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1 Introduction

The depth of multivariate data is commonly used to measure how close a given observation

vector is toward the center of the underlying joint distribution, and hence it leads to a

center-outward ordering of each observation. Examples of data depth measures include the

half-space depth (Tukey (1975)), the simplicial depth (Liu (1990)), the projection depth

(Liu (1992); Zuo and Serfling (2000); Zuo (2003)), and Mahalanobis depth (Liu and Singh

(1993)), to name a few. As a robust location estimator of multivariate observations, Stahel

(1981), Donoho (1982), Liu (1990), and Liu et al. (1999) for instance, consider using the

depth to construct weighted means, which enjoys good efficiency and robustness properties.

Zuo et al. (2004) study the asymptotic behavior of the general form of the depth-weighted

L-type location estimators.

These studies presume that we observe the true multivariate data of interest and estimate

its depth-weighted mean. In this paper, we instead assume the situation that we cannot

observe the true data of interest but the observations measured with errors. The main

interest of this paper is to use such noisy observations to estimate the depth-weighted mean

of the latent variables (i.e., the data without noise) and study its limiting properties. To

this end, we consider a drifting asymptotic framework to ensure a meaningful bias-variance

trade-off in the limit, where the noise vanishes at a certain rate as the sample size increases

though it presents for any fixed sample size. Under this framework, we extend the asymptotic

results of Zuo et al. (2004) to the depth-weighted L-type location estimator of noisy data.

We show that, though such a local deviation or noise in general yields non-zero bias in the

limit expressions of the empirical distribution and its linear statistical functions, it is not

the case for the depth-weighted L-type location estimator when the noise vanishes at (or

faster than) the square-root of the sample size. This reveals the robustness property of

the depth-weighted mean estimator in the view of local misspecification of the underlying

distribution.

A motivating example of observations measured with noise that satisfies the drifting as-

ymptotics is a collection of consistent estimators. More precisely, for any parameter vector

of each individual agent in a heterogeneous longitudinal model, such as the heterogeneous

treatment effect, we can regard its consistent estimator as the observation with vanishing

noise, whereas the true parameter vector value is the latent observation without noise. In

this context, as an application, we consider model averaging in heterogeneous longitudinal
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data regression models and develop the depth-weighted mean-group (DWMG) estimator of

a vector of random coefficients. Under a certain rate condition between the magnitude of the

noise and the sample size, it estimates multivariate average effects in heterogeneous longi-

tudinal data models consistently and also robustly toward outlying individuals or erroneous

reports. In this regard, it extends the common average estimators in heterogeneous panel

data regression models such as Swamy (1970), Pesaran and Smith (1995), Pesaran (2006),

and Hsiao and Pesaran (2008). When the partial effect is indeed homogeneous, further-

more, the depth-weighted mean-group estimator is shown to be consistent to the true effect.

The simulation results show that this new estimator can achieve a good balance between

robustness and efficiency.

The rest of the paper is organized as follows. In Section 2, we study the empirical dis-

tribution of multivariate noisy data and establish a asymptotic representation of the depth-

weighted mean estimator of the noisy observations. In Section 3, we apply the new estimator

in the context of longitudinal data regression and develop the depth-weighted mean-group

estimator. In Section 4, we present the finite sample efficiency of the depth-weighted mean-

group estimator in simulations and examine relative purchasing power parity as an empirical

illustration. We conclude in Section 5. We collect all the proofs and computational details

in the Appendix.

2 Depth-Weighted Mean Estimator of Noisy Data

2.1 Multivariate noisy samples

We let  ∈ X ⊂ R for  ≥ 1 be a random sample from a distribution  . As a robust

measure of the central tendency of multivariate observations, Liu (1990), Liu et al. (1999),

and Zuo et al. (2004) study a weighted mean whose weighting scheme is determined by the

statistical depth function. More precisely, the depth-weighted mean of  is defined as

 ( ) =

R
 (D(  )) ()R
 (D(  )) () , (1)

where D(  ) ∈ [0 1] is a depth function and  (·) is a non-negative weight function satis-
fying

R
 (D(  )) ()  0 and R |||| (D(  )) () ∞.
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This definition of the centrality in (1) is known to be robust to outlying observations in

. It is also general enough to encompass the popular centrality measures. For example,

if the moment E[] exists, then  ( ) = E[] when  (·) = 1. If we define  (·) as a
trimming form, then  ( ) becomes the trimmed (depth-weighted) mean. When the density

function of  is symmetric about its mode,  ( ) is the median in the multivariate sense.

When  is observable, we can readily estimate  ( ) by  () as in the aforementioned

studies (e.g., equation (2.1) of Zuo et al. (2004)), where  is the empirical distribution of

 given as

 () =
1



X
=1

1{ ≤ }

for  ∈ X and 1{·} is the binary indicator. However, we suppose that we cannot directly
observe  but we observe data measured with errors. More precisely, for each  = 1     ,

we suppose multivariate noisy observations 
 ∈ R such that


 =  + , (2)

where  is a vector of noise. We assume E[] = 0 and E[> ] = (−1
 ) for some  →∞

as  → ∞, and hence the noise vanishes as the sample size increases, while it presents for
any fixed sample size.

Natural examples of such noisy observations 
 are generated or predicted variables by

projection; and the estimators of heterogeneous parameters in longitudinal data models and

multilevel models (see Section 3). For the latter example, it should be noted that  is not

necessarily the sample size used to estimate , though it is typically the case for the M-

estimators, such as the maximum likelihood and the least squares estimators. For instance,

if 
 is an estimator obtained by maximum score estimation,  = 

23
 , where  is the

sample size in estimating  for each . If 
 is a point of a local constant nonparametric

estimator,  = 
4(4+)
 with the optimal bandwidth choice, where we allow for local-to-zero

mean of .

Since we do not observe , the empirical distribution  in (2) is no longer feasible, and

hence we cannot use  () to estimate  ( ). Instead, we consider the empirical distribution
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of the noisy sample 
 given as

 
 () =

1



X
=1

1{
 ≤ }

and estimate  ( ) by the feasible depth-weighted mean estimator:

 ( 
) =

P

=1

 (D(

  

))P

=1 (D(
  


))

, (3)

which is a simple plug-in estimator. Note that the depth-weighted mean estimator  ( 
) is

still well defined even when  =  =  for all  . In this case, the variation in the noisy

observations is solely from the noise  and the data depth of 

 is based on the distribution

of the noise . The depth-weighted mean naturally estimates ; see Section 3.2 for the

details.

2.2 Asymptotics of depth-weighted mean estimator

To study the asymptotic properties of the depth-weighted mean estimator based on the noisy

data,  ( 
) in (3), we first want to see how the local misspecification affects the limit of 


.

To this end, we assume the followings. Without loss of generality, we let  =  for all .

(A1)  = 
√
, where  is a mean-zero  × 1 random vector independent across  with

finite fourth moment and Ω = lim→∞ −1
P

=1 E[
>
 ] ∞.

(A2)  is a random sample from a distribution  and independent of .

(A3)  is twice continuously differentiable over X with uniformly bounded derivatives.

(A4)
√
→  for some constant 0 ≤  ∞ as →∞.

In Assumption (A1), the noise  can be non-identically distributed. This will allow for

a heteroskedastic error term in the longitudinal data regression models, when we regard 


as a vector of estimators of heterogeneous parameters as in Section 3. In (A2),  can be

from a fat-tailed distribution and hence its moments do not necessarily exist. (A4) ensures

a meaningful bias-variance trade-off in the limit under our drifting asymptotic framework.
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The following lemma summarizes the limiting properties of  
 (·) when →∞. The

proof is in the Appendix A.1.

Lemma 1 As →∞, we have
(i) sup∈X | 

 ()−  ()| = (
−12 +−1) under Assumptions (A1)-(A3);

(ii) for any  ∈ X , under Assumptions (A1)-(A4),

√


µ
 
 ()−  ()− 1

2
[̈ ()Ω]

¶
→ N (0  ()[1−  ()]) , (4)

where ̈ () is the Hessian matrix of  ().

Lemma 1 shows that the local deviation yields non-zero asymptotic bias of order −1,

which is resulted from the deviation of the probability limit of  
 (), say P {

 ≤ }, from
 () = P { ≤ }. For this reason, we need both large  and  to achieve (uniform)

consistency. However, neither the stochastic order of the local deviation of P {
 ≤ } from

P { ≤ } nor the limiting ratio lim→∞
√
 is important for consistency. On the other

hand, the relative size of  to  becomes important in deriving the limiting distribution in

(4). It can be readily seen from
√
( 

 ()− ()) =
√
(()− ())+

√
( 

 ()−()),

where the first term satisfies the standard Functional Central Limit Theorem and the second

term is verified to be (
√
) that contributes to the non-zero mean in the limiting

distribution unless
√
 → 0. When

√
 →  for some non-zero constant   ∞, we

need to correct the bias to have a mean-zero Gaussian in the limit. This is quite common in

the panel survey data when the number of survey waves  is small relative to the number of

surveyees . It should be noted that, however, the bias term in (4) can be ignored at some

 with ̈ () = 0. For instance, if  is a (local) optimizer of the density function of , then

̈ () = 0 and hence the bias becomes zero.

From Lemma 1, we can derive the limiting distribution of an estimator b = ( 
), where

(·) is a regular function that is Hadamard differentiable at  with a bounded derivative. We
can readily see that the bias in (4) can results in asymptotic bias in the limiting distribution ofb in general. For instance, we consider a linear statistical function 0 = ( ) =

R
() ()

for some smooth (·) and its estimator based on a noisy sample b = ( 
) =

R
() 

().

If (·) is second-order continuously differentiable with satisfying E[()()
>]  ∞ and
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E[̈()] ∞, where ̈(·) is the Hessian matrix of (·), Lemma 1 yields that

√

³b − 0

´
=

1√


X
=1

{()− E[()]}+ 1√


X
=1

{(
 )− ()}

→ N
¡
ΨE[(()− E[()])(()− E[()])

>]
¢

(5)

as  → ∞, with Ψ = [E[̈()]Ω]2  ∞. It is important to note that, if ()

is linear and hence ̈() = 0 for any  ∈ X , we have Ψ = 0 regardless of the value of

 = lim→∞
√
. Apparently, when  ≥  and hence  = 0, the limiting distribution

of b is naturally centered at the origin. Otherwise, we can correct the bias Ψ when a

consistent estimator of Ω is available, or correct the leading bias term in (5) using jackknife

estimation as in Hahn and Newey (2004).

Now we further assume the following conditions, which are similar to the conditions in

Zuo et al. (2004). We define X0 = { : D(  ) ≥ 0} for some 0 ≥ 0.

(A5)  (·) ∈ [0∞) is continuously differentiable with a bounded derivative ̇ (·);  () = 0
for  ∈ [0 0] with some   1.

(A6)
R
 (D(  )) ()  0; R {|||| (D(  ))}2 () and R {||||̇ (D(  ))}2 ()

are bounded.

(A7) sup∈X |D(  
)−D(  )| = (

−12+−1) and sup∈X0 |||||D( 

)−D(  )| =

(
−12 +−1).

(A8) D( ·) is Fréchet differentiable at  with respect to the supremum metric, whose

derivative is bounded.

Assumptions (A5) and (A6) are the same as those in Zuo et al. (2004), except for the last

condition in (A6), and they are well satisfied for popular depth functions. Assumption (A5)

supposes a sufficiently smooth weight function  (·) that is zero in the neighborhood of the
origin. Assumption (A6) ensures that the depth-weighted mean ( ) in (1) is well-defined.

The last condition in (A6) could impose some restrictions on the choice of  (·).
Under the condition in Assumption (A4), Assumption (A7) implies sup∈X

√
|D(  

)−
D(  )| = (1) and sup∈X0

√
|||||D(  

)−D(  )| = (1), which are similar to the

conditions in Zuo et al. (2004). For some depth functions, this assumption can be verified
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under proper conditions on the location and the scale parameter estimators.1 By Lemmas A

and B in Section 6.2.2 of Serfling (1980) or Proposition 2.19 of Huber and Ronchetti (2009),

the Fréchet differentiability of D( ·) in Assumption (A8) yields that there exists a bounded
function ( ) such that

√
(D(  

)−D(  )) =
Z

( )
√
( 

 −  )() + 

µ
sup
∈X

| 
 ()−  ()|

¶
(6)

uniformly on X0 . Some examples of the form of (· ·) in (6) are given in the Appendix A.2.
The following theorem gives asymptotics of the depth-weighted mean estimator ( 

)

in (3). It shows that ( 
) is

√
-consistent to ( ) and it is asymptotically mean-zero

Gaussian as  → ∞, which corresponds to the standard results with uncontaminated
data (e.g., Maronna and Yohai (1995); Zuo et al. (2004)). Therefore, unlike the cases in (5),

it does not suffer from the asymptotic bias problem. The proof is in the Appendix A.1.

Theorem 1 Suppose Assumptions (A1)-(A8) hold and sup∈X |( 1)−( 2)| = (||1−
2||) for any 1 2 ∈ X . As →∞, ( 

)− ( ) = (
−12) and

√
(( 

)− ( ))→ N (0  ), (7)

where  =
R
0

 ()
0
 ()

> () with

0
 () =

R
( − ( ))̇ (D(  ))0( ) () + (− ( )) (D(  ))R

 (D(  )) () (8)

and 0( ) = ( )− R ( 0) (0).
The additional condition on ( ) can be readily verified for the Mahalanobis depth

and the projection depth. In Theorem 1, though it seems like that we only need →∞ in

the expression (7), we use →∞ asymptotics to obtain the limiting distribution of the

depth-weighted mean estimator ( 
). This is because

√
(( 

)− ( )) =
√
(()− ( )) +

√
(( 

)− ()) ≡ 1 +2,

1For example, see Donoho and Gasko (1992) for the halfspace depth; Liu (1990) and Dümbgen (1992)

for the simplicial depth; Liu and Singh (1993) for the majority and Mahalanobis depths; Zuo and Serfling

(2000) and Zuo (2003) for the projection depth.
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in which1 → N (0  ) as →∞ from the standard results (e.g., Theorems 2.1 and 3.1 of

Zuo et al. (2004)), whereas 2 = (1) only when both →∞. In other words, to have
the limiting expression correspond to the case with observed  without noise, it is required

that both  → ∞ and lim→∞
√
 does not diverge as in Assumption (A4). It is

however important to note that, unlike the result in (5), the mean-zero limiting distribution

of ( 
) is obtained even when

√
 does not go to zero. Therefore, the depth-weighted

mean estimator is asymptotically robust to a local deviation from the underlying distribution,

provided the degree of local deviation is controlled by the condition lim→∞
√
 ∞.

For the asymptotic variance  in Theorem 1, since (

)−( ) = (1),


− = (1)

for all , and sup∈X |D(  
)−D(  )| = (1) from Assumption (A7) for large  and ,

we can estimate it as b = 1



X
=1

b0
 (


 )
b0
 (


 )
>, (9)

where

b0
 (


 ) =

−1
P

=1(

 − ( 

))̇ (D(
  


))
b0(

  

 ) + (


 − ( 

)) (D(
  


))

−1
P

=1 (D(
  


))

(10)

with data depth D(
  


) of the noisy observations and

b0(
  


 ) =

b(
 


 )−

1



X
=1

b(
  


 )

for some consistent estimator b(· ·) of (· ·). Though the expression of b0
 (


 ) in (10)

appears complicated, it can be readily obtained in practice since b(· ·) is mostly based on
some sample analogues. Some examples and detailed steps of calculating b(· ·) are in the
Appendix A.2.

3 Depth-Weighted Mean-Group Estimator

3.1 Heterogeneous case

As an application, we consider model averaging in a heterogeneous longitudinal data re-

gression model and develop the depth-weighted mean-group estimator. More precisely, we
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suppose a longitudinal data model with potentially heterogeneous multivariate partial effects

(across agents in panel data, or across groups in clustered data) and estimate the average

effect using the depth-weighted mean estimator. For instance, we consider panel data re-

gression with random coefficients given as

 = > + >  +  (11)

for agent  = 1      and time  = 1    , where the slope parameters  ∈ B ⊂ R are

potentially heterogeneous across .  is a × 1 vector of exogenous regressors or treatment
variables of interest,  is a vector of factor loadings, and  is a vector of common factors.

2

When  = ( 1)
> and  = (1  )

>, (11) becomes the two-way fixed effects regression

model with random coefficients.  can be discrete as in the difference-in-difference analysis.

The parameter vector  can be either heterogeneous or homogeneous (i.e.,  = 

a.s. for all ), which is unknown. Individual responses to some treatment are often very

heterogeneous, and they are described as the heterogeneous coefficients  in the regression

(11), which can include some outlying or erroneous responses to the treatment. In such

cases, pooled estimation with imposing the homogeneity restriction on the coefficients 

can result in biased estimators of the average effect.

As a robust measure of the average effect, we consider the depth-weighted mean of the

multivariate random coefficients  defined as

 =

R
 (D(  )) ()R
 (D(  )) () (12)

as in (1), where  is the joint distribution function of  and (·) is some non-negative weight
function. The depth function D(  ) ∈ [0 1] is defined on  and hence it measures how

much each heterogeneous parameter vector  is distant from the center of its distribution.

If E[] exists, then  = E[] when  (·) = 1. Under the homogeneous parameter setup

(i.e.,  =  a.s. for all ),  has a point mass only at  and hence  = .

We develop a generalized mean-effect estimator using the idea of the depth-weighted mean

estimator in (3). Whether  is heterogeneous or not, we can obtain the individual-specific

parameter estimator b for each . We define the depth-weighted mean-group (DWMG)

2We suppose the number of factors is given and fixed. When the common factors are not observed, we

project on the estimated factors as in Pesaran (2006) and Bai (2009).
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estimator as b =

P

=1
b (D(b  

))P

=1 (D(b  
))

(13)

as in (3), where  
() = −1

P

=1 1{b ≤ } for  ∈ B in this case. b is an -estimator

of generated variables b, in which the order statistic is based on the data depth of each b.
It is hence more general than the mean-group estimator (e.g., Pesaran and Smith (1995)),

which is an equally-weighted average of b.
Assumptions (A1) and (A2) are mild for this regression setup. In particular, Assumption

(A1) is rewritten as b −  = (
−12), (14)

and it holds for the M-estimator or the GMM estimator b, when  is independent of

{   } for all  and , like the standard assumption of the random coefficient panel

data regression models (e.g., Hsiao and Pesaran (2008)). Hence, we can see b as a noisy
observation of , which respectively correspond to


 and in (2). Though we consider the

linear regression model (11) with exogenous  mainly for the sake of presentation simplicity,

we can obtain the DWMG estimator in (13) for more general cases such as nonlinear models

and dynamic models with sequentially exogenous regressors, as long as we have an estimatorb satisfying (14).3 We also allow for (conditionally) heteroskedastic regression error . It
is important to note that Assumption (A2) does not require the moments of  exist, and

hence it is more general than the conditions of the typical random coefficient models (e.g.,

Swamy (1970)).

The asymptotic properties of b can be readily obtained from Theorem 1.

Corollary 1 Suppose  ∼   . Under the same conditions as Theorem 1, b → 

and
√
(b − )→ N (0  ) as →∞, where  is given in (8).

A (joint) confidence interval of b can be obtained using the normal approximation in

Corollary 1, where  is estimated as (9). In practice, using the fact that b is a weighted

3For instance, we can consider M-estimation given by

min
{}=1

1



X
=1

X
=1

 ( ;  )

for some known objective function . Examples include panel linear regression models (e.g., Pesaran (2006)),

panel binary choice models (e.g., Boneva and Linton (2016)), and panel quantile regression models (e.g.,

Harding et al. (2020)) with individual specific intercepts and potentially heterogeneous slope parameters.
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average in the form of b =
P

=1 
b, where  =  (D(b  

))
P

=1 (D(b  
)),

one can estimate  as b = 

X
=1

2 b2 (15)

conditional on the weights , where b2 is a consistent estimator of (b). Though this
approach ignores the randomness in the weight , simulation study in Section 4 shows that

inference based on this approach works well in finite samples.

3.2 Homogeneous case

We can still use the DWMG estimator (13) even when the slope parameters in (11) are

homogeneous in the true data generating model:  =  almost surely for all . In this case,

the depth-weighted mean  in (12) is the same as the true slope parameter  and the rate

of convergence of the DWMG estimator b can be improved to ()−12, which is quite

natural since we take average over  and  at the same time.

For the homogeneous case, however, the meaning of the data depth becomes different

from the heterogeneous case. Since  =  a.s. for all , we cannot define the depth of 

and the data depth of b no longer estimates the depth of  = . Instead, the heterogeneity

of b is now solely from the estimation error and the depth based on b describes that of the
scaled estimation error b = 12(b − ). (16)

To study the statistical properties of the DWMG estimator b in this case, we first

suppose the following condition that replaces (A1).

(A10) There exists a mean-zero random vector  satisfying
b −  = (1) as →∞ and

independent across ;  has finite fourth moment and lim→∞ −1
P

=1 E[
>
 ] ∞.

We let C ⊂ R be the support of  and () = lim→∞ −1
P

=1 P{ ≤ } for any  ∈ C.
When  is identically distributed,  is simply the distribution function of . We also

define () = −1
P

=1 1{ ≤ } and 
 = −1

P

=1 1{b ≤ }. Assumptions (A3) and
(A6)-(A7) are rewritten as follows by replacing  with .

(A30)  is twice continuously differentiable over C with uniformly bounded derivatives.

11



(A60)
R
 (D())()  0;

R {|||| (D())}2() and R {||||̇ (D())}2()
are bounded.

(A70) sup∈C
√
|D(

) − D()| = (1) and sup∈C0 ||||
√
|D(

) − D()| =
(1), where C0 = { : D() ≥ 0} for some 0 ≥ 0.

Then, as Corollary 1, we can obtain the asymptotic properties of b under the homo-

geneous parameter case as follows.

Corollary 2 Suppose  =  a.s. for all . Under the same conditions as Corollary 1 using

(A10), (A30), (A60), and (A70) instead of the corresponding assumptions, b →  and

√
(b − )→ N (0 ) as →∞, where  =

R
0

()
0
()

>() with

0
() =

R
̇ (D())0( )() +  (D())R

 (D())() ,

0( ) = ( )−R ( 0)(0), and ( ) is a bounded function satisfying√(D(
)−

D()) = R ( )√(
 −)() + (1) uniformly on C0.

We let e = 12(b − b ). Then it holds that
e = 12(b − )−12(b − ) =b + (1) since b −  = (()

−12). Hence, the asymptotic variance  can be

estimated as b = −1
P

=1
b0
(
e) b0

(
e)>, where

b0
(
e) = −1

P

=1
ė (D(e e))b0(ee) + e (D(e e))

−1
P

=1 (D(e e))
,

and b0(ee) = b(ee)− −1
P

=1 b(ee). Here, e() = −1
P

=1 1{e ≤ } and b(· ·)
is the sample analogue of (· ·). Alternatively, because of the affine-invariance property of
the depth function, we can simply let b = −1

P

=1(
12 b0

 (
b))(12 b0

 (
b))>, whereb0

 (
b) is from (10).

Remark 1 (Robustness) For the homogeneous case, since the weights in b depend

on the depth of the scaled estimation error b, we can expect its robustness against outlyingb’s. For instance, in the simple one-way fixed effects regression model,  = > +  +

, we have b = (−1P

=1 
0


0>
 )

−1(−12P

=1 
0


0
), where 0 =  − −1P

=1 ,
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and the typical sources of outlying behaviors include: when  has little time-variation

for some  and hence −1P

=1 
0


0>
 is near singular; when several individual ’s have

measurement errors in  resulting in non-zero E[0
0
]; when (0

0
) is very large for

some  under heteroskedasticity. Existence of such outlying individuals is very likely to yield

heterogeneity in the individual-specific estimates b. In such cases, the standard maximum
likelihood (which corresponds to the within estimator or the least squares dummy variable

estimator) or the mean-group estimators may not be even consistent. It is also possible that

a poolability test rejects the null of homogeneous model, not because the true parameters

’s are indeed heterogeneous, but because some
b’s impose serious estimation errors that

causes the test to conclude an incorrect result. The DWMG estimator b uses the resulting

heterogeneity in the individual-specific estimates b directly to construct a robust estimator
without identifying the source of the heterogeneity.

Remark 2 (Mixture of heterogeneous and homogeneous parameters) Suppose

 = (
>
 

>
)

> ∈ R+ , where  6=  for some  6=  but  =  for all . Also let

 = (
>
  

>
)

> be the depth-weighted mean of . In this case, Corollaries 1 and 2 imply

that
√

³b − 

´
=
√


µ b − b − 

¶
→ N

µµ
0

0

¶


µ
 0

0 0

¶¶
as →∞, where   0 is defined as in Corollary 1 based on the marginal distribution
of . It suggests that we only need to consider the depth of the heterogeneous component

 and their depth-weighted estimator
b for inferences of  . In fact, if we denote the

joint distribution of  = (> 
>
)

> as  and the marginals as (  ), we can readily

verify that the following two estimators are both consistent to  :

b =

P

=1
b (D(b  

))P

=1 (D(b  
))

and e =

P

=1
e (D(e  

))P

=1 (D(e  
))

,

where b = (b> b>)> is an estimator using all the regressors and e is an estimator using
only the regressors with heterogeneous slopes . An interesting example is when  = 0 for

all , which is the case that the corresponding regressors are irrelevant and hence redundant.

In this case, whether we use the joint depth or marginal depth, we have the same limit of

the depth-weighted estimator.
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4 Numerical Illustrations

4.1 Simulations

We examine the finite sample efficiency of the depth-weighted mean estimator. In particular,

we consider the DWMG estimators in the two-way fixed effects regression model:

 = > +  +   +  (17)

for  = 1      and  = 1    , with  ∈ R2. The individual effects are generated as
 =  + −1P

=1 (1 + 2) with  ∼ U [0 1] and the time effects as   =   +

−1
P

=1 (1 + 2) with   ∼ U [0 1]. The regressors  = (1 2)
> and the error

term  are uncorrelated and respectively generated as

 ∼ N
µµ
0

0

¶


µ
1 

 1

¶¶
and  ∼ N (0 1) ,

where  = 01.4

In this setup,  corresponds to the latent observations without noise  in (2); and the

individual time series estimate b corresponds to the observed noisy data 
 =  +  in

(2), where  is the estimation error satisfying Assumption (A1). We examine the following

two data generating processes  :

• DGP1:  = (1 2)> are randomly generated from N ((1 1)> 2), where 2 is the
identify matrix of rank 2.

• DGP2:  = (1 1)> for all , where 1 is randomly generated from N (1 1).

DGP 1 assumes the fully heterogeneous slopes and DGP 2 assumes a mixture of homogeneous

and heterogeneous slopes. For each data generating process, we also consider contaminated

 similarly as in the simulation design of Zuo et al. (2004). More precisely, we suppose

there are outlying individuals whose slope parameters  are contaminated and generated

from (1− ) + N ((10 10)> 522) with  = 0%, 5%, and 10% (i.e., % of  in the sample

4We also considered a heteroskedastic error with E[2] = 2 and 2 ∼ X 2
1 . However, the simluation

results remain very similar and hence are not reported.
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are randomly generated from N ((10 10)> 522)), where  is the distribution of  either in

DGP1 or in DGP2.

We compare the sample mean and the four types of depth-weighted means. DWP is based

on the projection depth and DWM is based on the Mahalanobis depth. For each case, we

consider two types of weight functions:  () =  and

 () =
exp(−3 ¡1− 

¢2
)− exp (−3)

1− exp (−3) 1{  }+ 1{ ≥ } (18)

as in Zuo et al. (2004), where  is the sample median of D(b  
). We indicate each

weighting type using superscript 0 and  , like DW0
P and DW


P . We investigate the sample

relative efficiency by comparing the empirical mean squared errors (MSE). In particular,

Tables 1 and 2 report the ratio obtained by dividing the empirical MSE of the sample mean

by that of each estimator. The simulation results are based on 2000 iterations for different

combinations of sample sizes  = (100 200) and  = (5 10). We choose small  values

here, which show the cases with heavy noise.

Note that when we consider the noisy observations b, the sample mean −1P

=1
b corre-

sponds to the mean-group estimator. We also include the ML estimator in comparison, which

corresponds to the two-way fixed effect estimator or the least squares (two-way) dummy vari-

ables estimator: b = (
P

=1

P

=1 
∗

∗>
 )

−1P

=1

P

=1 
∗

∗
, where 

∗
 = 0−−1

P

=1 
0


with 0 =  −−1P

=1 . This estimator presumes the homogeneous slope parameter

(i.e.,  =  for all  ) and hence is the optimal one for the homogeneous panel regression

with a homoskedastic error.

Table 1 reports the empirical MSE ratios of the sample mean to the DWMG estimators

in DGP1, where both elements in  are fully heterogeneous. Hence, the value greater than

unity implies that the DWMG estimator has smaller MSE than the sample mean; the relative

efficiency of the DWMG estimator improves as the ratio gets large. The left panel of the

table is based on the latent values of , which corresponds to the case that Zuo et al. (2004)

considered. Note that the values on the left panel do not depend on  by construction,

because  are not estimated. The right panel of the table is based on the individual time

series estimates b and hence the noisy observations that we are interested in.
We summarize the main findings as follows. First, the overall performance between these

two panels are quite similar, and the values on the right panel get closer to those on the
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Table 1: Mean Square Error Ratio to Mean: Heterogeneous Case

data without noise noisy data

= (1 2)
> b

 n m DW0
P DW

P DW0
M DW

M DW0
P DW

P DW0
M DW

M ML

0% 100 5 0.86 0.91 0.90 0.86 1.04 1.11 1.09 1.07 0.99

100 10 0.86 0.91 0.90 0.86 0.88 0.93 0.92 0.88 0.79

200 5 0.89 0.93 0.91 0.87 1.06 1.12 1.09 1.09 1.02

200 10 0.89 0.93 0.91 0.87 0.90 0.94 0.92 0.88 0.82

5% 100 5 13.40 18.10 12.60 17.80 8.18 10.57 7.60 10.19 0.86

100 10 13.40 18.10 12.60 17.80 11.63 15.69 10.82 15.45 0.90

200 5 19.23 30.57 17.20 30.34 11.92 17.66 10.51 17.07 0.90

200 10 19.23 30.57 17.20 30.34 16.44 25.56 14.52 25.26 0.94

10% 100 5 23.74 46.42 20.71 46.87 13.74 23.82 12.07 23.53 0.91

100 10 23.74 46.42 20.71 46.87 19.22 36.52 17.06 37.40 0.94

200 5 27.61 65.05 23.76 67.40 16.97 34.71 14.64 35.17 0.93

200 10 27.61 65.05 23.76 67.40 22.97 51.55 19.83 53.49 0.97

Note: DW0
P and DW


P are the DWMG estimators based on the projection depth, using the weight

function  () =  and (18), respectively; DW0
M and DW

M are based on the Mahalanobis depth, using the

weight function  () =  and (18), respectively. ML corresponds to the least squares (two-way) dummy

variables estimator. Each value is the ratio obtained by dividing the empirical MSE of the sample mean by

that of each estimator.
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Table 2: Mean Square Error Ratio to Mean: Mixture of Hetero and Homogeneous Case

data without noise noisy data

= (1 1)
> b

 n m DW0
P DW

P DW0
M DW

M DW0
P DW

P DW0
M DW

M ML

0% 100 5 0.83 0.85 0.93 0.89 1.25 1.31 1.27 1.26 1.27

100 10 0.83 0.85 0.93 0.89 0.91 0.95 0.94 0.90 0.84

200 5 0.83 0.85 0.92 0.87 1.23 1.30 1.26 1.26 1.31

200 10 0.83 0.85 0.92 0.87 0.90 0.93 0.93 0.88 0.90

5% 100 5 34.46 36.70 30.65 34.55 13.06 16.74 11.59 15.09 0.86

100 10 34.46 36.70 30.65 34.55 22.46 28.53 20.57 26.20 0.90

200 5 62.15 67.08 45.56 57.66 19.72 28.91 16.66 25.61 0.90

200 10 62.15 67.08 45.56 57.66 34.54 49.09 30.18 44.33 0.95

10% 100 5 110.3 128.3 42.61 83.09 22.27 39.70 17.18 33.12 0.92

100 10 110.3 128.3 42.61 83.09 41.62 76.17 29.20 60.28 0.94

200 5 183.2 227.6 49.60 115.4 29.26 62.69 21.49 50.28 0.93

200 10 183.2 227.6 49.60 115.4 56.57 124.3 35.50 87.49 0.97

Note: DW0
P and DW


P are the DWMG estimators based on the projection depth, using the weight

function  () =  and (18), respectively; DW0
M and DW

M are based on the Mahalanobis depth, using the

weight function  () =  and (18), respectively. ML corresponds to the least squares (two-way) dummy

variables estimator. Each value is the ratio obtained by dividing the empirical MSE of the sample mean by

that of each estimator.
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left panel as () increases, which supports the main theorem. Second, when there is no

contamination (i.e.,  = 0%), though the depth-weighted mean estimator is less efficient

with  as expected, it is not the always the case with the noisy data
b. Importantly, when

the noise is large (i.e., when  is small), the depth-weighted mean estimator can be more

efficient than the sample mean. Third, it is evident that the depth-weighted mean estimators

outperform the sample mean when there is contamination; the gain in relative efficiency

improves as more samples are contaminated (i.e.,  increases). Fourth, the difference in the

relative efficiency of the depth-weighted mean estimators attribute the choice of the weight

function  (·); imposing low weights on outlying observations improves the efficiency.
Table 2 reports the empirical relative efficiency in DGP2, where one element in  is

homogeneous. In this case, the relative efficiency improvement is more dramatic than the

fully heterogeneous case in Table 1, but the overall patterns remain the same. Without

contamination, the ML also performs well, and it is because the model gets closer to the

homogeneous panel regression, under which the ML is the optimal.

4.2 Empirical Illustration

We investigate the cross-sectional heterogeneity in deviations from the law of one price and

illustrate how the conventional panel pooled estimator can be misled by a small number of

outlying individuals in the heterogeneous environment. In particular, we consider the relative

purchasing power parity (PPP) model, which predicts that the change in the exchange rate

of two countries is determined by the difference in price level changes. We estimate the

relative PPP parameters of various currencies to the U.S. Dollar (USD) and examine if there

exists any evidence supporting the relative PPP hypothesis on average.

To this end, we consider the following factor augmented regression as in Greenaway-

McGrevy et al. (2018):

∆ = ( − 0) + >  +  (19)

for currency (or country)  = 1      and time  = 1    , where ∆ is the monthly

depreciation rate of the th currency against the USD,  is the monthly inflation rate in

the country , and 0 is the monthly inflation rate in the U.S. We include 5 common factors

 = (1 
>
∆ 

>
)

> ∈ R1+2+2, where ∆ and  collect two factors respectively from∆ and

, so that the cross-sectional dependence among the nominal and relative inflation rates are
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well controlled. The number of factors are selected using Bai and Ng (2002)’s 2 criterion

with the maximum number of 8 for each variable. We use a monthly panel data set of 27

bilateral spot exchange rates and consumer price indices (CPI) from 1999.M1 to 2015.M6.

The source of the data is Global Insight (GI) at Information Handling Service (IHS). The

list of the currencies are in the note of Table 3.

We expect  = 1 if the relative PPP strictly holds for the th currency in the short run;

 = 0 if there is no relationship between the depreciation rate and the relative inflation

rate, which strongly rejects the relative PPP hypothesis. Knowing that the strict relative

PPP rarely holds, however, one is typically interested in the hull hypothesis  = 0 for each

. Table 3 reports the factor augmented least squares estimate b for each currency, its
standard error, and the two -statistics for the null of  = 0 and  = 1. The standard error

of each b is calculated by the Newey-West robust estimator with the lag length selection of
b13c. At the individual level, the null of  = 1 is very often rejected: 13 out of 27 cases
are rejected at the 5% level. Meanwhile, the null of  = 0 is hardly rejected: only 4 out of

27 cases are rejected at the 5% level. Also note that the sign of b is negative in 12 out of
27 cases and positive in 15 cases.5

We now consider pooled estimation of the relative PPP parameter, which tells if the

world economy on average supports the relative PPP to the USD. Studies using cross-country

panel data often report such pooled estimates and conclude mixed results. We conjecture

that one reason of such mixed results is the severe heterogeneity among the currencies and

the conventional pooled estimator could yield misleading results because of some outlying

currencies. Table 4 reports several pooled relative PPP estimates. The ML estimator (or the

pooled least square estimator) presumes  =  for all  and estimate ;6 the mean-group

(MG) estimator is the equal-weight average of b’s, which estimates the mean of  if it
exists. We compare them with the DWMG estimators based on the Mahalanobis (DWM)

and the projection (DWP) depths, where we consider the same weight function  () = 

and (18) as in the simulations in the previous subsection. The standard errors of the DWMG

estimators are calculated as in (15) to construct the -statistics.7 In Table 3, we also report

5In fact, Engel et al. (2015) and Greenaway-McGrevy et al. (2018) found that a small number of common

factors explain more than 50% of the real exchange rate variation and the relative prices or inflations do not

provide any meaningful information to predict the future exchange rates.
6However, all the panel homogeneity tests we consider strongly reject the homogeneity.
7For this panel model, one could instead use the bootstrap method, such as the cross-sectional residual-

based bootstrap procedure proposed by Lee et al. (2019).
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Table 3: Relative Purchaing Power Parity Estimation of Individual Countries

individual PPP weight in %b s.e. t-stat t-stat ML DW0
M DW0

P

= 0 = 1

AUS -1.40 1.08 -1.30 -2.22* 0.68 1.25 1.36

NZ -1.10 1.64 -0.67 -1.28 0.58 1.66 1.62

HUN -0.71 0.58 -1.22 -2.95* 2.87 2.46 2.16

SIN -0.34 0.27 -1.26 -4.96* 2.97 3.57 3.13

GBR -0.27 0.72 -0.37 -1.76 0.70 3.83 3.44

JPN -0.26 0.49 -0.54 -2.57* 1.41 3.85 3.48

TWN -0.22 0.13 -1.71 -9.38* 8.83 4.00 3.70

SWE -0.19 0.63 -0.30 -1.89* 1.02 4.10 3.86

KOR -0.14 0.61 -0.23 -1.87* 1.58 4.27 4.17

THA -0.07 0.29 -0.25 -3.69* 3.32 4.48 4.68

ROM -0.05 0.36 -0.14 -2.92* 9.99 4.55 4.87

MEX -0.03 0.60 -0.04 -1.72 1.28 4.62 5.12

PHI 0.04 0.35 0.11 -2.74* 2.67 4.79 5.87

EURO 0.13 0.94 0.13 -0.93 0.34 4.98 7.39

IND 0.17 0.21 0.80 -3.95* 7.49 5.04 6.65

COL 0.17 1.00 0.17 -0.83 1.35 5.05 6.59

CZE 0.18 0.78 0.23 -1.05 1.98 5.06 6.40

SUI 0.29 0.88 0.33 -0.81 0.64 5.13 5.02

POL 0.39 0.95 0.41 -0.64 1.51 5.08 4.20

NOR 0.40 0.58 0.69 -1.03 2.71 5.07 4.13

BRA 0.62 1.34 0.47 -0.28 3.54 4.58 3.02

RSA 0.92 0.88 1.04 -0.09 2.92 3.59 2.24

CAN 1.13 0.64 1.77 0.20 1.36 2.90 1.88

TUR 1.17 0.57 2.08* 0.30 27.38 2.78 1.83

ICE 1.58 0.62 2.54* 0.94 5.39 1.82 1.41

ISR 2.25 0.47 4.82* 2.66* 2.84 0.99 1.03

CHI 3.19 0.68 4.72* 3.22* 2.65 0.51 0.75

Note: * denotes significant at 5% from each t-test. The countries in the table are ordered by the individual

relative PPP estimates to the U.S. Dollar. The currencies are (in alphabetical order) of Australia (AUS),

Brazil (BRA), Canada (CAN), Chile (CHI), Columbia (COL), the Czech Republic (CZE), the Euro

(EUR), Hungary (HUN), Iceland (ICE), India (IND), Israel (ISR), Japan (JPN), Korea (KOR), Mexico

(MEX), Norway (NOR), New Zealand (NZL), the Philippines (PHI), Poland (POL), Romania (ROM),

Singapore (SIN), South Africa (RSA), Sweden (SWE), Switzerland (SUI), Taiwan (TWN), Thailand

(THA), Türkiye (TUR), and the U.K. (GBR).

20



Table 4: Pooled Relative Purchaing Power Parity Estimation

ML MG DW0
P DW

P DW0
M DW

M

b 0.574 0.291 0.135 0.112 0.168 0.156

s.e. 0.225 0.184 0.154 0.145 0.150 0.145

t-stat ( = 0) 2.56 1.58 0.88 0.77 1.12 1.07

t-stat ( = 1) -1.89 -3.84 -5.63 -6.12 -5.56 -5.81

the calculated weights used for ML, DW0
M, and DW

0
P.
8

Before we read Table 4, we first want to show a brief simulation results on the inference

based on the DWMG estimators. To this end, we consider the same model (17) with DGP1

as in the previous section with  ∈ R1. Table 5 shows that small contamination in the
sample (5% in this case) can heavily affect inferences for ML and MG. On the other hand,

DWMG estimators are relative stable though they tend to over reject when the sample gets

contaminated. A notable case is when () = (25 200), which is a similar sample size

of our empirical example in this section. When some contamination presents, ML severely

over rejects (0.91), whereas MG under rejects (0.02). The DWMG estimators show rejection

probabilities close to the nominal size of 5%.

Now, in Table 4, ML is 0574 and significantly different from zero, which is rather puzzling

since the null of  = 0 was hardly rejected at the individual level in Table 3. We can see

that the weight used for ML in Türkiye (TUR) is extremely high (27%), which is resulted

from high fluctuation of its inflation rate, and hence its large b value (117) is heavily
counted.9 For MG, it is affected by Chile (CHI) the most, which has the largest b value
(319). In comparison, the DWMG estimators properly weight such currencies and we expect

that the depth-weighted estimators DWM and DWP better estimate the average effect in

this highly heterogeneous environment. Furthermore, from our observations in Table 5,

the t-statistcs (for  = 0) of ML and MG are likely over-estimated and under-estimated,

respectively, and hence it is hard to make any statistical conclusion using them. Based on

these findings, we conclude that the mixed evidence on the relative PPP based on the ML

or MG estimators would be because of over-weighting on a few outliers with highly unstable

8Recall that we can write b = (
P

=1

P
=1 

∗

∗>
 )
−1P

=1

P
=1 

∗

∗
 =

P
=1 

b, where b =
(
P

=1 
∗

∗>
 )
−1P

=1 
∗

∗
 and hence we define the weight as  = (

P
=1

P
=1 

∗

∗>
 )
−1P

=1 
∗

∗>
 .

9For the sample excluding TUR, ML drops from 0574 to 0348; for the sample excluding CHI, MG drops

from 0291 to 0180.
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Table 5: Rejection Probabilities

 n m ML MG DW0
P DW

P DW0
M DW

M

0% 25 10 0.32 0.06 0.08 0.08 0.07 0.08

25 50 0.61 0.07 0.07 0.06 0.05 0.05

25 100 0.73 0.07 0.05 0.06 0.04 0.04

25 200 0.79 0.07 0.05 0.06 0.04 0.05

100 10 0.28 0.05 0.08 0.09 0.05 0.07

100 50 0.59 0.05 0.06 0.06 0.04 0.05

100 100 0.69 0.05 0.05 0.06 0.04 0.05

100 200 0.76 0.05 0.05 0.05 0.04 0.05

5% 25 10 0.43 0.02 0.07 0.07 0.08 0.06

25 50 0.79 0.02 0.05 0.05 0.05 0.04

25 100 0.88 0.02 0.05 0.05 0.05 0.04

25 200 0.91 0.02 0.05 0.05 0.05 0.04

100 10 0.94 0.45 0.15 0.12 0.29 0.18

100 50 1.00 0.47 0.13 0.09 0.24 0.14

100 100 1.00 0.49 0.13 0.09 0.24 0.13

100 200 1.00 0.46 0.11 0.09 0.23 0.13

Note: The estimators are the same as in Tables 1 and 2; MG is the mean-group estimator, which is the

equally-weighted average of b’s.  is the level of contamination as in the previous subsection. Each value
shows the rejection probability of the t-test at the 5% significance level based on 2000 simulations.
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domestic economies. In comparison, depth-weighted estimators automatically impose very

low weights on such outlying currencies; they are not significantly different from zero even at

the 10% level, which concludes weak evidence for the relative PPP to the USD on average.

5 Concluding Remarks

In this paper, we study the depth weighted mean estimator when we use noisy observations.

We employ a drifting asymptotic framework, where the noise  is local-to-zero such that

||||2 = (
−1) and

√
 does not diverge. We show that the depth weighted mean

estimator still follows the standard asymptotic results as Zuo et al. (2004) that use the

latent variables without noise. We apply this idea to develop the depth-weighted mean-

group estimator, which estimates a centrality of potentially heterogeneous multi-dimensional

parameters in longitudinal data models. The new estimator shows promising finite sample

performance whether the true coefficient is heterogeneous or homogeneous, in that it is robust

to outlying behaviors of heterogeneous agents in longitudinal data. This estimator can be

hence useful to estimate average partial or treatment effects in practice when the effects are

more likely to be heterogeneous across agents.

The weight function  (·) considered in this paper is smooth and it does not completely
eliminate the outliers. Similar to Zuo (2006), we can consider the-trimmed depth-weighted

mean estimator,

 (

) =

P

=1

 (D(

  

))1{D(

  

) ≥ }P

=1 (D(
  


))1{D(

  

) ≥ }

for some  ∈ (0max1≤≤D(
  


)). When  = 0, it is simply  ( 

); when  (·) = 1,
it is the -trimmed mean where trimming is based on the data depth. In a similar vein,

Lee and Sul (2022a) considers trimmed mean-group estimator for panel data regression and

Lee and Sul (2022b) applies trimmed depth-weighted mean to develop a robust forecasting

combination.
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A Appendix

A.1 Proofs

Proof of Lemma 1 We denote ,  , and  be the joint distribution of ( ), the

marginal distribution of , and the marginal distribution of , respectively. The noise 

can be non-identically distributed over  and hence we write the marginal distribution 

instead of . For each , the distribution function of 
 can be expressed as

P {
 ≤ } =

Z Z
1 {1 + 2 ≤ }|(1|2)(2)

=

Z ∙Z
1 {1 ≤ − 2} (1)

¸
(2)

=

Z
 (− 2)(2), (A.1)

where the second equality is because  is assumed independent of  in Assumption (A2).

Now, for a given  ∈ X , we write

 
()−  () =

1



X
=1

(1{
 ≤ }−  ())

=
1



X
=1

{(1{
 ≤ }− 1{ ≤ })− (E [1 {

 ≤ }]−  ())}

+
1



X
=1

(1{ ≤ }−  ()) +
1



X
=1

µZ
 (− 2)(2)−  ()

¶
≡ 1() +2() +3(),

where the expression of 3() is from (A.1).

First, since the binary indicator function is Donsker and ||
 − || → 0 as  → ∞

for each  from Assumption (A1), sup∈X |1()| = (
−12) as  → ∞ by Theorem

2.1 of van der Vaart and Wellner (2007). Second, sup∈X |2()| = (
−12) as  → ∞

by the standard results (e.g., Dvoretzky et al. (1956); Kiefer (1961)). Finally, we denote

̇ () = ∇ () and ̈ () = ∇2 (). From Assumptions (A1) and (A3),  (− )− () =
−> ̇ ()+(12)> ̈ (∗ ) = −> ̇ ()+(12)> ̈ ()+(−1) for some ∗ between −
and , where sup∈X ||̈ (∗ )− ̈ ()|| = (1). It follows that

3() =
1



X
=1

Z
{ (− )−  ()}()
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=
1



X
=1

Z ½
−>̇ () + 1

2
>̈ () + 

¡
−1¢¾()

=
1
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X
=1
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>


¤
] + 

µ
1



¶

=
1
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"
̈ ()

1



X
=1

E
£


>


¤#
+ 

µ
1



¶
, (A.2)

where E[] = 0. Since [̈ ()−1
P

=1 E
£


>


¤
]→ [̈ ()Ω] as →∞, which is assumed

to be bounded uniformly in  ∈ X , sup∈X |3()| = (
−1). The uniform consistency

follows by combining these three results. The asymptotic normality is also verified since
√
2() → N (0  ()(1−  ()) as →∞ by FCLT (e.g., p.57 in Serfling (1980)) and
√
3() = (

√
)[̈ ()Ω]2 + (

√
) from (A.2).

Proof of Theorem 1 We prove the second result; the proof for the consistency is similar

and omitted. For further details, see Massé (2004, Proposition 3.1). We let

(·) =
√
( 

(·)−  (·)) and 
(·) =

√
(D(·  

)−D(·  )).

We first observe that

 ≡
√


Z
(− ( )) (D(  

))

()−

√


Z
(− ( )) (D(  )) ()

=

Z
(− ( ))̇ (())


()


() +

Z
(− ( )) (D(  ))()

≡ 1 +2 (A.3)

for some () between D(  
) and D(  ), where sup∈X |()−D(  )| = (

−12+

−1). Note that

1 =

Z
(− ( ))̇ (())


()()

+
√


Z
(− ( ))̇ (()) {D(  

)−D(  )} ( 
 − ) ()

≡ 11 +12,

where

11 =

Z
(− ( ))̇ (D(  ))

() () +  (1)
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=

Z
X0
(− ( ))̇ (D(  ))

½Z
( )()

¾
 () + (1)

=

ZZ
( − ( ))̇ (D(  ))( ) ()() + (1)

using the same argument as the proof of Theorem 2.1 in Zuo et al. (2004) under Assumptions

(A1)-(A8). However,

k12k ≤ sup
∈X

¯̄̄
̇ (())

¯̄̄
sup
∈X

|D(  
)−D(  )|

°°°°√Z (− ( )) ( 
 − ) ()

°°°°
= 

¡
−12 +−1¢ °°°°° 1√

X
=1

{
 −}

°°°°° =  (1) ,

since 
 − = −12. Therefore, by putting this expression into (A.3), we have

 =

Z ½Z
( − ( ))̇ (D(  ))( ) () +  (D(  ))

¾
() + (1). (A.4)

Likewise, we can also show thatZ
 (D(  

))

() =

Z
 (D(  )) () + (1). (A.5)

From (A.4) and (A.5), therefore,

√
(( 

)− ( )) =
R

 (D(  )) () + (1)

=

R
Λ(  )

√
( −  )()R

 (D(  )) () +

R
Λ(  )

√
( 

 − )()R
 (D(  )) () + (1)

≡ Φ1 + Φ2 + (1), (A.6)

where Λ(  ) =
R
( − ( ))̇ (D(  ))( ) () + (− ( )) (D(  )) for  ∈ X .

The first term Φ1 in (A.6) satisfies

Φ1 =
1√


X
=1

( ()− E[ ()])→ N
¡
0E[0

 ()
0
 ()

>]
¢

from Theorem A of Serfling (1980; p.226), where  () = Λ(  )
R
 (D(  )) ().

Since
R
(− ( )) (D(  )) () R  (D(  )) () = 0 by construction,
0

 () =  ()− E[ ()]

=

R
( − ( ))̇ (D(  ))0( ) () + (− ( )) (D(  ))R

 (D(  )) ()

26



with 0( ) = ( )− R ( 0) (0). For the second term Φ2 in (A.6), we note that°°°°Z (− ( )) (D(  ))√( 
 − )()

°°°°
≤ sup

∈X
| (D(  ))|

°°°°Z (− ( ))
√
( 

 − )()

°°°°
= 

°°°°° 1√
X
=1

{
 −}

°°°°° = 

¡
−12¢

for some  ∞ and

E

°°°°ZZ ( − ( ))̇ (D(  ))( ) ()√( 
 − )()

°°°°2
≤ sup

∈X
E |(

 )− ()|2
Z
k − ( )k2 ̇ (D(  ))2 () = 

¡
−1¢

from Assumptions (A6) and the condition sup∈X E |( 1)− ( 2)| = (||1 − 2||). It
follows that Φ2 → 0 as →∞, which yields the desired result.

Proof of Corollary 2 By the affine invariance property of the statistical depth function

(e.g., Zuo and Serfling (2000)), we have

D(b  
) = D(b 

) (A.7)

from (16). Therefore, we can write

b −  =

R
(− ) (D(  

))

()R

 (D(  
))


()

=
−12 R  (D(

))

()R

 (D(
))


()

(A.8)

from (A.7) and by the change of variables with  = 12(− ).

We let (·) =
√
(

(·)−(·)) and 
(·) =

√
(D(· 

)−D (· )). Similarly to the
proof of Theorem 1, we have

√


Z
 (D(

))

() (A.9)

=

Z ½Z
̇ (D())( )() +  (D())

¾
() + (1)

and Z
 (D(

))

() =

Z
 (D())() + (1). (A.10)
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By combining (A.8), (A.9), and (A.10), we thus have

√
(b − )

=

√

R
 (D(

))

()R

 (D(
))


()

=

R nR
̇ (D())( )() +  (D())

o√
(

 −)()R
 (D())() +  (1) .

The desired result follows using the same argument as the proof of Theorem 1 because

√
(b − )→ N

¡
0E[0

()
0
()

>]
¢

as →∞, where

0
() =

R
̇ (D())0( )() +  (D())R

 (D())() .

A.2 Examples of depth and (· ·) estimation
(· ·) in (6) is determined based on the choice of a specific statistical depth function D(· ·).
For the Mahalanobis and the projection depth functions, (· ·) in (6) corresponds to what
are given in Zuo et al. (2004). We summarize their specific forms and the estimators b(· ·).
We also summarize computation steps how to estimate D(· ·) for each case.

Mahalanobis depth The Mahalanobis depth is defined as

D (; ) =
1

1 + (− ( ))
>
Σ( )−1 (− ( ))

,

where ( ) and Σ( ) are some location and scale parameters of  . Suppose ( ) and

Σ( ) satisfy
√
(( 

) − ( )) = −12
P

=1 1(

 ) + (1) and

√
(Σ( 

) − Σ( )) =

−12
P

=1 2(

 )+ (1) for some 1() and 2() with

R
1() () =

R
2() () = 0.

For instance, we have 1() = −( ) for the mean and 2() = (−( ))(−( ))>−
Σ( ) for the variance. Then, as in Example 2.3 of Zuo et al. (2004), we have

( ) =
2( − ( ))>Σ( )−11() + ( − ( ))>Σ( )−12()Σ( )−1( − ( ))

(1 + ( − ( ))>Σ( )−1( − ( )))2
.
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For estimation, we let the sample mean ( 
) = b = −1

P

=1

 and the sample

variance Σ( 
) =

bΣ = ( − )−1
P

=1(

 − b)(

 − b)> of 
 . Then, the sample

Mahalanobis depth of 
 is obtained as

D(
  


) =

1

1 + (
 − b)>(bΣ)−1(

 − b) .
Furthermore, for each   = 1     , we can obtain

b(
 


 ) =

2 e>
 (
bΣ)−1 e

 +
e>

bΣ−1( e


e>
 − bΣ)(bΣ)−1 e



[1 + e>
 (
bΣ)−1 e

 ]
2

,

where e
 = 

 − ( 
) for each .

Projection depth The projection depth is defined as

D (; ) =
1

1 + sup:||||=1{|>−  ( ; )| ( ; )} ,

where  is a  × 1 nonrandom vector with |||| = 1 and ( ; ) and ( ; ) are some

location and scale parameters of the distribution of >. When > − (>) = 0 and

(>) = 0, we let sup:||||=1{
¯̄
>− (>)

¯̄
(>)} = 0 and hence D (; ) =

1. Suppose ( ; ) and ( ; ) satisfy
√
(( 

; ) − ( ; )) = −12
P

=1 1(

 ; ) +

(1) and
√
(Σ( 

; ) − Σ( ; )) = −12
P

=1 2(

 ; ) + (1) uniformly in  for some

1(; ) and 2(; ), where they satisfy E[(
 ; )] = 0, E[ sup||||=1 

2
(


 ; )]  ∞, and

E[ sup||1−2||≤||1||=||2||=1 |(
 ; 1)− (


 ; 2)|2]→ 0 as  → 0 for  = 1 2.

For instance, for the median ( ; ) and the median absolute deviation (MAD) ( ; ),

we have

1(; ) =

p
>Σ( )
(0)

µ
1

2
− 1©>(− ( )) ≤ 0ª¶ ,

2(; ) =

p
>Σ( )
2(0)

µ
1

2
− 1

n
|>(− ( ))| ≤ 0

p
>Σ( )

o¶
.

from Lemma 3.2 of Zuo et al. (2004), where Σ( ) is some positive definite matrix such that

(>Σ( ))−12>(
 −( )) is a univariate symmetric variable; (·) is the density function

of (>Σ( ))−12>(
 − ( )) and 0 is its MAD, satisfying (0)  0 and (0)  0.
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Then, from Theorem 3.1 of Zuo et al. (2004), we have

 ( ) =
1(; 

∗()) +O(  )2(; 
∗())

( ; ∗()) (1 +O(  ))
2

,

where O(  ) = sup:||||=1{
¯̄
> − ( ; )

¯̄
( ; )} and ∗() is such that O(  ) =¯̄

∗()> − ( ; ∗())
¯̄
( ; ∗()).

For estimation of the sample projection depth D (
  


) and

b(
 


 ) for each   =

1     , we take the following steps:

1. We generate  from a -dimensional multivariate standard normal for  = 1     .

For each , redefine  as (
>
 )

12 so that kk = 1. Recall that since the stan-

dard normal density function is rotationally symmetric, standard-normal-distributed

random coordinates yields a uniform distribution of directions and hence it generates

random points on the surface of the unit circle.

2. For each  = 1     , we let ( 
; ) = med1≤≤{> 

 } be the sample median and
( 

; ) = MAD1≤≤{> 
 } = med1≤≤{|> 

 −med1≤0≤{> 
0}|} be the sample

MAD of > 

 .

3. For each  = 1     , we find ∗() such that

∗() = argmax
:1≤≤

¯̄
> 


 − ( 

; )
¯̄

( 
; )

.

Then, the sample depth of 
 is defined as

D (
  


) =

1

1 +O(
  


)

with O(
  


) =

¯̄
∗()>

 − ( 
; 

∗())
¯̄

( 
; 

∗())
.

4. For each   = 1     , we let

() =
h
∗()>bΣ∗()

i−12
∗()> (

 − ( 
)) ,

where bΣ = Σ( 
) is the sample variance of 


 as defined in the Mahalanobis depth

above. Furthermore, we define

b0() = MAD1≤≤{()}

b(;) =
1



X
=1

Υ

µ
()− 



¶
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for some kernel function Υ(·) and a bandwidth  that satisfies the conventional condi-

tions for the consistent kernel density estimator.

5. Then, for each   = 1     , we can obtain

b(
 


 ) =

b1(
 ; 

∗()) +O(
  


)
b2(

 ; 
∗())

( 
; 

∗())
¡
1 +O(

  

)
¢2 ,

where

b1(
 ; 

∗()) =

q
∗()>bΣ∗()b(; 0)

µ
1

2
− 1©∗()>(

 − ( 
)) ≤ 0

ª¶
b2(

 ; 
∗()) =

q
∗()>bΣ∗()

2b(; b0())
µ
1

2
− 1 {| ()| ≤ b0()}¶ .
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