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Abstract

This paper discusses pitfalls in two-way fixed effects (TWFE) regressions when the outcome

variables contain nonlinear and possibly stochastic trend components. If a policy change shifts

trend paths of outcome variables TWFE estimation can distort results and invalidate inference.

A robust solution is proposed by allowing for dynamic club membership empirically using a

relative convergence test procedure. The determinants of respective club memberships are as-

sessed by panel ordered logit regressions. The approach allows for policy evolution and shifts

in outcomes according to a convergence cluster framework with transitions over time and the

possibility of eventual convergence to a single cluster as policy impacts mature. The long-run

impact of a policy can thus be examined via its impact on convergence club membership. An

application to new weekly US Covid-19 vaccination policy data reveals that Federal-level vac-

cine mandates produced a merger of state vaccination rates into a single convergence cluster by

mid-September 2021.
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1 Introduction

Two-way fixed effects (TWFE) regressions are commonly used in empirical work, particularly to

evaluate the effectiveness of exogenous policy change. Several outcome variables are often examined

in such regressions and policy effectiveness is measured through its potential impact on dependent

variables that may themselves involve stochastic trends such as random walks or similar random

processes with nonlinear trend components. Examples of such variables are personal wages, state

per capita income, and life expectancy data, all of which are popular in practical work because of

their immediate relevance in policy determination or more general interest in social science studies.

For a recent estimate of such work we counted the number of published papers that employed

nonstationary outcome variables in the January 2023 issue of the AEJ: Applied Economics. Of the

16 articles published in this issue all but one used TWFE regressions. Among these, 12 papers

used nonstationary outcome variables including log earnings, log wages, median income and crop

output; and some 86% of the papers using TWFE regressions employed nonstationary dependent

or outcome variables.1

To fix ideas suppose yit is a relevant outcome variable comprising a sequence of panel obser-

vations of interest across individuals (i = 1, · · · , n) and over time (t = 1, · · · , T ) and let xit be a

relevant policy variable. A typical TWFE regression specification for analyzing such data takes the

form

yit = aoi + θot + βxit + γ′zit + vit, (1)

where aoi and θot are individual and time specific effects, and zit is a vector of control variables.

When the policy xit has the form of a panel dummy variable, some pitfalls in TWFE estimation have

already been studied in recent work De Chaisemartin and d’Haultfoeuille (2020); Goodman-Bacon

(2021). The present paper extends that research by considering more general and empirically

relevant cases where the policy variable xit may itself evolve over time and where the outcome

variable yit may have nonstationary characteristics sourced beyond the policy input. In complex

applied work where the nonstationarity in outcomes is not fully captured by policy inputs or

time specific effects, the regression residual vit becomes nonstationary and the adequacy of TWFE

regressions in accurately measuring policy effectiveness may be called into question.

Previous studies often bypass such complications by assuming a small fixed T , frequently just

T = 2 observations, and allowing a large cross section sample size n to deliver asymptotics. In

cases like the recent Covid-19 pandemic experience successive policy changes over time need to be

accommodated in the data analysis and longer time series samples are available for assessing the

1Amongst individual household earnings or wages only a small fraction may have nonstationary charac-
teristics but as these time series are aggregated nonstationary characteristics tend to stand out and become
more dominant as the aggregation level successively rises from suburbs to cities and counties. See Sul (2019)
for discussion.
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evidence of successive policy effects in the observed outcomes. Our empirical study has T = 40 and

n = 51 observations, so that cross section and time series sample sizes are comparable. This paper

studies cases where trends are homogeneous and heterogeneous over individuals under the null of

no treatment effect or no policy effectiveness. Under the alternative, policy variables influence

outcome variables either in levels (C1) or in trends (C2). If a stationary policy variable affects a

nonstationary outcome variable in levels (C1), the policy effectiveness does not last long, holding

only temporarily. In this case, TWFE regression is valid only under a homogeneous trend with

consistent estimation and valid standard errors as n → ∞. But the properties of estimation and

inference are less favorable when the outcome variables are nonstationary with heterogeneous trend

behavior. A partial solution is straightforward under the assumption that policy variables affect

outcomes only in levels. For level effects can be consistently estimated either under homogeneous

or heterogeneous trends using the differenced regression

∆yit = ai +∆θot + β∆xit + γ′∆zit +∆vit, (2)

However, it is unrealistic to expect that policy variables affect outcomes only in levels. When

policy affects trend behavior of the outcome variables, the first difference TWFE regression (2) is

misspecified, leading to inconsistent estimation of policy effects.

Our study considers several issues that bear directly on TWFE and difference-in-difference

(DiD) treatment effect analysis. The primary concern examines outcome variables when stochastic

trend components are omitted from the regression and when heterogeneous trend behavior over time

or across individuals affects outcomes. In both cases, the TWFE system is misspecified, leading to

growing uncertainty and inconsistent estimation. A typical DiD approach2 to resolving this issue

is to employ first difference outcomes or growth rates while maintaining the same policy variable,

so that the TWFE regression now takes the form

∆yit = ai + θt + βxit + γ′zit + uit, (3)

in which the influence of xit on the growth rate of yit is studied. This approach leads to a further

pitfall which arises when the outcome yit has nonlinear trend behavior. First difference TWFE

regressions, either in (2) or (3), typically examine short run responses by removing presumed long

run stochastic trend (unit root process) relationships, which may not be well suited to other long

run behavior. For instance, suppose that a certain policy change has a positive effect only for a

2In the DiD or event-study regression literature, several devices have been proposed, which are well
surveyed in the recent review by Roth et al. (2023) and an alternative solution allowing for violation of the
parallel trends assumption is considered in Rambachan and Roth (2023). Our approach allows, in addition,
for policy evolution and shifts in outcomes over time according to a convergence cluster framework with
transitions over time and the possibility of eventual convergence to a single cluster as policy impacts mature.
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short period but produces a negative impact on the outcome variable in the long run. In such a

case, TWFE estimation as in (3) can mistakenly lead to an implied positive impact even for large

T , as demonstrated later.

One of the main contributions of the paper is to provide a methodology that organizes non-

stationary panel data into ordered panel multinomial variables by means of a dynamic clustering

mechanism that allows for shifts in clusters over time. To fix ideas, define Cit to be the con-

vergence club membership in period t of the i-th individual and suppose all individuals within a

certain convergence club share the same stochastic trend. If an individual grows faster over time

and joins another convergence club that attains higher outcomes, then Cit membership changes

over time. The convergence clustering mechanism (CCM hereafter) proposed in earlier work by

Phillips and Sul (2007a, hereafter, P-S) transforms statistics from panel observations to clustered

cross-sections, but potential dynamic changes amongst club memberships are ignored. In practice,

club membership can change over time, particularly as relevant policies are introduced or evolve

over time, and such evolution can itself be a natural focus of interest concerning policy impacts.

Our approach in the present paper is to develop the CCM of P-S into a dynamic version that

accommodates such possibilities. Once dynamic group membership is estimated, panel logit (or

multinomial logit) regression enables estimation and inference concerning driver variables and the

determining mechanisms of the groups. The proposed method can be used with either event-study

(DiD) or continuous policy interventions. The approach is also robust against functional forms

with heterogeneous trends as long as Cit membership is well defined.

A second main contribution of the paper is to create a new weekly database that tracked state

and District of Columbia announcements of the numerous vaccination policies3 implemented over

the period from March 2021 to February 2022. This database enables a detailed empirical study of

the impact of federal and state vaccination policies on state vaccination rates. A final contribution is

technical and relates to the use of logarithmic transformation of the data. In particular, we consider

the use of logarithms of ratios in panel data and provide a simple procedure for dealing with the

practical problem of logarithmic representations when a few data points are zero or negative.

The rest of the paper is organized as follows. Section 2 considers issues arising from nonsta-

tionary outcome variables and pitfalls in the use of first differences in policy evaluation. Dynamic

mechanisms for club membership are developed in Section 3. Section 4 consists of two subsections.

The first subsection discusses data preparation and some useful new adjustments in logarithmic

transforms and then second subsection provides an application of this mechanism to state vacci-

nation rates over time in the United States. Panel logit modeling is applied to assess the effects

of U.S. federal level mandate announcements and various state level COVID-19 vaccine policies on

3These policies included lotteries, cash for vaccination incentives, community outreach programs, vaccine
mandates for state employees and or healthcare workers, indoor vaccine mandates or mandates for gatherings
over a certain number of people, mask mandates, bans on proof of vaccination, and bans on mask mandates.
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state convergence club membership. Section 5 concludes. Federal and state level mandate policies

are described in Appendices A and B, and additional logit regression specification results are given

in Appendix C. Technical background, derivations, proofs and further simulations are provided in

the Online Supplement to this paper.

2 Pitfalls of TWFE Regressions with Nonstationary Outcomes

Throughout the paper we assume that the dependent or outcome variables are nonstationary,

whereas the policy variable is stationary.4 We consider the following three general models allowing

nonstationary outcomes when a policy variable does not influence yit (i.e., under the null hypoth-

esis):

yit =


ai + t+ ξit, ξit = ξit−1 + uit forM1,

ai + bit+ ξit, ξit = ξit−1 + uit forM2,

ai + bitt+ ξit, ξit = ξit−1 + uit forM3,

(4)

where the nonstationarity includes heterogeneous deterministic trend functions as well as a stochas-

tic trend. Specifically: in M1, yit has a homogeneous linear trend; in M2, yit has a heterogeneous

linear trend with time invariant individual coefficients bi; and in M3, the individual trend coef-

ficients bit are time varying, which nests M1 and M2. A policy variable, xit, is assumed to be

stationary. One may introduce a staggered or continuous trend to xit
5, but such modifications do

not alter the main results of the paper.

Under this framework there are two mechanisms by which the stationary policy change can

affect the nonstationary outcome under the alternative: (i) xit can affect the level of yit (designated

C1, as above); and (ii) xit can affect the trend coefficient bit (designated C2). Under the null of no

policy effectiveness, the outcome variables are given by (4). In this case the parameter β, which

measures the policy impact in the following equations, is zero. The two alternative cases are written

as follows.

yit = ai + θt + βxit + ξit forC1, (5)

bit = bo + βxit + eit forC2, (6)

where θt in (5) may be a linear or more general deterministic trend and bit are the trend coefficients

in M3. We consider C1 in the next subsection, showing that if the true generating process is either

4As shown later in the empirics, key policy variables often tend to change in a staggered manner over
time. After removing the steps these variables are typically flat or stationary about certain levels. As such,
they impact outcome variables only temporarily. On the other hand a policy that switched on and off at
different levels of intensity could produce nonstationarity in mean.

5As shown in Figure 3 there were staggered increases in the Federal vaccine mandate, whereas the vaccine
lottery had been in decline continuously after July in 2021.
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M1 or M2, a first difference regression can account for the nonstationary process in C1. C2, however,

is a more realistic formulation that has been used by labor and health economists in situations a

stationary policy affects the long run behavior of outcome variables. For example, Abadie et al.

(2010) showed that California’s tobacco control program changed the slope of the trend in tobacco

consumption. In such situations first difference regression fails, as shown in Section 2.2 below. An

alternative solution is provided in Section 3.

2.1 Policy influence only on levels: C1

This model has been popularly considered in the treatment effects literature. Without a homoge-

neous trend assumption, difference-in-difference estimation fails to identify the treatment effects.

When a policy variable xit is stationary in a model such as (5), it is not a long run determinant of

the outcome variable and impacts the outcome only temporarily.

Consider the following TWFE regression frequently used in applied research:

yit = ai + θt + βxit + vit, (7)

where θt is a time fixed effect and the regression error vit in (7) is the stochastic trend ξit. Let β̂l

be the TWFE estimator of β in (7). To simplify notation, rewrite (7) in differenced form as

ẏit = βẋit + v̇it, (8)

where ẏit = yit − 1
T

∑T
t=1 yit −

1
n

∑n
i=1 yit +

1
nT

∑n
i=1

∑T
t=1 yit, with similar definitions for the other

variables. This within-group transformation does not alter the nature of nonstationarity but it does

eliminate heterogeneous individual fixed effects and any homogeneous (over individuals) trend. The

consequences of using this TWFE regression when the policy variable xit is stationary arise from

the fact that the regression is ill-balanced because of the stochastic trend effects that remain in v̇it

and are transmitted to ẏit. This lack of balance induces a reduction in the signal to noise ratio that

affects the accuracy of the TWFE estimator, β̂l. The properties of β̂l depend in this case primarily

on the cross section sample size n, so that increases in the number of time series observations do

not help to shrink the variance of β̂l.
6 More formally, as n, T → ∞, when xit affects yit only in

levels as in (5), the limit distribution of β̂l is given by

√
n(β̂l − β) → N (0, Vβ), (9)

with asymptotic variance Vβ shown in the Online Supplement (Theorem 1). A panel robust variance

6In this regression, the signal from the sample variance of ẋit is dominated by the sample covariance of
ẋit and v̇it because the regression error is nonstationary. See the Online Supplement for further analysis.
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estimator, clustering by time, can be used to consistently estimate Vβ.

Next, consider the case of heterogeneous trends. Many dependent variables used in TWFE

regressions can be expected to involve heterogeneous trends, a complication that affects asymptotic

behavior and finite sample performance even when some of the regressors themselves include trends.

As long as time-homogeneous coefficients are assumed in estimation, the regression error carries

the effects of heterogeneous trends, leading to failure in standard limit theory and inference. To

illustrate, suppose yit is generated from

yit = ai + bit+ βxit + ξit, (10)

where ξit is nonstationary.
7 Then the induced TWFE residual in (8) includes a trend term under

the null β = 0, i.e.,

v̇it = (bi −
1

n

n∑
i=1

bi)(t−
1

T

T∑
t=1

t) + ξ̇it, (11)

so that cross section variation of v̇it grows at an O(t2) rate even when ξit is stationary. When xit

affects yit in levels under heterogeneous trends, the asymptotic behavior as (T, n) → ∞ of β̂l are

shown in Theorem 3 of the Online Supplement to have the following form

√
n(β̂l − β) = Op(T

1/2) +N (0, V ). (12)

To examine the empirical implications of these asymptotic findings, we use log COVID-19

vaccination data across 50 US states – see the empirical section for a detailed explanation of the

data. We also ran a Monte Carlo simulation with 50,000 replications to explore test size, giving

rejection frequencies of the null hypothesis when the null is true. For each replication, a random

policy variable x∗it was generated from a standard normal distribution. The outcome variable is

constructed as follows. First, we computed the cross section average µ̂t = 1
n

∑n
i=1 yit of the log

vaccination rates across states. Next, we generated pseudo vaccination rates as

y∗it =

{
ai + µ̂t + ξit, forM1,

ai + biµ̂t + ξit, forM2,
(13)

where ai ∼iid N (0, 1), bi ∼iid N (1, 1), ξit = ξit−1 + uit with uit ∼iid N (0, 1) and ξi1 = ui1. Test

power was computed from the rejection frequencies of the null when the null is false using the

7The asymptotic results do not change even when ξit is stationary under heterogeneous trends
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Table 1: Monte Carlo Simulation Results of Level Effects with Nonstationary Errors

β̂l β̂fd
Size (10%) T Hom Het Hom Het

10 0.112 0.113 0.116 0.114
15 0.113 0.113 0.113 0.113
20 0.112 0.111 0.114 0.113
25 0.114 0.111 0.110 0.113
40 0.113 0.111 0.114 0.114

Power 10 0.492 0.190 0.909 0.911
15 0.519 0.174 0.981 0.981
20 0.526 0.160 0.996 0.997
25 0.533 0.154 1.000 0.999
40 0.543 0.137 1.000 1.000

following data generating process:

y∗it =

{
ai + µ̂t + βx∗it + ξit, forM1,

ai + biµ̂t + βx∗it + ξit, forM2,
(14)

where β = 0.1. In all replications n = 50 and T ∈ {10, 15, 20, 25, 40}.
Table 1 shows simulation findings based on (13) and (14). Under M1 (homogeneous trend)

and M2 (heterogeneous trend), the size of the test seems satisfactory even for T = 10. The main

difference is found in test power, as asymptotic results predict. As T increases, the power of the

test based on β̂l decreases under M2, but fluctuates under M1.8

The following first difference (FD) regression can be used to restore test power:

∆yit = ai +∆θt + β∆xit + eit, (15)

or the two-way transformed form given by

∆ẏit = β∆ẋit + ėit. (16)

8Since our simulations replicate actual vaccination rates using a random ensemble, the sample sizes n
and T cannot be raised greater than their actual empirical sizes (n = 50, T = 40). However, as shown in the
supplementary appendix, results from standard Monte Carlo simulations mirror the asymptotic theory. As
n increases, size becomes more accurate and power improves; but as T increases, size changes little. For M1,
test power based on β̂l fluctuates with T for a given n. For M2, test power actually decreases as T increases
for a given n.
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Importantly, the FD regression includes two way fixed effects. The individual fixed effect ai captures

potential heterogeneous trend coefficients, while the time fixed effect ∆θt captures common time

changes. The regression error eit is now stationary. Let β̂fd be the TWFE estimator in (16). It is

straightforward to show that as T, n → ∞,

√
nT (β̂fd − β) → N (0, Vβfd

), (17)

where Vβfd
is the asymptotic variance of β̂fd, which is smaller than Vβl

in (9). This limit theory

is only valid it is known that xit affects only the level of yit. In practice, it may be challenging

to assess whether xit affects the level or the trend behavior of yit or both. For when the outcome

variable itself has a trend, any level change is temporary and permanent effects or long run impacts

are inevitably influenced by the trend or trend coefficients. It may therefore appear reasonable to

assess how a policy change affects growth rates rather than level outcomes, suggesting a TWFE

regression in differences as in (2). However, if the outcome variable has nonlinear or time-variable

trend behavior then TWFE regression in differences also fails to capture the impacts of a policy

change. This issue is now discussed.9

2.2 Policy influence on trends: C2

For further analysis of potential pitfalls in TWFE estimation consider the generating process (DGP)

yit = ai + bitt+ ξit, with ξit = ρξit−1 + eit, (18)

where intercepts ai affect the level of yit, the bit are time varying trend coefficients, and the ξit are

time series10 with a unit root when ρ = 1. Now suppose that a policy variable xit influences bit. In

this event, regressions either in first differences or growth rates of yit fail to deliver a satisfactory

proxy for the temporal impact bit. For instance, taking differences of (18) gives

∆yit = bitt− bit−1(t− 1) + ∆ξit = bit +∆bit(t− 1) + ∆ξit, (19)

so that ∆yit differs from bit due to potential trend effects from both ∆bit(t− 1) and ∆ξit. Hence,

regression of ∆yit on fixed effects (both individual and time specific) and xit will produce misleading

findings about the impact of policy because of the missing trend and policy effects in the component

∆bit(t− 1).

For a specific example consider a case where there are two different sub-groups G1 and G2 in the

9A more technical discussion is given in the Online Supplement.
10If the DGP (10) changes to (18), the asymptotic effects are similar but the reported simulation results

deteriorate and these now depend on the variance of bit.
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panel. In G1, yit has a constant growth rate b1 over time; in G2, yit initially has a lower growth rate

but after some threshold point (τ), yit begins to catch up with or diverge from yit ∈ G1. Formally,

bit =


b1 if i ∈ G1,

b2 if i ∈ G2, & t ≤ τi

b3 + d(t− τi)
−α if i ∈ G2, & t > τi

. (20)

Introduce a policy variable xit defined by

xit =


1 if i ∈ G1,

0 if i ∈ G2, & t ≤ τi

1 if i ∈ G2, & t > τi

(21)

Key parameters in this specification are α and b3. If α < 0, regardless of the value of b3, bit ∈ G2

diverges, and yit ∈ G2 diverges also. But when α > 0, bit ∈ G2 converges to b3 irrespective of the

initial value b2 and, as t → ∞,

bit → b3 if i ∈ G2. (22)

When b3 = b1 the trend coefficients are eventually homogeneous.

Figure 1 gives illustrations. Ignoring random innovations in the DGPs, we generate y1t = 0.5t in

G1, and consider two versions of G2: the first is a convergent panel with y2t = [0.5+0.2(t−50)−0.5]t;

and the second is a divergent panel with y3t = [0.4 − 0.2(t − 50)−0.5]t. Observe also that relative

convergence also applies, viz., y2t/y1t = 1 + 0.2
(t−50)0.5

→ 1 as t → ∞ and b2t/b1t = 1 + 0.4
(t−50)0.5

→ 1

as t → ∞.

As shown in Panel (a) of Figure 1, the time path of y2t initially diverges from y1t but after

t = 50 begins to catch up with y1t. Meanwhile, y3t diverges except at t = 51. The problem occurs

when the first difference is taken and the dependent variable is ∆yit. Panel (b) shows the time

path of ∆yit. At t = 51, both ∆y2t and ∆y3t have high spikes. For t > 51, both series decrease.

Due to these spikes, the values of the coefficients are positive and slowly converge to constants that

depend on the value of b3.

Now assume that the following TWFE regression is employed to analyze the policy impact

∆yit = ai + θt + βxit + uit, (23)

where xit is given in (21). Note that the independent variable here is not ∆xit but xit because

the policy variable directly affects the trend coefficient. Since ∆yit is not a straightforward linear

regression because of the dummy variable temporal shift in xit, a conventional TWFE regression is

unsuited to capture the policy effects of xit. In particular, the relationship between ∆yit and the

10



Figure 1: Time paths of yit and ∆yit

(a) yit (b) ∆yit

Notes: Here y1t = 0.5t, y2t = [0.5 + 0.2(t− 50)−0.5]t, and y3t = [0.4− 0.2(t− 50)−0.5]t. As t → ∞, y1t and
y2t converge to each other, but y1t diverges from y3t.

impact of xit is necessarily time varying with a regression coefficient that can change over time.

Figure 1 provides a visualization of this problem, where yit is generated deterministically as detailed

in the figure and (23) is fitted by linear regression.11

Figure 2 displays how the true coefficients change over time. Here, with time series data ∆y1t

and ∆y2t, the coefficient β > 0 for all t and seems to converge to 0.33. Meanwhile, with ∆y1t and

∆y3t, β seems to converge to 0.2. These examples show the limitation of TWFE regressions with

differenced data ∆yit. Since the TWFE regressions with first difference outcomes are estimating

the effectiveness of a policy variable in the short run, it is natural that β > 0 with (y1t and y3t)

in this particular example. However, the issue is that when b3 in (20) takes on a small value,12

the true value of β becomes negative in the long run. Thus, such TWFE regressions are unable to

produce meaningful values of the true policy effect β.

In sum, TWFE regressions formulated with first differenced outcomes are not suited to evaluate

the effectiveness of policy changes if yit involves non-linear trend effects. In such circumstances the

problem of how to evaluate the effectiveness of policy changes is of considerable empirical interest.

Two solutions are discussed in the next section.

11The data yit in this case are generated deterministically as in the example of Figure 1 with no random
components and least squares regression is used to fit the coefficients.

12For example, let b3 = 0.15. The coefficient β is initially positive until t < 65, but then becomes negative
and seems to converge to -0.045.
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Figure 2: Time paths of the true coefficient values of β in the two panels

Notes: Data are generated according to the deterministic relations y1t = 0.5t, y2t = [0.5 + 0.2(t− 50)−0.5]t,
and y3t = [0.4−0.2(t−50)−0.5]t for t = 1, · · ·T , and then first differences are taken. Next, the fixed effects are
eliminated by removing time series averages of ∆yit. The common time effects are eliminated by removing
cross-sectional averages in each sub-panel. Then, the least squares is used to calculate (not estimate) the
value of β.

3 A Dynamic Clustering Approach

This section describes a clustering approach to the evaluation of policy impacts in the presence of

trending outcomes. The first part introduces the relative convergence test proposed by P-S, which

can be used to test for a common nonlinear or stochastic trend in outcome data. If a panel of

interest shares a common nonlinear or stochastic trend, then the TWFE regression in (16) is valid

since xit cannot influence the homogeneous trend coefficient heterogeneously.13 The second part

provides a methodology for transforming nonstationary panel data into stable multinomial club

membership using a recursive clustering algorithm.

3.1 Testing for Homogeneous Trends

As in P-S, the starting point is to represent trending multidimensional data in terms of a panel

components model as

yit = bitθt, (24)

where θt is an unknown trend which may be either a stochastic process or a nonlinear deterministic

time trend. The representation in (24) is general and typically has unidentified multiple compo-

nents. For instance, if the DGP were yit = ai + bit + ξit where ξit = ξit−1 + eit, then we could

13Identification of the long run determinant then becomes of interest because in this case xit does not
affect the long run trend of yit. Analysis of this case is a separate matter and left for future research.
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rewrite the model in the form of (24) as yit = (ait
−1 + bi + ξitt

−1)t = bitt.

If yit/yjt → 1 as t → ∞, then we say that yit relatively converges to yjt over time. Let µ̂t be

the sample cross section average of the yit. If yit/µ̂t → 1 as t → ∞ for all i, then the panel yit

is said to be relatively convergent to its cross section average. The ratio hit := yit/µ̂t traces out

a transition path over time that manifests convergence when hit → 1. In this case, yit shares the

same (stochastic) trend, which is factored out in the ratio, thereby enabling analysis and inference

about convergence. The test for relative convergence in P-S relies on the following (so-called log t)

regression

log
H1

Ht
− 2 log (L (t)) = a+ b log t+ et, (25)

which is estimated by ordinary least squares and where

Ht =
1

n

n∑
i=1

(hit − 1)2 , forhit =
yit
µ̂t

, (26)

L(t) = log t, t = p+ 1, . . . , T , p = ⌊r × T ⌋ with r = 1/3, and ⌊·⌋ is the integer floor function.

Under the null of relative convergence, Ht is asymptotically convergent to zero over time since

hit → 1 as t → ∞. Hence, log(H1/Ht) is increasing over time. If the t-value for b̂ exceeds -1.65,

then the null of relative convergence is not rejected in the test at the 5% level. Note that in

finite samples the term involving 2 log (L (t)) serves as a penalty function in the regression (25), as

explained in P-S. Under relative divergence, Ht and log(H1/Ht) should increase and decrease over

time, respectively. Under fluctuations over time, Ht simply fluctuates, but in view of the penalty

function of −2 log(L(t)), the dependent variable in (25) decreases over time. Hence, the fitted OLS

coefficient b̂ becomes significantly less than zero in this case.

For present purposes in the empirical evaluation of policy effects under trending outcomes, if

the null of convergence is not rejected, then the TWFE regression with ∆yit is well justified since

in the long run the panel yit is identified as having a homogeneous (stochastic or nonlinear) trend.

If the null is rejected, then data analysis may be conducted as described in the next section.

3.2 Dynamic Clustering Mechanism and Panel Logit Regression

One possible outcome is that there are few sub-group convergences, but each of these clubs diverges

from the others over time, in which case a null of overall club convergence would be rejected. P-S

suggested how to find convergent sub-groups by using an convergence clustering mechanism (CCM).

This mechanism transforms the full (n × T ) panel dataset into a club membership structure that

features each individual member (n×1). The CCM requires finding a core convergence club within

the panel. Once a core club is identified, each individual time series is compared with the core

group and is added to the convergence group if it relatively converges. Otherwise, the individual
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is classified to another group. Successive repetition of this procedure identifies members of the

first convergent club. The clustering algorithm is then repeated with non-members of the first

convergent club. The approach allows empirical researchers to explore the underlying determinants

of club membership through multinomial logit regression of club membership on driver variables,

as suggested in Phillips and Sul (2007b) and Phillips and Sul (2009).14

The present paper utilizes this approach to design a robust method of clustering club mem-

bership over time. The proposed method is straightforward and involves recursive implementation

of the CCM algorithm over time to identify the clusters and cluster evolution over time. As we

will show in the next section, various patterns of dynamic evolution over time can be identified by

recursively estimating club memberships in this way. This dynamic version of the CCM approach

employs some modifications of the original algorithm including a fixed rule for initialization in the

recursive regressions15 and a fixed rule for core member detection.16

The asymptotic justification for the clustering method is given in Appendix C of P-S. As long

as the number of core members is not large relative to the time series sample, consistency of the

clustering mechanism is easily achieved. Consistency of the dynamic version of the CCM approach

can be achieved in the same way. The Online Supplement provides details of this method and

reports findings of its finite sample performance from Monte Carlo simulations.

If we knew the specific functional form of dependence and values of bit it would be straightfor-

ward to evaluate its determinants by running a regression of bit on the relevant function f(zi, θx,t, xit).

In practice, finding a specific functional form is challenging and consistent estimation of all of the

idiosyncratic trend coefficients bit is not possible using only the data yit.
17 To avoid these issues,

we utilize the clustering method in P-S, as now explained.

Define J as the number of convergent sub-groups: j = 1, · · · , J . The original algorithm was

designed to provide club memberships based on descending order of the final observation values,

yiT . Hence, the first convergent sub-group always dominates the remaining convergent sub-groups.

Define Ĉit as the estimated membership emerging from the application of dynamic CCM for the ith

individual from 1 to t. This transformation changes nonstationary outcomes yit to stationary club

memberships, Ĉit. If the membership does not change over time, one does not need to run panel

ordered logit, but simply run ordered logit with the final club memberships at time T . Otherwise,

14See Sul (2019) for more detailed discussion.
15The log t test in P-S requires initialization of the regressions, eliminating some early observations. The

discard rule in P-S removed the first 1/3 observations. This rule is problematic in the present implementation
because the sample size changes in recursive regression. Instead, a fixed rule is used here in which the first
5 or 6 observations are discarded. The Online Supplement provides further discussion.

16The CCM algorithm estimates the initial core members based on the sample observations. To maintain
the core membership in the recursive approach, the core members are fixed in the recursion by employing
the entire sample in their initial detection.

17P-S simplifies this challenge by approximating bit using a relative transition curve hit as explained earlier
in (26). However, in this approach the sample cross-sectional mean is often not a robust measure and can
be sensitive to outliers, so it is not used here.
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the next panel ordered logit regression can be run. The j-th ordered logit model is given by

Prob(Ĉit > j) =
exp(aj + z′iγj + θ′x,tλj + x′itβj)

1 +
[
exp(aj + z′iγj + θ′x,tλj + x′itβj)

] , for j = 1, · · · , J − 1, (27)

where θx,t is a vector of known common policy variables, such as macro factors including market

interest and inflation rates, and federal policy changes. Once the known common factors are

included in the regression, panel fixed effects cannot be identified.18 Note that all variables on the

right hand side influence the trend coefficients in yit. Variables not affecting the trend behaviors of

yit must not be significantly different from zero.

In the case of two sub-convergent clubs, as is the case in the empirical study of the next section,

instead of a panel ordered logit regression one needs to run a panel logit regression with random

effects. In this case, Ĉit = 1 or 0, and the ordered logit regression becomes

Ĉit = 1{a+ z′iγ + θ′x,tλ+ x′itβ + eit ≥ 0}, (28)

Note that neither conditional logit nor ordered logit regressions can identify λ since θx,t is common

across individuals so that the conditional likelihood function eliminates θ′x,tλ automatically.18

The economic interpretation of β in (27) and (28) is different from that of conventional TWFE

regression. Since the dependent variable is club membership, the marginal effect of xit becomes of

interest, which indicates the change in probability when xit increases by one unit. The unconditional

logit regression in (28) also provides potentially complex causal effects to explain club membership.

To see this, rewrite (28) with a single variable, ignoring xit and eit. Further, let γ = λ = 1 and

a = 0. If the i-th state is in the first convergent sub-group at time t, then assign Ĉit = 1; if it

is in the second convergent sub-group, then assign Ĉit = 0. Assume that θx,t is a federal policy

which implements after t ≥ τ (so θx,t = 0 if t ≤ τ , otherwise θx,t = 1), and zi is a particular state

characteristic variable. Then, depending on the values of zi, the federal policy may influence the

club membership differently.

Now consider a simple example where there are two types of individuals: the first makes a

personal choice with little attention to others or any group behavior. The second type does consider

other behavior before making a decision. Let ζj,i,t be a choice or outcome made by the j−th

individual in state i at time t and allow for three time periods (1, 2, 3).19

18Consider, for example, the following conditional logit model with a single common factor and a single
policy variable with two individuals for notational convenience : Ĉit = 1{ai+λθx,t+βxit+eit ≥ 0} with i =

1, 2. The conditional probability at time t = 1 becomes
exp(λθx,1+βx11)

exp(λθx,1+βx11)+exp(λθx,1+βx21)
= exp(βx11)

exp(βx11)+exp(βx21)
.

So λ cannot be identified with observed θx,t.
19This example is purely illustrative because in practice it is unrealistic to estimate club memberships

with such a small T .
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Consider the choice function for the first type of individual

ζj,i,t = 1{zj,i + θt ≥ 0} (29)

With no federal intervention (viz., θt = 0 for all t), individual j’s choice depends on the time

invariant variable zj,i. Assume that in state i the zj,i ∼iid N (zi, 1). Define Yit = (
∑Ji

j=1 ζj,i,t)(Ji)
−1

and yit = log Yit, where Ji is the population of the i-th state. Then outcome yit depends on zi with

higher zi leading to higher yit. Now introduce a federal intervention in period 2 so that θ1 = 0

and θ2 = θ3 = 1; and the outcome variable jumps at t = 2 but does not increase at t = 3.20 Club

membership will depend on the zi and θt. If zi < 0 and zi + θ2 < 0, then Ci,2 = 0. But if zi > 0,

then θt does not alter club membership.

Consider next the second type of individual with choice function

ζj,i,t = 1{zj,i + θt + ϑjyi,t−1 ≥ 0}, (30)

where ϑj is an individual reaction parameter measuring the response to a group decision in the

previous period. Depending on the fraction of the second type of individual and the values of the

ϑj , each state’s reaction changes over time. A greater number of individuals of the second type

and a higher ϑj both lead to a larger increase in outcome at t = 3, with the precise response

and dynamic path of yit dependent on multiple factors including the determinants of the choice

function of this type of individual.21 While it may be hard to statistically model the dynamic path

of yit, club membership itself is well determined and free of the precise nature of the individual

response functions. When club membership can be empirically determined, club membership and

club convergence are also estimable, opening up the use of the techniques of the present paper.

Importantly, the proposed methodology is designed to identify determinants of club member-

ships rather than estimate overall treatment effects. If yit includes a nonlinear trend and exogenous

policy variables cause changes in the trend behavior, the proposed method can identify the relevant

exogenous variables but not estimate the overall treatment effects on yit. But it is possible to

deduce relative information about the implied treatment effects. For instance, take the case of two

convergence sub-groups and define nGa,t as the number of individuals in Ga at time t for a ∈ {1, 2}.
20However, if θt were to increase over time, reflecting increased Federal intervention, then yit would

increase.
21Without correct specification of the determinants of the choice functional form, statistical modeling of

the dynamic path of yit is difficult and subject to misspecification, thereby affecting the properties of TWFE
estimation including consistency.
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Then the average outcomes for each sub-group can be estimated directly from the data by

µ̂G1 =
1

nG1,t

∑
i∈G1

1

T − τi − 1

T∑
t≥τi,Ĉit=1

yit, (31)

µ̂G2 =
1

nG2,t

∑
i∈G2

1

T − τi − 1

T∑
t≥τi,Ĉit=2

yit. (32)

The difference between these two averages provides an estimate of the difference between the

two average overall outcomes, thereby giving information about the relative impact of the two

treatments. If these two convergence sub-groups eventually merge into a single convergence group

from some point t ≥ τ , then it is known that the treatment outcomes effectively become the same

from this point.

We note finally that in any convergence sub-group empirical analysis some individuals may

end up outside any of the identified groups. Such individuals are treated in P-S as outliers or

divergent members of the population. In this case the relevant individuals display behavior outside

the framework of the convergence analysis and these outcomes may need separate empirical study

to explain their behavior.

4 COVID-19 Vaccination in the US

4.1 Data Preparation: some practical considerations

Let {Yit} be raw panel observations. If the Yit appear to grow exponentially over time at an

approximately constant growth rate it is a common convention to use logarithms of the raw data.

In practical work a few observations may take zero or negative values, preventing the use of this

transformation. If no measurement errors are suspected then these observations may be important

and ignoring them may be consequential. In this case the following modification can be useful.

First, suppose that Yit ≥ 0. Define Y +
it = Yit × 10α where α is a large constant, noting that

log(Y +
it + 1) ≃ log Yit + α log 10 if Yit > 0, (33)

whereas

log(Y +
it + 1) = 0 if Yit = 0, (34)

This transformation does not alter the nature of the data for regression purposes as long as either

time or individual fixed effects are included in the regression. To see this, let Yit = exp(ai + y∗it) if
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Yit > 0 and set yit = log(Y +
it + 1). Then

yit −
1

T

T∑
t=1

yit = y∗it −
1

T

T∑
t=1

y∗it,

so that any fixed effects ai are effectively eliminated in regression with the transformed data.22

If some Yit take small negative values, then setting these observations to zero enables use of the

above transformation and removes the difficulty. An alternative approach is to define the following

transform

Y +
min = min

1≤t≤T,1≤i≤n
Y +
it , (35)

and instead of adding unity to Y +
it , add Y +

min+1. Then, it is easy to see that log(Y +
it +Y +

min+1) = 0

if Y +
it = Ymin. Otherwise, log(Y +

it + Y +
min + 1) ≃ 0 if Yit ≤ 0 but log(Y +

it + Y +
min + 1) > 0 if Yit > 0.

If Ymin is not a big number, this modification does not materially change the nature of the data for

regression purposes.

Ratio variables may similarly benefit from logarithmic transforms in eliminating individual fixed

effects by regression. For instance, if Yit = Wit/Vit whereWit = exp(awi +wit) and Vit = exp(avi+vit),

then

Yit −
1

T

T∑
t=1

Yit = exp(awi − avi )[exp(wit − vit)−
1

T

T∑
t=1

exp(wit − vit)], (36)

and the within group transformation – subtracting the time series averages in (36) – does not

eliminate fixed effects. On the other hand, fixed effects in the logarithmic transforms of these

variables are eliminated by subtracting out the time series averages.

4.2 Empirical Results

As an empirical illustration, our recursive club clustering methodology was applied to state-level

COVID-19 vaccination rates in the US and panel logit regressions were employed to explore the

impact of vaccination policies on actual vaccination rates. By late spring of 2021 COVID-19

vaccinations were widely available in the US, but vaccination rates began to plateau even though

22When some Yit are equal to zero, it is common empirical practice for researchers to transform Yit as
log(Yit+1) or arcsinh(Y ) = log(

√
1 + Y 2+Y ). As Chen and Roth (2023) point out, direct comparison with

transformed data can cause difficulties. Let Y ∗
it be a latent (or unknown) variable and Yit be the observed

variable such that Yit = Y ∗
it × 10−γ , where γ represents a unit of account. Units of Yit could be a thousand,

million, or billion, and the value of log(Yit + 1) would be different depending on the unit of Yit. But in
TWFE regressions, these difficulties can usually be avoided if a large constant α is employed. If α is set to
zero, then log(Y +

it + 1) ̸= log Yit, in contrast to (34). Furthermore, depending on the units of measurement
of Yit, the simple transformation log(Yit + 1) can lead to inconsistent estimation particularly if the overall
mean of Yit is close to zero.
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only roughly 45% of the targeted US population were fully vaccinated by mid-May 2021.23 There

was also substantial variation in state vaccination rates: Maine had the highest vaccination rate at

49% in mid-May 2021; and Mississippi had the lowest at the time, with only 26% of residents fully

vaccinated.

Determinants of this variation in state vaccination rates are naturally of considerable interest

to policy makers, epidemiologists, and social scientists. Some preliminary research conducted over

the summer of 2021 pointed to partisanship having a strong association with vaccination rates.

Specifically, it was found that the percentage of votes cast for Donald Trump in the 2020 presidential

election was a primary predictor of vaccination rates: the higher the Trump vote, the lower the

vaccination rate, on average. Around the same time in 2021, cities, counties, and states attempted

to bolster their waning vaccination rates by implementing various vaccine incentive campaigns

such as vaccine lotteries and cash for vaccination. Numerous studies have examined the efficacy of

such incentives in various states and counties across the United States, and have come to differing

conclusions. Some found modest increases in vaccinations resulting from vaccine lotteries or cash

incentives, while others found no statistical evidence that these lotteries or cash incentives increased

vaccinations, even finding small negative impacts in some cases. Table 2 provides reference details

for some of these explicit findings in the literature.

Table 2: Findings of Vaccination Incentives

Small Positive Effect Zero or Small Negative Effect

Barber and West (2022)

Brehm et al. (2022)

Sehgal (2021)

Wong et al. (2022)

Chang et al. (2021)

Dave et al. (2021)

Lang et al. (2022)

Thirumurthy et al. (2022)

Walkey et al. (2021)

By late summer 2021, policies mandating vaccinations for particular sub-populations were being

announced and implemented at the state and the federal level. To examine the impact of vaccination

incentives and policies on vaccination rates, we assembled a dataset of vaccination policies and

incentives at the state level, including policies that were implemented in large cities or counties

within a state. Appendix A explains how the state policy dataset was constructed and appendix

table 6.1 provides summary statistics for the various state-level policies.

In addition, we created a separate federal-level vaccine mandate variable. This variable includes

information from a combination of vaccine mandate announcements that were national in scale.

23The term fully vaccinated was defined at the time as two doses of the Pfizer or Moderna vaccine, or a
single dose of the Johnson & Johnson vaccine.
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More specifically, it includes the military vaccine mandate, the various vaccine mandates announced

by President Biden on September 9, 202124, and mandates by private employers that typically were

national in scope. Details on the construction of the federal vaccine mandate variable are given in

Appendix B, and appendix table 6.2 displays the relevant events and dates that were used.

Our state-level vaccination data came from the publicly available county-level data from the

Centers for Disease Control and Prevention (CDC), spanning the period from December 13, 2020 to

February 9, 2022. Data prior to May 12, 2021 was discarded because COVID vaccines were initially

in short supply and difficult to obtain, meaning that discrepancies in vaccination rates across states

during this early period may not have been voluntary but simply due to availability. By mid-May

2021 Covid-19 vaccines were easily accessible in most areas of the United States. Daily county-level

data were converted to weekly state-level data and logarithms of the resulting vaccination rates

were recorded. There were a few points of decreasing cumulative vaccination rates for a short

period in a small number of states in the data, which was likely due to state or county reporting

errors. To correct for these, we applied Stata’s HP filter25 with a smoothing parameter of 1600,26

and then subtracted ymin, as suggested in Section 3.1 of the Online Supplement.

As Figure 3 shows, the implementation percentages of both federal-level mandates, and state-

level mandates are very low through late July 2021, at which point they both sharply increase and

then stabilize. State vaccination mandates stabilize around 0.45, meaning about 45% of states had

some form of state-level vaccination mandate in place by September 2021. Federal vaccine mandates

sharply increase over roughly the same time period, although the increase is more stairways than

a single sharp jump, as is the case with state-level mandates. The federal-level mandates level off

at an implementation rate of 100% since all states were impacted by this federal-level mandate.

Vaccination lotteries also show a sharp increase, but the increase is several weeks earlier than

the vaccine mandate increases. This shows that states initially tried to incentivize people to get

vaccinated through positive incentives. After peaking in June of 2021, the use of lotteries to

incentivize vaccination started to steadily fall away until converging at zero.

Cumulative vaccination rates are partial sum time series and therefore typically stochastically

nonstationary. For the reasons explained earlier involving the effects of regression imbalance, these

characteristics suggest caution in the use of random effects or fixed effects linear regression to

24Not all of the federal mandates announced by President Biden on September 9, 2021 were ultimately
implemented. The mandate on large employers was struck down in court, and the mandate for employees
of federal contractors was blocked for months before an August 31, 2022 announcement from the federal
government that it would not be enforcing the mandate.

25The HP filter is by far the most commonly used filter in empirical studies that have employed the P-S
CCM algorithm. We considered other filters in the empirical application with little changes in the results.

26Since the data are weekly, higher values than the quarterly smoothing parameter 1600 are sometimes
preferred. In the present case our goal is to smooth the series only moderately because use of a smoothing
parameter that is too large produces a filtered trend that is almost linear. Provided the smoothing parameter
is neither very small nor very large, the empirical results were not sensitive to the specific choice. Details
are provided in the online supplement.
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Figure 3: log(Cumulative Vaccination Rate) and Select Policy Common Trends.
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Notes: The left vertical axis scale is the logarithm of the national average cumulative vaccination rate, which
corresponds with the smooth blue line. The right vertical axis scale is the adoption percentage of vaccination
policies. The maroon, green, and orange lines are measured on the right axis, and each is the national average
of the policy at each time t. The maroon and green lines are sample state-level vaccination policies, vaccine
mandates for state employees and/or healthcare workers, and vaccination lotteries, respectively. The orange
line is federal-level vaccine mandates. Log cumulative vaccinations do not show any jump or discontinuity
over time and the path of this variable appears impervious to the policy variables being enacted.

assess the impact of vaccination policies on cumulative vaccination rates. Using first differences

(new vaccination numbers) as the dependent variable does not resolve the imbalance when the

data involve non-linear heterogeneous trends; and first difference specifications are less helpful in

addressing the primary issue of modeling discrepancies in overall state vaccination rates.

To address heterogeneity and nonlinearity in the trend behavior of the data our empirical

approach is to classify state vaccination rates into groups where homogeneous trends are manifest.

The groupings were obtained by applying the P-S automatic clustering technique to log cumulative

vaccination rates, yit, producing individual club membership data Ĉit, which is the estimated

convergence club that state i belongs to at time t. As previously noted, Ĉit takes on the value of 0

or 1 when there are two convergence clubs. Also, as noted earlier, when vaccination rates began to

plateau in each state a variety of vaccination incentive schemes and policies were announced and

implemented. Examining club membership data at a single fixed point in time does not reveal the

dynamic effects on club membership over time as these policies were rolled out. To explore the

evolutionary relationship between club membership and individual state policy implementation we

employed the dynamic club clustering technique described earlier in Section 3.
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We first applied the automatic clustering mechanism on the full data set from May 12, 2021 to

February 9, 2022, using m = 6, where m is the first sample observation used in the regression, a

setting that matches findings from the simulations reported in Section 4 of the Online Supplement.

The t-ratio from the initial log t regression of the entire data set was 7.24, so that the null of

convergence was not rejected, implying that vaccination rates of all fifty states plus the District of

Columbia were converging to the same long run national average in February, 2022. Implementation

of the P-S clustering algorithm produced a core group of eight members: Connecticut, the District

of Columbia, Maine, Maryland, Massachusetts, New York, Rhode Island, and Vermont. This club

membership outcome is a static full sample result that is uninformative regarding the actual process

of convergence and, in particular, the important empirical question of whether state convergence

may have occurred without intervention or whether vaccination policies impacted state convergence

over time.

To address this question dynamic clustering was employed with recursive sampling to estimate

club membership evolution over time. Core membership was fixed to the aforementioned seven

states plus the District of Columbia. From this core membership we applied the remaining steps of

the clustering process using the first thirteen weeks of data from May 12, 2021 to August 4, 2021.

Interestingly, with this shortened dataset involving vaccination rates only from the late spring to

the mid-summer of 2021, there was no evidence of convergence to a single long run average. Instead,

during the summer of 2021 there were two distinct clubs: one comprising thirteen members (twelve

states plus the District of Columbia) with relatively high vaccination rates, and a second club

consisting of 38 states with relatively low vaccination rates.

Figure 4 shows tracked behavior of each of these two clubs over time based on the first sub-

sample from from May 12, 2021 to August 4, 2021. Panel A and B show the average relative

transition paths in Club 1 and Club 2, respectively. Relative transition path is defined as hit :=

yit/µ̂t where µ̂t is the cross-sectional average of yit. The average relative transition in Club 1 is

defined as n−1
G1

∑nG1
i∈G1

hit where nG is the number of individuals in Club 1. Note that there are 13

members in Club 1 and 38 states in Club 2. The average relative paths of Club 1 and Club 2

moved away from unity until July 2021, at which point they began to converge to unity over time.

These paths reveal that overall relative convergence may be expected if the respective movements

are sustained over time, with the average relative transition measures approaching unity for both

clubs from different directions.

Working from the given initial club membership obtained for the original (May 12 - August

4) sample, a recursive analysis was commenced by adding a further week to the original sample,

giving the new sample span from May 12, 2021 to August 11, 2021. The clustering algorithm was

re-applied, using the same fixed core. This resulting outcome again produced two clubs, but Club

1 had all original thirteen members in the higher vaccination group that were in the May 12, 2021

- August 4, 2021 sample plus two additional states. This process was continued adding one week
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Figure 4: Cross section averages and average relative transition curves based on initial club mem-
bership

(a) Average Relative Transition in Club 1 (b) Average Relative Transition in Club 2

Notes: Both Panel (a) and Panel (b) trace the average transition paths of state vaccination rates initially in
Club 1 (i.e., those in Club 1 after the initial clustering process using data from May 12, 2021 to August 4,
2021). Panels (a) and (b) trace average relative transition paths for Club 1 and 2, respectively. The relative
transition measure is each state’s cumulative vaccination rate divided by the national average at each time
t; and the average relative transition measure averages the individual measures over each club.

at a time and re-running the club clustering process to the end of the sample. With the addition

of each additional week to the sample, the outcome produced more states joining the relatively

high vaccination club, Club 1, each week. This pattern continued until the sample included data

from May 12, 2021 - September 1, 2021. At this point, all of the states had relatively converged,

forming a single convergence club. Relative convergence to a single club continued to hold for each

additional week included until the recursion covered the entire sample, May 12, 2021 to February

9, 2022.

Figure 5 shows the dynamic membership evolution of Club 1 from May 12 through September

1, 2021. The top left panel shows the twelve states plus the District of Columbia in Club 1 from

May 12, 2021 - August, 2021. Each subsequent panel shows the states belonging to Club 1 as

the sample recursively expands. Club 1 membership evidently grows over time, as expected from

Figure 4. The last panel, in the lower left position, shows that when the dataset includes weeks

from May 12, 2021 through September 1, 2021, all the US states are seen to have the same club

membership and full convergence applies.

Figure 6 shows federal-level vaccine mandate variables plotted alongside the evolving Club 1

membership. Two federal-level vaccine mandate variables are displayed in the graph: one includes

private employer vaccine mandates and the other does not. By design the fraction of states in Club

1 held constant through to August 4, at which point it began to rise steadily for several weeks
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Figure 5: Dynamic State Membership in Club 1

Notes: The states shaded dark blue are in Club 1 and the light blue states are in Club 2. As the sample
added weeks the membership of Club 1 continued to grow until September 1, 2021, at which point Club 1
included all states giving a single convergence club.

merging into a single convergence club in September. The federal-level vaccine mandates started

to increase slowly at first over May-July and subsequently rose rapidly through to September, at

which time President Biden announced four federal-level mandates estimated to impact 100 million

American workers. The fraction of state membership of Club 1 closely tracks the course of these

federal-level mandates.

The federal mandates variable, the state policy dataset, and the dynamics of club membership

offer the opportunity to explore the impact of federal-level mandate announcements and state-level

policies on club membership. An unconditional panel logit (random effects) regression in (28) was

used to examine some of the effects of these time-varying policies. We used the combined federal

and employer mandates as a common factor θt, and various state specific variables as zi including

political trends, state demographic characteristics, such as population density, median household

income, and education, and the percentage of people employed by industry for each state. Various

state-level vaccination policy variables comprise xit, including state incentives for vaccinations and

state vaccination policies.

Table 3 column (5) shows the results of the preferred specification from the panel unconditional
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Figure 6: National-Level Mandates and Dynamic Club 1 Membership

0
.2

.4
.6

.8
1

5/12/21 6/23/21 8/4/21 9/15/21 10/27/21 12/8/21 1/19/22

Fraction of States in Club 1
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Notes: The federal mandates variable is plotted in maroon, this variable combined with employer mandated
vaccinations is plotted in orange, and the fraction of states belonging to Club 1 is plotted in green. The
fraction of states in Club 1 and the federal vaccine mandate variable are flat until early August 2021. The
federal mandates variable, the one capturing both the federal mandates and the employer mandates, slowly
increased in early summer 2021 before increasing dramatically from July to August 2021, and again from
August to September 2021. All three variables end up at unity by September 9, 2021.

logit (random effects) regressions.27 The large coefficient on the federal-level mandate variable

shows that the probability of being in Club 1 given the federal-level mandate is extremely high.28

This matches Figure 6 where transition to Club 1 moves very closely with the implementation of

the federal-level mandates. Interestingly, no state-level vaccination policies or incentives had any

significant impact on club membership. Also, contrary to our findings in the summer of 2021,

by February 2022 our results suggest that once population density, median household income, the

percentage of the population that is foreign-born, and the industry composition of a state are all

controlled for, political party is not associated with club membership in a statistically significant

way. States with a larger percent of foreign born individuals were more likely to be in Club

1 initially. States with higher numbers of health care and social assistance workers as well as

higher percentages of people employed in the retail trade industry were also initially more likely

to be in Club 1, whereas states with higher percentages of employees working in wholesale trades

were less likely to be in Club 1. The McFadden pseudo R2 value is very high for our preferred

27Table 9 in the online supplement reports results of other specifications used in the unconditional panel
logit regressions.

28We also ran the model for column (5) from Table 3 with a two-week lag in each of the policy variables.
Including the two-week lag did not impact the findings. See Table 10 in the Online Supplement.
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specification, showing that the improvement in our model from the based intercept only specification

is substantial, indicating the fitted model regression almost fully explains club membership.

For comparison with the above findings linear random effects regressions were run according to

the following specifications using levels and differences as the dependent variable:

yit = a+ z′iγ + λθt + x′itβ + ϵit, (37)

∆yit = a+ z′iγ + λθt + x′itβ + ϵit, (38)

yit = ai + λθt + x′itβ + ϵit, (39)

∆yit = ai + λθt + x′itβ + ϵit, (40)

where yit is the logarithm of state i’s cumulative vaccination rate, ∆yit is the log of the number

of new vaccinations per 10,000 people (the first difference of vaccinations), θt is the federal-level

mandates, zi are state fixed effects, and xit is a vector of state-level policies and the number of new

infections per 10,000 people in a state each week. The results are displayed in columns 1-4 of Table

3. The R2 values show that the policies explain significantly more of the variation in cumulative

vaccination rates than they do new vaccinations. The coefficients and levels of significance are very

similar to the random effects model and fixed effects model for each of the dependent variables.

For this reason we limit our discussion of the regression results here to the fixed effects model for

both dependent variables.

When the log cumulative vaccination rate is the dependent variable, new infections and federal-

level vaccine mandates are both positive and highly significant. But, state-level policies have no

significant impact on cumulative vaccinations, with the exception of bans on proof of vaccination.

That positive coefficient result suggests that if a state implemented a ban on proof of vaccination,

cumulative vaccinations in that state would increase, which is a curious outcome that may be the

spurious result of the nonlinear trend effects discussed earlier.

In the regressions with new (first differenced) vaccinations as the dependent variable there

are several anomalous signs in the fitted coefficients. For instance, the signs on new infections,

federal-level vaccine mandates, and state-level mandates on state employees are all negative and

counter-intuitive as higher infection rates and vaccination mandates are more likely to increase

than reduce new vaccinations. Further, the empirical results imply that the only state-level policy

that increased new vaccinations per 10,000 people was a ban on mask mandates. It might be

argued that banning mask mandates led people with high risk aversion to Covid-19 infection to get

vaccinated because they felt less secure, but those people were already most likely to be vaccinated.

As discussed earlier in Section 3, use of first differences does not eliminate time trend effects in the

data and these counter-intuitive results are again the likely outcome of misspecification and failure
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Table 3: Regression Results

Linear Models Logit Model

Dependent Variable: yit ∆yit Ĉit

(1) (2) (3) (4) (5)
FE RE FE RE RE

New Infections per 10,000 People (xit) 0.005 0.005 -0.004 -0.004
(0.0001) (0.0001) (0.002) (0.002)

Federal Mandate and Employer Mandates
(θx,t)

0.251 0.252 -0.438 -0.442 101.0

(0.012) (0.012) (0.053) (0.053) (22.39)
State Incentives (xit)

Lottery 0.003 0.003 0.041 0.037 -1.468
(0.012) (0.013) (0.047) (0.046) (2.038)

Cash 0.016 0.016 0.090 0.089 -0.084
(0.011) (0.011) (0.049) (0.050) (3.405)

Community Outreach 0.028 0.029† -0.043 -0.047 -2.440
(0.015) (0.014) (0.051) (0.045) (3.372)

State Policies (xit)
Vaccine Mandate State Employees 0.016 0.017 -0.199 -0.190 -1.919

(0.012) (0.011) (0.056) (0.055) (2.258)
Indoor Vaccine Mandate 0.016 0.015 0.043 0.041 14.33

(0.011) (0.011) (0.125) (0.121) (36.00)
Mask Mandate 0.007 0.007 -0.051 -0.051 2.096

(0.012) (0.012) (0.094) (0.090) (3.567)
Ban on Proof of Vaccination 0.086 0.071 -0.221 -0.201 -3.164

(0.020) (0.016) (0.129) (0.099) (5.166)
Mask Mandate Ban 0.013 0.006 0.193 0.129 -1.810

(0.059) (0.045) (0.075) (0.062) (6.160)
Political (ai)

Percent of State House that is Republican -0.550 -0.130 7.037
(0.104) (0.212) (24.41)

Percent of Vote for Trump 2020 -0.042 -0.262 -13.66
(0.073) (0.104) (10.53)

State Characteristics (ai)
Population Density -0.010 -0.002 11.36

(0.020) (0.019) (6.153)
Median Household Income 0.026 0.018 2.379

(0.014) (0.018) (2.497)
Percent Foreign Born -0.001 0.126 1.327

(0.003) (0.005) (0.609)
Percent of People Employed by Industry (ai)

Health Care and Social Assistance 0.048 0.004 3.626
(0.011) (0.017) (1.412)

Government and Government Enterprises -0.006 0.002 -2.055
(0.066) (0.008) (1.291)

Retail Trade 0.029 0.020 11.90
(0.025) (0.043) (3.968)

Wholesale Trade -0.015 -0.018 -13.07
(0.036) (0.058) (5.901)

Transportation and Warehousing -0.019 -0.017 -9.513
(0.026) (0.041) (6.242)

n 51 51 51 51 51
T 40 40 40 40 40
R2 0.832 0.808 0.664 0.632
McFadden’s R2 0.936

Notes: Numbers in parentheses are standard errors. Median household income is measured in tens of thousands
of dollars and population density is per 1,000 square miles. The dependent variable for the linear level model,
yit, is log(cumulative vaccination rate) and the dependent variable for the linear first-differenced model, ∆yit,
is log(new vaccinations per 10,000 people). The binary club membership obtained from the P-S club clustering

technique, Ĉit, is the dependent variable in the logit regressions. The coefficient on the federal-level mandates
in the unconditional logit model is large and all state level policies had no impact on the likelihood of being in
the high vaccination club.

27



to capture separate group behavior in the data.

In sum, comparing the regressions results across Table 3, the panel logit regressions seem to

provide the most plausible and intuitive findings. The natural explanation is that the panel logit

models provide well specified formulations that take account of club membership arising from

nonlinear trend effects and separate group convergence behavior that together determine cumulative

vaccinations.

5 Conclusion

When outcome variables have nonlinear and possibly stochastic trends, evaluating the effectiveness

of policy changes by using TWFE regressions can be problematic. This paper shows the underlying

reasons for this empirical problem and proposes an alternative approach. The key idea is a simple

method to transform panel nonstationary outcome data into panel multinomial data by using a

dynamic clustering method based on the relative convergence test of Phillips and Sul (2007a).

This approach allows researchers to use panel logit regressions to investigate how policies that are

implemented can impact convergence club membership or the long-run behavior of the dependent

variables over time.

The dynamic convergence clustering mechanism is applied to state-level Covid-19 vaccination

rates in an empirical example of this methodology. Our findings indicate that there were initially

two distinct convergence clubs, but over time all states converged to a single club. Finally, we use

panel logit to show how national and state policies impacted club membership over time, and we

demonstrate how the regression results from panel logit regressions appear to give more realistic

results than linear models.

There are two drawbacks of the proposed method. First, the number of time series observations

cannot be too small. To estimate time varying convergent club membership the time series sample

size T should be large enough to capture the evolution of club membership. In the Covid-19

vaccination empirical example T = 40 observations were available for the time series sample and

the recursive sampling procedure was initiated with sample size T = 13. This choice complies with

the minimum sample size T = 10 for the clustering algorithm that was used in Phillips and Sul

(2007a). When T is smaller we suggest not using the dynamic CCM but instead static CCM and

running a cross-sectional logit or multinomial logit regression.

Second, to use the proposed method, the panel should be balanced since the dynamic CCM

tracks each individual club membership over time. If some data are missing within time periods,

then interpolation and filtering to smooth out the series can be employed. Since the proposed

method is designed for analyzing long run effects, small modifications of this type typically do not

affect the membership findings. If data are missing at the beginning or end of the sample, then

backward or forward forecasting would be required and the accuracy of such modifications is not
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studied in the paper.

6 Appendix

6.1 Appendix A: State Policy Variables

We created a database that tracked state (and District of Columbia) announcements of vaccination

lotteries, cash for vaccination incentives, community outreach programs, vaccine mandates for

state employees and or healthcare workers, indoor vaccine mandates or mandates for gatherings

over a certain number of people, mask mandates, bans on proof of vaccination, and bans on mask

mandates. (Only mask mandates that were re-implemented after June of 2021 were included since

virtually every state had some form of mask mandate at the beginning of the pandemic.) This

database is weekly and tracks policies from March 2021 to February 2022. The policies are tracked

from the date of their announcement. We also included polices that were implemented by large

cities or counties since it was occasionally the case that a large city or county would implement a

policy which impacted many people in a state, but the policy was not implemented at the state

level. Chicago, for example, gave cash incentives for vaccination, but the state of Illinois did not.

The population of Chicago makes up 20.9 percent of the population of Illinois, so for the weeks

that Chicago offered cash incentives, we populated the cash field for Illinois in the dataset with a

value of .209 rather than 1. We went state by state and gathered information about policies that

were implemented and the timing of the policies. We found policy data from AARP (formally the

American Association of Retired Persons), The National Governor’s Association, Becker Hospital

Report, The Rockefeller Foundation, The Kaiser Family Foundation, Ballotpedia, and various other

websites. We also made a list of the two largest counties and cities in each state and used Google to

search for any policies implemented in those localities. Any other local policies in cities or counties

other than the two largest in each state that came up in our Google searches were included (as their

percentage of state population) if the locality made up at least two percent of the state population.
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Appendix Table 6.1: Summary Statistics for State Vaccination Policies

Lottery Cash Com Out VMSE IVM MM BPV BMM

Mean 0.108 0.067 0.053 0.301 0.050 0.170 0.388 0.190

Cross Section Median 0.025 0.004 0.000 0.000 0.000 0.028 0.000 0.000

Overall Median 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Cross Section Variance 0.022 0.013 0.087 0.112 0.019 0.072 0.218 0.149

Overall Variance 0.094 0.050 0.127 0.211 0.040 0.122 0.238 0.154

Number of States 33 29 16 23 11 33 21 10

Notes: The number of states listed in the final row is the total number of states that implemented the policy at some point.
If a large locality within the state implemented the policy, that is included in the state count. Cross sectional median is the
median of the time series mean of each state. Cross section variance is the variance of the time series mean of each state. All
variables were tracked from their announcement date. Some policies were challenged legally, but were still tracked from the
date of their announcement. Com Out: Community Outreach, VMSE: Vaccine mandate for state employees and/or health
care workers in a state, IVM: Indoor vaccine mandate or vaccine mandate for gatherings over a certain size, BPV: Ban on
requiring proof of vaccination, BMM: Ban on mask mandates.

6.2 Appendix B: Federal Policy Variables

On September 9, 2021 President Biden announced vaccine mandates that would be rolled out

over the next several months. The mandates applied to most federal employees, employees of

federal contractors, medical workers who worked at facilities that accepted Medicare and Medicaid

reimbursement, and employers with 100 or more employees. It was estimated that the mandates

would apply to roughly 100 million US workers. Rather than use a binary indicator variable for

federal vaccine mandates, equal to zero before and unity after September 9, we created a linearly

interpolated variable that captured the increase in federal-level vaccination mandates during the

time period. Prior to President Biden’s September 9th announcement, a mandate on members of the

military was already in place, and hundreds of employers (many of them with employees nationwide)

in the United States chose privately to have their own employer vaccination requirements. In order

to fully capture mandates at the federal-level we felt it important to include employer mandates

that impacted workers nationwide.

To quantify how many employees were under employer mandates, we used a Gallup poll that

was taken monthly from May through December 2021. (Jones, 2021) The poll asked workers to the

best of their knowledge whether their employer would require vaccination against COVID-19. In

May of 2021 only five percent of employees said their employers mandated vaccination. By October

2021, just five months later, that number increased to 36 percent of workers that had employer

mandated vaccination. We combined the employer mandated percentages with the military and

federal vaccine mandates to construct the federal-level vaccine mandate variable. We also took into

account announcements made by the Secretary of Defense and the White House that signaled that

vaccine mandates were likely to come in the near future. Appendix Table B shows the dates that
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were used to construct the federal vaccine mandate variable as well as the combined federal and

employer mandates variable.

We included the signals of future mandates because of those who were eligible for vaccination

by the summer of 2021, but who were still not vaccinated, there were two groups. The first

group consisted of those who were vaccine hesitant and wanted to wait for full Food and Drug

Administration (FDA) approval of the vaccines, or planned to get vaccinated and just hadn’t

gotten around to it yet. The other group was the vaccine resistant who were opposed to the

vaccine at almost any cost and were willing to suffer the consequences of not being vaccinated if

mandates were enacted. Vaccine mandates, whether federal or at the employer level, did not likely

increase vaccines among the latter group in a significant way. The former group, however, were

likely influenced by such mandates, and the mere announcement of the mandates were sufficient to

nudge them into action and get vaccinated. (The Pfizer vaccine also was granted full FDA approval

during this same time period, on August 23, 2021.)
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Appendix Table 6.2: Federal and Employer Vaccine Mandates and Club 1 Membership Size

Date Federal and Employer Mandates Members in C1

May 2021 5% of employees report having employer vaccine mandate 13

June 2021 6% of employees report having employer vaccine mandate 13

July 2021 9% of employees report having employer vaccine mandate 13

Aug 9, 2021 Secretary of Defense sent message of intent to mandate

COVID-19 vaccination for the military

13

Aug 2021 19% of employees report having employer vaccine man-

date

15

Aug 23, 2021 President Biden’s Press Secretary announces more strin-

gent vaccine mandates coming

17

Aug 24, 2021 Secretary of Defense announces memorandom to fully vac-

cinate members of the military

17

Sept 2021 29% of employees report having employer vaccine man-

date

18

Sept 9, 2021 President Biden announces federal vaccine mandates 51

Notes: The above dates were used to construct the common factor variables. We constructed a pure federal vaccine
mandate variable, along with a federal-level vaccine mandates variable, which combined the federal vaccine mandates
with employer mandates. To construct the continuous federal mandate variable we made the base of the 100 million
workers that were predicted to be affected by the September 9th federal vaccine mandates and added 2,395,993, the
size of the military. When a signal of upcoming mandates was made the federal mandate variable took on a value
of ten percent of those who would be impacted. For example, when the Secretary of Defense sent a message about
the intent to implement a military vaccine mandate, the federal mandate variable went from 0 to .0023 (10% of the
people who would be impacted by the mandate (members of the military) divided by the base of 102,395,993). When
the actual announcement was made, the numerator went to 100% of those impacted by the mandate. The employer
mandate variable was equal to whatever percentage of employees reported having vaccine mandates at their place of
work each month. The federal level variable was a combination of the two, which became equal to one on September
9, 2021 when President Biden made the vaccine mandate announcement.
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