors, the WG estimators

are inconsistent whereas the MG estimators are consistent. Let � 6= 0 in (3): Further let ~xit =

xit � T�1
PT
t=1 xit � n�1

Pn
i=1 xit + (nT )

�1Pn
i=1

PT
t=1 xit; and similarly de�ne ~eit: Then the WG

estimator, �̂wg; is given by

�̂wg � � =
Pn
i=1 (�i � �)

PT
t=1 ~x

2
itPn

i=1

PT
t=1 ~x

2
it

+

Pn
i=1

PT
t=1 ~xit~eitPn

i=1

PT
t=1 ~x

2
it

: (4)

Assume that xit is strictly exogenous; Exitejs = 0 for all i; j; t and s: Then it is easy to show that

plimn!1
�
�̂wg � �

�
6= 0 if � 6= 0; (5)

where � is the mean of �i:

Meanwhile the LS estimator of �i for each i is consistent as long as xit is strictly exogenous.

Let �̂i be the LS estimator for the ith time series regression. Then the MG estimator proposed by

Pesaran and Smith (1995) is given by

�̂mg =
1

n

nX
i=1

�̂i !p � as n!1; (6)
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under regularity conditions which we will discuss shortly.

It is important to address the fact that the inclusion of x2it in the panel �xed e¤ects regression

does not solve this problem. To see this, consider the following augmented panel regression with

x2it:

yit = ai + �t + �xit + x
2
it + uit; for uit = (�i � �)xit + eit: (7)

Since E
Pn
i=1 ~x

3
it (�i � �) 6= E

Pn
i=1 ~x

2
it (�i � �) ; the WG estimator for � is still inconsistent if

E(�i � �)�2x;i 6= 0: Note that the inclusion of x3it does not solve this problem either.

When � 6= 0; the regression should not be pooled. Hence the poolability can be de�ned as

H0 : Poolability () H0 : � = 0: (8)

Since the MG estimator remains consistent regardless of the values of � but the WG estimator

becomes consistent only under the null hypothesis of the poolability, testing for the null of the

poolability can be done by measuring the di¤erence between the MG and the WG estimators. To

be speci�c, let

S =
p
n
�
�̂wg � �̂mg

�
r
V
�
�̂wg � �̂mg

� : (9)

Later we will show that under regularity conditions, the limiting distribution of the S�statistic
becomes the standard normal distribution as n!1: That is,

S !d N (0; 1) as n!1:

3 Asymptotic Properties of the Poolability Test

Here we �rst consider the asymptotic properties of the poolability test when there is no lagged

dependent variable. Later we will consider the dynamic panel regression as a special case.

3.1 Poolability Test with Static Panel Regressions

Rewrite the regression model with multiple regressors as

yit = ai + �t + xit� + uit; for uit = xit (�i��) + eit; (10)

where xit is the (1� k) vector of regressors and �i is the (k � 1) vector of the regression coe¢ cients.
De�ne the asymptotic covariance between the regressors and the slope coe¢ cients as ���: That is,

��� = plimn!1
1

n

nX
i=1

" 
1

T
�iT �

1

nT

nX
i=1

�iT

!
(�i � �)

#
(11)

where �iT =
PT
t=1 ~x

0
it~xit: We make the following assumptions.
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Assumption

(i) Eeitejt = 0 if i 6= j:

(ii) E
�
�ij � �j

� �
�mj � �j

�
= 0 if i 6= m; where �j =E

�
�ij
�
:

(iii) Exij;tems = 0 for all i; j; t;m and s:

We also need other regularity conditions such that all regressors have �nite fourth moments and

the error terms have zero means with �nite second moments. Assumption (i) and (ii) imply cross

sectional independence which is the typical assumption in this literature. We can permit weak cross

sectional dependence but for the simplicity, we do not consider this case. When Assumption (i)

and (ii) are violated, then factor augmented regressors proposed by Pesaran (2006), Bai (2009) and

Greenaway-McGrevy, Han and Sul (2012) can be used. See remark 3 for more detailed discussion.

Assumption (iii) represents strict exogeneity so that lagged dependent variables are precluded. In

fact, Assumption (iii) can be relaxed so that the WG and the MG estimators share the same

probability limit under the null of poolability. See Remark 2 for a detailed discussion.

The WG estimator can be written as

�̂wg�� =
1

n

nX
i=1

(�i � �) +
 

nX
i=1

�iT

!�1( nX
i=1

 "
�iT �

1

n

nX
i=1

�iT

#
(�i � �)

!)

+

 
nX
i=1

�iT

!�1 nX
i=1

TX
t=1

~x0it~eit

!
: (12)

Meanwhile the MG estimator is given by

�̂mg � � =
1

n

nX
i=1

�
�̂i � �

�
=
1

n

nX
i=1

(�i � �) +
1

n

nX
i=1

��1iT

 
TX
t=1

~x0it~eit

!
: (13)

The di¤erence between the WG and MG estimators becomes

�̂wg � �̂mg =

 
nX
i=1

�iT

!�1( nX
i=1

 "
�iT �

1

n

nX
i=1

�iT

#
(�i � �)

!)

+

 
nX
i=1

�iT

!�1 nX
i=1

TX
t=1

~x0it~eit

!
� 1

n

nX
i=1

"
��1iT

 
TX
t=1

~x0it~eit

!#
:

Under the null hypothesis of the poolability, �iT is not correlated with �i: Hence

plimn!1
�
�̂wg � �̂mg

�
= 0: (14)

Let the covariance matrix of
�
�̂wg � �̂mg

�
be


2�� = E
�
�̂wg � �̂mg

��
�̂wg � �̂mg

�0
; (15)
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and the normalized statistic, S as

S =
p
n
�1��

�
�̂wg��̂mg

�
: (16)

Then we have

Theorem 1 (Limiting Distribution under the Null Hypothesis)

Under Assumption A, as n!1 with any �xed T;

(i)
p
n
�
�̂wg � �̂mg

�
!d N

�
0;
2��

�
;

(ii) S !d N (0; Ik)

See Appendix for the proof. The covariance matrix of 
2�� is unknown but can be estimated

consistently. We provide the following lemma.

Lemma 1

Let ziT =
�
�iT � 1

n

Pn
i=1 �iT

� �
�̂i � 1

n

Pn
i=1 �̂i

�
:Then under the null of poolability, the

di¤erence between the WG and MG estimators can be expressed as

�̂wg � �̂mg =
 

nX
i=1

�iT

!�1 nX
i=1

"
ziT �

1

n

nX
i=1

ziT

#
+Op

�
n�1

�
: (17)

See the Appendix for the proof of Lemma 1. Let �iT =
1
T

�
ziT � 1

n

Pn
i=1 ziT

�
and 
2� = E

1
n (
Pn
i=1 �iT ) (

Pn
i=1 �iT )

0 :

Then the probability limit of the sample covariance matrix of �iT becomes

plimn!1
1

n

nX
i=1

�iT �
0
iT = 


2
�; (18)

since �iT is cross sectionally independent. From Lemma 1, the covariance matrix of 
2�� can be

consistently estimated by


̂2�� = n

 
nX
i=1

�iT

!�1 nX
i=1

�iT �
0
iT

! 
nX
i=1

�iT

!�1
!p 
2��: (19)

The S test is similar to Hausman (1978)�s test. The WG estimators can be considered as the

restricted estimators with the homogeneity assumption whereas the MG estimators are unrestricted

estimators.
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Next, we consider the asymptotic properties of the poolability test under the alternative. Let

��� = plimn!1
1

n

nX
i=1

" 
1

T
�iT �

1

nT

nX
i=1

�iT

!
(�i � �)

#
6= 0;

'nT =

 
nX
i=1

�iT

!�1 nX
i=1

�iT (�i � �)
!
:

Then its probability limit becomes

'T= plimn!1'nT = Q
�1
xT���:

Under the alternative, the di¤erence between the WG and MG estimators is given by

�̂wg��̂mg = 'nT +

 
nX
i=1

�iT

!�1( nX
i=1

 "
�iT �

1

n

nX
i=1

�iT

#"
�i �

1

n

nX
i=1

�i

#!)

+

 
nX
i=1

�iT

!�1 nX
i=1

TX
t=1

~x0it~eit

!
� 1

n

nX
i=1

"
��1iT

 
TX
t=1

~x0it~eit

!#
:

Then we have

Theorem 2 (Limiting Distribution under the Alternative)

Under the Assumption A, as n!1 with any �xed T;

(i)
p
n
�
�̂wg � �̂mg �'T

�
!d N

�
0;
2��

�
;

(ii) S ! �1:

See the Appendix for the proof. When the null of the poolability is rejected, the WG estimator

becomes inconsistent. Here we provide three important remarks.

Remark 1: (Homogeneity and Poolability)

If the slope coe¢ cients are homogeneous, then the WG estimators share the same limit-

ing distribution with the MG estimators, so that Theorem 1 still holds. In other words,

homogeneity implies poolability. When �i= � for all i; the di¤erence between the WG

and the MG estimators is rewritten as

�̂wg � �̂mg =
 

nX
i=1

�iT

!�1 nX
i=1

TX
t=1

~x0it~eit

!
� 1

n

nX
i=1

"
��1iT

 
TX
t=1

~x0it~eit

!#
:

Also, it is straightforward to show that 
̂2�� in (19) is still consistent. Note that the

poolability in (8) does not imply the homogeneity at all. However when the null of the

poolability is rejected, the null of the homogeneity is automatically rejected also.
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Even when plimn!1�̂wg = plimn!1�̂mg under the null, it is impossible to know whether or not

the source of the heterogeneity comes from the heterogeneous inconsistency or slope coe¢ cients.

Hence the poolability test becomes meaningful only when both the WG and MG estimators are

consistent. The next remark shows how to use the poolability test with instrumental variables (IV).

Remark 2: (IV estimation and Poolability)

Suppose that Assumption (iii) does not hold. In this case, Theorem 1 can be shown

to hold for an IV estimator. Let �iT =
PT
t=1 ~w

0
it~xit where wit is the (1� k) vector of

IVs. Denote �̂
iv
wg and �̂

iv
mg as the WG-IV and MG-IV estimators, respectively: Then the

di¤erence between the WG-IV and MG-IV estimators is rewritten as

�̂
iv
wg � �̂

iv
mg =

 
nX
i=1

�iT

!�1( nX
i=1

 "
�iT �

1

n

nX
i=1

�iT

#
(�i � �)

!)

+

 
nX
i=1

�iT

!�1 nX
i=1

TX
t=1

~w0it~eit

!
� 1

n

nX
i=1

"
��1iT

 
TX
t=1

~w0it~eit

!#
:

Further let ziviT =
�
�iT � 1

n

Pn
i=1 �iT

� �
�̂
iv
i � 1

n

Pn
i=1 �̂

iv
i

�
; and �iviT =

1
T

�
ziviT � 1

n

Pn
i=1 z

iv
iT

�
:Then

the covariance matrix of �̂
iv
wg � �̂

iv
mg can be consistently estimated by


̂2��;iv = n

 
nX
i=1

�iT

!�1 nX
i=1

�iviT �
iv0
iT

! 
nX
i=1

�iT

!�1
!p 
2��;iv;

where 
2��;iv=E
�
�̂
iv
wg � �̂

iv
mg

��
�̂
iv
wg � �̂

iv
mg

�0
:

Remark 3: (Factor Augmented Regression)

When the regressors and the regression errors are cross sectionally correlated, Assump-

tion (i) does not hold. In this case, the factor augmented estimators suggested by

Pesaran (2006), Bai (2009), Greenaway-McGrevy, Han and Sul (2012), Chudik and

Pesaran (2015), and Song (2013) can be used for the poolability test. Consider the

following regression with cross sectionally dependent errors.

yit = ai + xit�i + uit; uit = �0iFt + u
o
it:

The factor augmented regression can be written as

yit = ai + xit�i + �
0
iF̂t + u

�
it; (20)
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where F̂t are the consistent estimators for H 0Ft where H is an invertible rotating matrix.

Then it is straightforward to show that as long as n; T !1 jointly, Theorem 1 holds.

We require the condition of T ! 1; otherwise the principal component estimates of
the factors, F̂t; are not consistent. We don�t report the �nite sample performance of

the poolability test in (20) to save the space. But these results are available online.

Even when Assumption (iii) is violated, the poolability test works as long as plimn!1�̂wg =

plimn!1�̂mg under the null. The next subsection shows the case where plimn!1�̂wg 6= plimn!1�̂mg
with a �xed T but plimT;n!1�̂wg = plimT;n!1�̂mg as T; n!1 sequentially.

3.2 Poolability Test with Dynamic Panel Regressions

Consider the following simple stationary panel AR(1) model as an example.

yit = ai + �iyit�1 + eit; (21)

where j�ij < 1; and we assume that eit is identically and independently distributed. That is,

eit � iid
�
0; �2e

�
: In this case, Assumption (iii) is violated since E(yit�1eis) 6= 0 for any s < t:

Rewrite (21) after imposing the homogeneity restriction.

yit = ai + �yit�1 + uit; (22)

where uit = (�i � �) yit�1 + eit: Note that

E
1

T � 1

TX
t=1

 
yit�1 �

1

T

TX
t=1

yit�1

!2
=

�2e
1� �2i

:

It is not hard to show that

E

24(�i � �) � 1

T � 1

TX
t=1

 
yit�1 �

1

T

TX
t=1

yit�1

!235 = �2e
�i � �
1� �2i

6= 0: (23)

The WG estimator in (22) becomes inconsistent even when n; T ! 1. Only when �i = � for

all i; the covariance in (23) becomes zero. However, the poolability test is not equivalent to the

homogeneity test. As n ! 1 with a �xed T; both the WG and the MG estimators become

inconsistent even when �i = � for all i: With a large T; the inconsistency can be written as

plimn!1
�
�̂wg � �

�
= �

�
1 + �

T

�
+O

�
T�2

�
; (24)

plimn!1
�
�̂mg � �

�
= �

�
1 + 3�

T

�
+O

�
T�2

�
; (25)
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where �̂mg = n�1
Pn
i=1 �̂i and �̂i is the LS estimator of �i:

1 Therefore Theorem 1 holds only when

T !1 �rst and then n!1 sequentially. See Pesaran, Smith and Im (1996), and Pesaran, Shin

and Smith (1999) for further discussions on this issue.

Also it is important noting that Lemma 1 holds only when T; n!1 sequentially: As shown in

Appendix,

�̂wg � �̂mg =
 

nX
i=1

�iT

!�1 nX
i=1

"
ziT �

1

n

nX
i=1

ziT

#
+ C;

where

C = �
 
1

nT

nX
i=1

�iT

!�1
1p
nT

nX
i=1

 
�iT �

1

n

nX
i=1

�iT

!
1

n

nX
i=1

"
��1iT

 
TX
t=1

~x0it~eit

!#
1p
n

= Op

�
n�1=2T�1

�
;

since

plimn!1
1

n

nX
i=1

"
��1iT

 
TX
t=1

~x0it~eit

!#
= plimn!1

�
�̂mg � �

�
= �

�
1 + 3�

T

�
+O

�
T�2

�
:

Hence Lemma 1 changes as

�̂wg � �̂mg =
 

nX
i=1

�iT

!�1 nX
i=1

"
ziT �

1

n

nX
i=1

ziT

#
+Op

�
n�1=2T�1

�
:

The point of interest is at least theoretically, then, how the poolability test can be used for

testing homogeneity for any �xed T . Without correcting the inconsistency, the di¤erence between

�̂wg and �̂mg still exists so that the test statistic becomes invalid with any �xed T: Hence it is

required to correct the bias �rst. Suppose that the bias functions of �̂wg and �̂i are known and are

monotonic over �i for any T: Then there exist the unique mean unbiased estimators for �̂wg and �̂i:

Denote them as �̂wg,mue and �̂i;mue: Then the exact mean unbiased MG estimator can be de�ned as

�̂mg,mue = n�1
nX
i=1

�̂i;mue:

Naturally, we have

plimn!1�̂wg,mue = plimn!1�̂mg,mue = �:

1To get the result in (25), we need to assume that eit � iidN
�
0; �2e

�
: Without this assumption of the normal

distribution, the explict expectation form cannot be obtained. From Kendall (1968) and Tanaka (1983), the LS

estimator under the null of the homogeneity can be written as

E�̂i � � = �
�
1 + 3�

T

�
+O

�
T�2

�
:

By taking the cross sectional mean in the above equation, we can get the result in (25).
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Hence theoretically for any size of T; the poolability test based on the exact mean unbiased (EMU)

estimators becomes the homogeneity test as long as n!1:
However, there are two serious drawbacks to use the EMU estimator in practice. First, the

EMU estimator for �̂i is depending on the distributional assumption in the �nite sample. Unless

the distribution of the error term is known, the mean unbiased estimator based on a particular

distribution becomes approximated mean unbiased estimator rather than EMU. Second, the distri-

bution of the EMU estimator is usually truncated. Let %1 be the expected value of �̂i when � = 1:

Then when �̂i � %1; �̂i;mue is usually set to be 1. Even without this truncation rule, the limiting

distribution of �̂mg,mue is no longer normal since the distribution of �̂i;mue is not a normal any more

when �̂i � %1. Due to this problem, the variance of �̂mg,mue is usually smaller than the variance of

�̂mg; which leads to the size distortion.
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Figure 1: The size of the poolability test in the AR(1) model

To see this, we perform a Monte Carlo simulation with T = 50: The exact bias function is

simulated from the range of � 2 [�1; 1:3] under the assumption that uit � iidN (0; 1) and ai = 0:2

The truncation rate � the case of �̂i � %1 � is recorded. Figure 1 reports the results with the

simulation size of 5,000. Evidently, either when � = 0:1 or � = 0:5; the poolability test works very

well regardless of the size of n because the truncation rate is zero as we discussed before. Meanwhile

when � = 0:8; the truncation rate increases to 1.9%. Even though it is a small fraction, as n!1;
the size distortion accumulates so that the false rejection rates is increasing over the n=T ratio. Of

2The simulation size is one million.

12



course, the truncation rate is also depending on T: As T decreases, the truncation rate is increasing

as well. Hence with a smaller value of T; the size distortion of the poolability test becomes much

more serious.

It is important noting that the exact bias function for any T is not available except for the

AR(1) model. Only an approximated bias function is known. See Shaman and Stine (1988) for

AR(p) models and Nichollas and Pope (1988) for general VAR models.

For the consistent homogeneity test, the direct homogeneity test is rather desirable. Pesaran

and Yamagata (2008) propose a Swamy (1970)�s type homogeneity test, which does not require for

the correction of the inconsistency. As long as n; T !1 with n=T ! � where 0 � � <1; Pesaran
and Yamagata�s test becomes asymptotically valid.

4 Monte Carlo Simulation and Empirical Example

In this section, we report the �nite sample performance of the proposed test and provide an empirical

example.

4.1 Monte Carlo Studies

We consider the following data generating process (DGP) for the case of single regressor. We

also considered the case of two regressors but we do not report this case as the results are almost

identical to those with single regressor. All results are available on the author�s website.

yit = �i + �ixit + eit;

where

xit = xoit +  wit; x
o
it = �xoit + v

o
it; wit = �wit�1 + vit

eit = eoit +  wit; e
o
it = �eoit�1 + "it; �i = ��2xi + �i

voit � iidN
�
0; �2xi

�
; vit � iidN (0; 1) ; "it � iidN (0; 1) ; �i � iidN (0; 1) :

We set � = 0 under the null of poolability and � = 0:2 under the alternative. We set T 2
[5; 10; 25; 50; 100; 200] ; n 2 [100; 200; 500; 1000] and � 2 [0; 0:9] : The simulation size is 5,000. We
consider the following four cases.

Case 1: No IV  = 0; �2xi � �21 + 0:1;

Case 2: No IV  = 0; �2xi � U [0:05; 2:05] ;

Case 3: With IV,  = 0:1; 0:2; 0:3; �2xi � �21 + 0:1;

Case 4: With IV,  = 0:1; 0:2; 0:3; �2xi �� U [0:05; 2:05] :
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The regressor is strictly exogenous in Cases 1 and 2, while it is endogenous in cases 3 and 4. The

distribution of the variance of the regressor is di¤erent across cases. In cases 1 and 3, the variances

are distributed identically and independently �21 + 0:1. We add a non-zero mean of 0.1. Without

this addition, the variance of the regressor may become zero meaning that the MG estimator is not

well de�ned. In cases 2 and 4, the variance of the regressor is uniformly distributed so that the

MG estimator performs relatively better than in the other cases.

Table1 shows the size of the poolability test. The nominal size is 5%. Regardless of the values

of �; n; and T; the sizes of the test are very good. Even with small T; the tests are only slightly

under-sized in cases 1 and 3. However as n increases, the size distortion rapidly dissipates. When

the variance of the regressor is distributed evenly (cases 2 and 4), the size of the test becomes very

accurate even with small n and T: From these results we can conclude that the poolability test is

generally accurate.

Table 2 reports the power of the test at the 5% level. Even though the value of � is the same

for all cases, the inconsistent parameter ' is di¤erent. In cases 1 and 3, ' = 0:1 but in cases 2 and

4, ' = 0:042: Hence the power of the test in cases 1 and 3 is relatively larger than in cases 2 and

4. Interestingly, the power of the test with � = 0 (no serial dependence) is generally lower than

when � = 0:9 (high serial dependence). However, this �nding could be anticipated as the same

serial dependent structure is imposed on the regressor and the regression error. Nonetheless, the

power of the test in all cases approach unity as n increases. As T increases, the powers of the test

improve slightly, but, as we showed in Theorem 1, the powers of the test are mainly dependent on

the size of n: From the results in Tables 1 and 2 we can conclude that the proposed test works well.

Table 3 shows the variances of the MG and the WG estimators under the null hypothesis. In

all cases, when T is moderately large (for example T > 25); the variances of the MG estimator

are smaller than those of the WG estimator. However when T is very small and IV is used, the

variances of the MG estimators can be extremely large. For example, regardless of the value of n;

the variances of the MG estimator are much larger than those of the WG estimators in cases 3 and

4 when T = 5. It is because the denominator terms,
Pn
i=1

PT
t=1witxit; can be very close to zero

when T is small. However, as T increases, the variances of the MG estimator become smaller than

those of the WG estimator.

Next, we show the e¤ectiveness of the trimmed MG estimation. When the null of the poolability

is not rejected, the WG estimator becomes consistent so that the trimmed MG estimation not

needed. Only when the null is rejected and the number of time series observations is small, the

trimmed MG estimation reduces the variance of the MG estimator. We use the following simple

trimmed method. Order the estimates of the slope coe¢ cients from the smallest to the largest,

and denote them as �̂1 < �̂2 < � � � < �̂n: Delete the �rst p% and the last (1� p)% of �̂i: Then
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the trimmed MG estimator can be obtained by taking the averages of the remaining �̂i: Next, the

trimmed WG estimator can be obtained by running the WG regression only with the cross sectional

units used for the trimmed MG estimator.

Table 4 reports the size and power of the poolability test with and without trimmed method for

Case 3. We set p = 0:05: See the author�s website for more detailed results. The trimmed method

reduces the variance of the MG estimator signi�cantly, especially when T is small. In fact, the

trimmed MG estimator shows smaller variance than the WG estimator with or without trimming.

Also the size of the test becomes more accurate and the power of the test improves when T is small.

However, when T is moderately large (for example T � 25), the trimmed MG estimator does little
to reduce the variance and exhibits slightly worse power. Based on these results, we recommend

using the trimmed MG estimator only when T is small. Note that when there is more than one

regressor, the trimming method can be applied to each regressor individually. For example, consider

the case where k = 2. The �rst trimmed MG estimator can be obtained by discarding the bottom

and top p% of �̂1i. Also the trimmed WG estimator for the �rst regressor can be obtained only

with the cross sectional units used in the �rst trimmed MG estimator. The second trimmed MG

and WG estimators are also obtained by discarding the bottom and top p% of �̂2i: Note that the

trimmed MG estimator can be thought as a weighted MG estimator. Finding the optimal weight

function is desirable. We will consider this interesting issue in the other work.

4.2 Empirical Example: Food Consumption

This section provides an empirical example of the e¤ects of income elasticity on food consumption.

We use PSID data from 1968 to 1972, where the total number of households is 3,577. However,

after eliminating missing or zero observations, the total number of households is reduced to 2,952.

We run the following simple food consumption expenditure regression.

lnCit = ai + �t + �i lnYit + eit;

where Cit and Yit are food expenditure and household income, respectively. As we discussed ear-

lier, if the marginal propensity to consume (MPC) for food consumption is dependent on income

�uctuations, then the regression coe¢ cient �i is dependent on the variance of lnYit: To see this, we

re-order lnCit and lnYit based on the sample variances of lnYit; and estimate �̂wg and �̂mg with the

�rst k subsamples. We consider the range of k 2 [2; 000; 2; 952]. Figure 2 displays these recursive
WG and MG estimates. When k = 2; 000; the panel includes only the �rst 2,000 samples based on

the ranking of the sample variances of lnYit. Evidently, as we add more volatile series, the point

estimate decreases. If �i is not correlated with the variance of the regressor, these two estimators
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should be �uctuated over k:
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Figure 2: Recursive Within Group and Mean Group Estimators

Table 5 reports the regression results with and without the trimming method. The ordinary

MG estimate for the overall MPC becomes 0.1 whereas the WG estimate of 0.07 is slightly smaller

than the MG estimate. The S�statistic without trimming is around 1.65 so that the null of the
poolability is rejected around at the 10% level. In addition, the trimmed MG and WG estimates

show little change relative to their non-trimmed counterparts, but the S�statistic increases to 4.14
so that the null hypothesis is strongly rejected. This evidence suggests that food consumption is

dependent on income �uctuations, and the slope coe¢ cients are heterogeneous.

Table 5: Estimates of MPC of the Food Consumption

�̂mg �̂wg S

Without Trimmed 0.1032 0.0675 1.652

With Trimmed at 5% 0.1096 0.0675 4.135

5 Concluding Remarks

Pooling cross sectional and time series information is harmful when the slope coe¢ cients are het-

erogeneous and are correlated with the variances of the regressors. This paper proposes a simple
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test to examine whether or not pooling is appropriate. When the null hypothesis of the poolability

is rejected, the MG estimator should be used. The suggested test can be used with IV estimators

when the regressors are not exogenous. By means of Monte Carlo simulations, we show that the

proposed test works well in the �nite sample. However, when T is small, the MG estimator becomes

ine¢ cient: The variance of the MG estimator is usually much larger than that of the WG estimator.

To overcome this e¢ ciency loss, we suggest the trimmed MG estimator when T is small.
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6 Technical Appendix

Here we rewrite the de�nition used in the main text. �iT =
PT
t=1 ~x

0
it~xit;QxT = limn!1E

1
nT

Pn
i=1 �iT ;

and ziT =
�
�iT � 1

n

Pn
i=1 �iT

� �
�̂i � 1

n

Pn
i=1 �̂i

�
: Under the null, let �i = � + �i. And denote

�2� = Ik 
 �2� where �2� =
�
�2�;1; :::; �

2
�;k

�0
: De�ne

�T = E
1

nT

nX
i=1

(�iT �QxT ) (�i � �) (�i � �)0 (�iT �QxT )0 :

Note that the covariance matrix of �T is a �nite positive de�nite matrix.

Rewrite (12) as

p
n
�
�̂wg��

�
=

1p
n

nX
i=1

(�i��) +
 

nX
i=1
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Meanwhile the OLS estimator is given by

�̂i � �i = ��1iT

 
TX
t=1

~x0it~eit

!
;

and the mean group estimator is de�ned as

�̂mg =
1

n

nX
i=1

�̂i =
1

n

nX
i=1

�i +
1
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i=1

"
��1iT
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Proof of Lemma 1 Note that
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Under the null hypothesis, note that E 1n
P
ziT = 0 since �iT is independent from �̂i: Hence we

consider only ziT : Next observe this. For a large n; we have

�̂wg � �̂mg =

 
nX
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The A term is given by
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Meanwhile the C term can be expressed as
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Then its probability limit becomes
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Meanwhile the limiting distribution of the MG estimator does not change under the alternative.

Hence it is straightforward to show that
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Table 1: The Size of the Poolability Test (Nominal size = 5%)

� =0 � =0.9

n T Case1 Case2 Case3 Case4 Case1 Case2 Case3 Case4

100 5 0.035 0.047 0.037 0.048 0.032 0.048 0.035 0.045

100 10 0.040 0.051 0.035 0.044 0.036 0.045 0.036 0.048

100 25 0.041 0.052 0.047 0.053 0.037 0.052 0.040 0.050

100 50 0.043 0.047 0.041 0.051 0.041 0.044 0.043 0.047

100 100 0.043 0.052 0.042 0.052 0.039 0.053 0.040 0.046

100 200 0.044 0.050 0.040 0.048 0.037 0.049 0.039 0.055

200 5 0.041 0.050 0.041 0.048 0.036 0.045 0.037 0.042

200 10 0.048 0.050 0.045 0.057 0.044 0.050 0.043 0.046

200 25 0.043 0.044 0.041 0.049 0.043 0.051 0.040 0.043

200 50 0.045 0.049 0.042 0.046 0.037 0.054 0.040 0.050

200 100 0.047 0.056 0.045 0.051 0.044 0.050 0.046 0.052

200 200 0.045 0.053 0.049 0.055 0.040 0.049 0.049 0.053

500 5 0.047 0.053 0.042 0.051 0.044 0.051 0.041 0.047

500 10 0.047 0.049 0.051 0.050 0.044 0.050 0.047 0.048

500 25 0.045 0.050 0.042 0.052 0.046 0.049 0.047 0.051

500 50 0.047 0.056 0.045 0.052 0.049 0.048 0.047 0.051

500 100 0.044 0.047 0.042 0.047 0.046 0.044 0.046 0.046

500 200 0.042 0.048 0.046 0.051 0.047 0.049 0.047 0.051

1000 5 0.052 0.047 0.050 0.049 0.045 0.042 0.041 0.046

1000 10 0.051 0.052 0.047 0.045 0.045 0.050 0.049 0.052

1000 25 0.049 0.048 0.048 0.050 0.048 0.045 0.050 0.046

1000 50 0.054 0.046 0.045 0.049 0.047 0.047 0.048 0.053

1000 100 0.051 0.052 0.049 0.046 0.050 0.048 0.053 0.049

1000 200 0.049 0.048 0.043 0.049 0.050 0.049 0.041 0.054
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Table 2: The Power of the Poolability Test (Nominal Size = 5%)

� = 0 � = 0:9

n T Case1 Case2 Case3 Case4 Case1 Case2 Case3 Case4

100 5 0.238 0.075 0.243 0.080 0.179 0.061 0.171 0.069

100 10 0.415 0.114 0.417 0.112 0.247 0.077 0.260 0.077

100 25 0.520 0.148 0.536 0.162 0.329 0.089 0.342 0.090

100 50 0.560 0.176 0.557 0.178 0.384 0.102 0.393 0.101

100 100 0.578 0.188 0.574 0.182 0.459 0.127 0.465 0.123

100 200 0.582 0.190 0.593 0.197 0.512 0.145 0.520 0.157

200 5 0.548 0.105 0.527 0.118 0.405 0.082 0.373 0.087

200 10 0.753 0.176 0.777 0.184 0.525 0.105 0.565 0.111

200 25 0.875 0.250 0.869 0.273 0.656 0.129 0.653 0.139

200 50 0.898 0.300 0.902 0.294 0.743 0.168 0.748 0.162

200 100 0.905 0.333 0.907 0.332 0.815 0.202 0.818 0.207

200 200 0.916 0.343 0.911 0.364 0.866 0.258 0.861 0.265

500 5 0.933 0.210 0.874 0.217 0.833 0.143 0.721 0.158

500 10 0.994 0.381 0.996 0.388 0.933 0.197 0.929 0.212

500 25 0.998 0.559 0.999 0.565 0.975 0.262 0.975 0.278

500 50 1.000 0.643 1.000 0.636 0.989 0.340 0.989 0.345

500 100 1.000 0.678 1.000 0.690 0.997 0.442 0.997 0.453

500 200 1.000 0.713 0.999 0.703 0.999 0.546 0.998 0.553

1000 5 0.998 0.361 0.934 0.356 0.989 0.241 0.842 0.240

1000 10 1.000 0.642 1.000 0.663 0.997 0.347 0.992 0.378

1000 25 1.000 0.841 1.000 0.859 1.000 0.442 0.999 0.492

1000 50 1.000 0.906 1.000 0.906 1.000 0.574 1.000 0.603

1000 100 1.000 0.931 1.000 0.934 1.000 0.720 1.000 0.741

1000 200 1.000 0.945 1.000 0.944 1.000 0.834 1.000 0.837
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Table 3: Variances of the MG and WG Estimators under the Null Hypothesis

(� = 0:9)

MG WG

n T Case1 Case2 Case3 Case4 Case1 Case2 Case3 Case4

100 5 3.423 2.479 < 100 46.76 4.981 2.859 4.776 2.886

100 10 2.180 1.694 8.105 4.077 4.447 2.515 4.359 2.535

100 25 1.722 1.413 1.730 67.19 3.729 2.142 3.891 2.123

100 50 1.471 1.266 1.481 1.270 3.398 1.827 3.505 1.862

100 100 1.242 1.170 1.222 1.160 3.093 1.631 2.967 1.630

100 200 1.072 1.064 1.201 1.050 2.758 1.431 2.912 1.447

200 5 1.647 1.212 < 100 17.04 2.430 1.375 2.546 1.420

200 10 1.048 0.853 10.44 1.544 2.266 1.231 2.248 1.200

200 25 0.858 0.706 0.915 0.719 2.025 1.090 2.002 1.057

200 50 0.738 0.615 0.746 0.660 1.740 0.919 1.753 0.930

200 100 0.642 0.585 0.637 0.572 1.604 0.804 1.537 0.811

200 200 0.566 0.538 0.585 0.554 1.419 0.746 1.486 0.729

500 5 0.662 0.487 < 100 45.80 1.014 0.565 1.042 0.577

500 10 0.428 0.338 0.853 1.185 0.928 0.487 0.953 0.488

500 25 0.351 0.281 0.363 0.924 0.787 0.426 0.815 0.430

500 50 0.302 0.256 0.295 0.265 0.715 0.370 0.711 0.385

500 100 0.256 0.236 0.252 0.234 0.608 0.321 0.612 0.324

500 200 0.223 0.219 0.240 0.220 0.559 0.298 0.581 0.299

1000 5 0.337 0.240 < 100 52.28 0.513 0.279 0.542 0.279

1000 10 0.213 0.169 16.24 5.338 0.470 0.251 0.456 0.244

1000 25 0.168 0.143 0.184 0.143 0.412 0.216 0.421 0.206

1000 50 0.151 0.128 0.150 0.123 0.362 0.180 0.348 0.178

1000 100 0.126 0.116 0.126 0.113 0.322 0.165 0.326 0.160

1000 200 0.112 0.107 0.118 0.113 0.300 0.148 0.287 0.149
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Table 4: E¢ ciency of Trimmed Estimation

Without Trimmed With Trimmed

5% Variance�102 5% Variance�102

n T MG MG WG MG MG WG

Under the Null 100 5 0.035 < 100 4.776 0.058 2.755 4.709

100 10 0.036 8.105 4.359 0.041 2.108 4.166

100 25 0.040 1.730 3.891 0.045 1.651 3.546

100 50 0.043 1.481 3.505 0.043 1.466 3.143

100 100 0.040 1.222 2.967 0.041 1.233 2.604

100 200 0.039 1.201 2.912 0.042 1.224 2.567

1000 5 0.041 < 100 0.542 0.054 0.263 0.531

1000 10 0.049 16.24 0.456 0.054 0.204 0.436

1000 25 0.050 0.184 0.421 0.054 0.173 0.384

1000 50 0.048 0.150 0.348 0.050 0.148 0.319

1000 100 0.053 0.126 0.326 0.050 0.128 0.274

1000 200 0.041 0.118 0.287 0.045 0.121 0.250

Under the Alternative 100 5 0.171 < 100 6.947 0.241 2.938 5.921

100 10 0.260 7.517 6.185 0.253 2.246 4.906

100 25 0.342 1.857 5.809 0.288 1.788 4.159

100 50 0.393 1.611 5.289 0.307 1.592 3.525

100 100 0.465 1.327 4.543 0.324 1.335 2.967

100 200 0.520 1.309 4.561 0.363 1.326 2.835

1000 5 0.842 < 100 0.807 0.993 0.275 0.643

1000 10 0.992 16.80 0.693 0.992 0.215 0.519

1000 25 0.999 0.192 0.628 0.995 0.182 0.438

1000 50 1.000 0.158 0.542 0.998 0.156 0.356

1000 100 1.000 0.134 0.498 0.999 0.136 0.314

1000 200 1.000 0.127 0.456 1.000 0.129 0.282
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