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This document contains supplementary proofs, additional discussion on power trend regression, some
further numerical calculations, and additional simulations to those reported in Kong, Phillips and Sul (2019,
hereafter KPS). We begin with the proofs of Lemmas 1-5.

Proofs of Lemmas

Proof of Lemma 1: By Euler-Maclaurin summation, the stated representations and large 1" approxima-
tions of 77 (o) and Hrp («,£) for a < 1 are well known. When « > 1, the exact expressions for the infinite

sums are given by the Riemann and Hurwitz zeta functions
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the By; are Bernoulli numbers, and Psji1 (t) = (-1)7! Y peq 2sin (2kmt) / (2km)*/T! . Thus, the expres-
sions given in (1) provide upper bounds for Zr () and {; (e, £). Simpler bounds are readily constructed
(e.g., Kac and Cheung, 2002; KC). Indeed, since t~¢ is positive, continuous, and tends to zero, the Euler-
Maclaurin-Cauchy constant v, = limp_, o {Zthl [ flT t""dt} exists and is finite for all & > 1. Note the
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explicit form

oo 1 1 Clz]—z+3
Zt:lt = ﬁ +§+Oé/1 wa, (4)

where the floor function | denotes the integer part of . Since —% < [#] —x + 3 < 1 we have the bound

® |z —z+3 © 2 1
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from which we deduce that [A,| < 3 for all @ > 1. The first element of (4) is, of course, unbounded as

a — 1. Finally, the inequality ¢ (o, ¢) < ¢ («) holds trivially for all £ > 1 when a > 1.
O

Proof of Lemma 2 The proof of lemma 2 follows in a straightforward way by direct calculation using

lemma 1. In particular, we have as T" — oo
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For By («) ,we first simplify as follows
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Then, using the results just established we have

Br(a) = T7'Sr(a) =120 [Tr (La))* =T7'Sr (@) {1+ 0 (T7)} )
@ 1P 2w PO sl
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O (T7%) if 0 < 1/2,
= O(T'InT) ifa=1/2,
o(T1) if a>1/2,

as required. [J

Proof of Lemma 3 To derive the required asymptotic orders, it is sufficient to compute the order of the

variances since all quantities have zero mean. By direct calculation
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and we deduce by summability and Cauchy-Schwarz that
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For the final result, note that
2
T
el ) 2 _ 272
B|Y,, bit| =BT (L) = o7 (1a),

from which we deduce that Zthl bitt=* =0, (7Tr (1,a)) . O



Proof of Lemma 4 Denote ty; =t + £ for any given integer £ > 1 and observe that
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where

We decompose the term Wy in (10) first, writing
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When A\ < 1, as T — oo with a finite £ > 1, we have
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We calculate the upper bound first. Note that
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so that
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uniformly in ¢ < L = |T"| with x < 1. Hence
T—2¢ 9 A
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min [0 (T=25) [0 (T-352)] =0 (T-2%)  ifA<1/2,
_ min [O (7" InT),0 (T*~1V/2=%/2)] = O (T"*InT) if A=1/2,
min [O (T%71),0 (TAF=2%)] = O (T"1) if1/2<A<1/(1+r),
min [O (T%71),0 (T~ATF72%) | = O (T~ A=A if1/(1+r) <A<
Next, we consider the lower bound. We have
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Combining (15) with (14) yields

X (1) T e a0

1;*_2*;; if A< 1/2,

N T71+n InT if A= 1/2’
T=1+5¢ (20) if1/2<A<1/(1+k),
(1)1(2—/\)T)\+K)\K if1/(14k) <A<,

O(T=2M+)  if A< 1/2,

O (T 'InT) ifA=1/2,

O (T+71) if1/2<A<1/(1+k),
O (T7ATR=2A%) if 1/ (14 k) <A< 1L

In the first three cases, the asymptotic order of the sum is the same as the asymptotic order of the upper

and lower bounds, as confirmed in the above derivation. In the last case when 1/(1+ k) < A < 1, we use

the upper bound. Note that when A < x/2, this term increases as T increases, but when A > k/2; this term

decreases as T increases.
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When A =1 and for £ — oo we have
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Then, using (17), (18), and with L =T" — oo as T' — oo, we obtain
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1A graphical demonstration of the relevance of the decay rate (13) in determining the behavior of G (T, \) as T — oo is

given in Fig. S5 at the end of this Appendix.



When A > 1, we find from Lemma 1 that
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where ¢ (A, £) is the Hurwitz zeta function which is well defined for all A > 1 and ¢ > 0. Note, in particular,
that
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Our next step is to calculate Zf:l (1 L+1) (Ug12+ Uy 13+ Uyo) but before doing so we provide
summation results for Zszl ZtT:_le tt;* and 25:1 Zt:_l t=*ty. These results and their orders of magnitude
are given as follows:
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2Tt is not needed in the results for Lemma 4 but is interesting to note (and will be used later) that as A — oo, we get
limy oo {3052, t72¢ (A, t) — ¢ (20)} = 1 — 1 =0, which corresponds to
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whereas limy_, o ¢ ()\)2 = 1. Therefore, as A — oo we find that the serial correlation terms
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and
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Then, using results (19) - (20) and Lemmas 1 and 2,
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Combining these three terms we find that
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ST T+ 0 (T2 InT) it =1,
THEE A0 ¢} ifA> 1L

O
Proof of Lemma 5 Since §,,, = O, (n_l/Q) and n/T — oo, we have
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Note that )
t—or—1/2 I—T—WT—@ ifa <1,

—

{—a=1/2 _ t—ep=1/2 _p=1p=1/21, T ifa =1,
T2 _ Zp (@) T T2 ifa > 1,
and p2a_ L poza e <1/2
- 1-2a ’
t=20 = ¢ 420 _ ol if a=1/2,
720~ Z0 (20) T~ ifa>1/2.
Hence

Tha _ Sap—1/2
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1
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1
t=2 T InT —t—oT /2 ¢ 1—T—1/2T—“ if 0 =1/2,

t—2(x _

1

t720 — Zp (20) T~ —t—oT1/2 ¢ 17T*1/2T*°‘ if1/2 <a <1,
—

t720 — Zp (20) T~ — =072 4 7717120 T ifa=1,

t720 — Zp 20) T —t= T2 4 Zp (@) T'T-Y2 ifa > 1,

= F?/a+o(tf23).

For example, when o = 1/2, as T — oo we have

—a— 1 — —a
y _j—ap-1/2 o —t—oT 1/2—|—ET 1/2p L _1/2p-1/2 4 91
e f3a | Towe = Tl T 1T
oy /T4 24/T)
1
e 1— (t/T)InT
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since t/T € (0,1] as T — oo for 1 < ¢ < T. Hence, for all t < T, —t-aT"Y2 = (t?{a) . The required result
(38) in KPS now follows.
O

Proof of Theorem 1: The Asymptotic Limit of (zﬁnT

To analyze the asymptotic behavior of the trend regression coefficient qAbnT we use the convenient decompo-
sition (21) in KPS, viz.,

T T T
Sur =D @+ awl, +Y awens=Ia+Ip+Ic,

where

32 3 1 T 2 3
PRI T3 X 75361 8 T

g t—T'5 s 12 (t T+1

. >{1+O(T‘1)},
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The dominant term in 7;,denoted by 7, 4, can be classified according to the three models as follows

Case M1 M2 M3
a,>0,and 04, #0 | 204, o2t=28 20qu,t™% + o2t=28
a,B>0,and 04, =0 g2t 0375’26 Jit’zo‘ + (Ift’26

a<0or <0 ot o2t ol o2t

Using the general form 7, ; = bt~ ,where ) represents the decay parameter and b is the corresponding
coefficient in that term, we first obtain the following expression for I4. We specify b and A later in the case

of each individual model.
—1

-1
o= (Zp) Shmes(SR) S

A —1-\ —2-))
(A72)(A71)T +0(T27) ifa<l,
= x9N r2mr40(17?) ifA =1, (22)
722 (V) {1+0 (T} A > 1,

In particular:

(i) Case A< 1

T 1 Tf)\fl T*lf)\ _
T g THler {2_A_2(1_A) {1+0(T )}

2 - 3T o
=19 T 25:15

GAT 1 B
- ~(ahvaw) oy

i
—_
£
S
~+
>
Il
(]
!
R

T t:lt
— 2 -
Z _ agr Zz_l §2 T,g ZT_l §2
= =67 *WmT{1+0(T"")}
(iii) Case A > 1
T+1 727> _ T+1
ZT = Dt - 2 Tt g o -4
a = =
= MRS T3 x % Yo, 8
T—2
—Zr (V) {1+o0(r 1Y)} , )
= - T = —6T22r () {1+ 0 (1)}
ﬁ Zs:l §2

Next consider Ig = 23;1 atT§n}t.When Oau 7 0, we have

T

—1
Ip =0y (n_l/z) % (Zt=1£2) Zthl i
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Thus, Ip = O, (n_1/2) x I4 and I4 dominates Ip always. When o,, = 0 (this only influences M1 and M3),

term 20,,t~“ disappears in 14, but term 204, ,t~ is still present in Ig. Hence, when o, = 0,

7o Oy (n_l/QT_S) Tr (1,«) for M1,
7 0, (nV2T3) Tr (1, A7), with A* = min[a, 28] for M3,

since n=1 Y1 | @fi; = Op (n™/2) by (19) in KPS, and

-1
T - T ,,/:E
(Zt—1t> thlaaﬂyntt
. p (V2T ifa<

-1 O, (n
= (ZtT_l P) (n>0 i)Y, it = 0, (n" AT mT) ifa=1,
0, (n

» (n7Y2772) if > 1.

For term I, first recall that

207t 3 (@ikie + i€t ™) + (02 00 — 0207 for M1,
Eng =19 2071 @iEat P + (02, —0c2.r) t—28 for M2,
2030 (@it 4 Pyt P) 4 (02, — azmT) t=26 for M3.
Let ¢4t = 2a;€;. Then irrespective of whether o4, = 0, or 04, # 0, if &« > 0 and 8 > 0 the dominant term in

€n,t is as follows:

M1 M2 M3

YT S+ (02— Og,nT) n Y St P | TS St

Using lemma 3, for M2 and M3, we have

-1 Op (nil/QT*?’/Q*ﬁ) lfIB < 1/2’

T T n o
= (YL,7) T (7 L) 5 = 0, (At ) s
Op (n—1/2T—2) if 8> 1/2’

and then, for M1,

-1
_ T n 1" T - T n 7.2 2 _ —1/277—3/2
fe= (Zt—lt " Zizl Zt:l St + Zt:lt Zt:l t <vam B Uf*”T) =Op (n T ) ’
If @ < 0 or B < 0,the order of term I- will be discussed under each case.

The Asymptotic Limit of (Z’)nT When a > 0,5 >0

When o > 0, 8 > 0,we separate the proof when o4, = 0 from that when o, # 0.

(i) The Asymptotic Limit of ¢, when Oau =0
Recall that n, 4 = bt=*. Then, when o, = 0, we have: A = 2a and b = Ji in M1; A = 28, b =02 in M2;
and A = min [2«, 23], with b = O'Z if \ = 2a, and b = 02 if A = 283 in M3. We take each model in turn to

obtain the final results.

12



Under M1: We have

¢pr = Ia+Ip+Ic
O(T7'72) + 0, (N Y2T717%) + O, (n™Y2T7%/2)  if a < 1/2,
O(T72InT) + O, (n~Y2T717%) + O, (n~Y2T7%/2) if a =1/2,
= O(T7%) 4+ O, (n=Y2T71=2) + O, (n=1/2T—3/2) if1/2<a<l,
O(T72) + p( “V2T2InT) + Op (n=V2T732)  ifa=1,
O (T2) + O, (n=Y2T72) + O, (n=1/2773/2) if > 1,
O(T7172) 4 0, (n~12T7172) ifa < 1/2,
= ¢ 0(T 21nT)+0 (n=12T=3/2) if a =1/2,
O (T72) + O, (n=1/27-3/2) if a>1/2.

So I4 dominates Iz when n/T — oo.

Under M2 For M2, I4 always dominates Ip as discussed above. Then

bur = (Ta+1Io){1+o0(1)}
O (T71728) + 0, (n=V/2T3/275) if B <1/2,
= { 0T ?mT)+0, (n—1/2T—2 [1nT]1/2) itg=1/2,
O (T2) + O, (n=1/2772) if 8> 1/2,
so that I4 dominates Ic.
Under M3 We have
O(T—'7=%) ifa<l1,
In=0(T?)xTr (1L,LA) = O(T2InT) if \=1, with A\ = min [2c,2],
0 (T?) if A>1,

, (nfl/szk,\*)

@)
@)
= Op (n™Y2T=2InT) if X* =1,
@)

0, (n—1/2T—3/2—5)
Ic=4{ 0, (n—1/2T—2 [1nT}1/2) it B =1/2,

0, (n=/21-

We need to consider the following two subcases.

)

13

p (n2T9) T (LX) with A” = mina, 24).

if \* <1,
if \* > 1,
if 8<1/2,

if 8> 1/2.

(23)



Case 1: (a < ) Combining all the three terms, we have the following.

¢y = Ia+Ip+Ic

O (T717%2%) + 0, (n=V2T7172) + O, (n= /27 -3/2-5) if o < B<1/2,
O (T=1722) 4 0, (n=1/2T—1=) 4+ op (n 272 mT?) ifa<p=1/2
O(T2IT) + 0, (n"2T2) 4 0, (2T -2 1)) ifa=B=1/2,
O (T72InT) + O, (n~Y2T71=%) + O, (n=¥/2772) if 1/2=a < B,

= O(T2InT) + 0, (n~1/27-1-2) ¢ (n—1/2T—2 [lnT]1/2> if1/2=a =4,
o (T‘z) +0, (n 12— ) +0, (n_1/2T_2) ifl<a<p,
O(T7%) + 0, (n~V2T7172) + O, (n=1/2T72) if1/2<a<1<p,
O (T72) + O, (n~Y2T=2InT) + O, (n~1/?T~2) if1=a<8,
O (T7172) 4+ 0, (n~2T7172) + O, (n~/2T72) if 0 <1/2 < B,
O(T7172%) + 0, (n"V2T17%) ifa<1/2,
O (T72InT) + O, (n~1/2T7172) if a =1/2,

= O (T72) + O (n=1/2171-9) if1/2<a<1, (25)
O(T~%) 40, (nY?*T2InT) ifa=1,
O (T72) + O, (n=1/272) if a>1,

so that T4 dominates Ip and I¢ when n/T — oo.

Case 2: (a« > ) When o4, =0 and a > 3, 4 always dominates Ic. When 2 < «,

by = Ia+1Ip
O (T71728) 4+ O, (n= /2T —3/27F) if < 1/2,
= { 0T *mT)+0, (n*l/z’T*2 In T]1/2> itg=1/2,
O (T72) + O, (n=1/2772) if 3>1/2.
If 28 > a > 3, we have
(AbnT = Ia+1Ip
O (T~ '28)+ 0, (n~12T17%) ifa<2B8<1,
O (T72InT) 4+ 0, (n™12T717%) ifa<28=1,
= q O(T) +0, (nY21717%) if a <1< 28, (26)
O(T72)+ 0, (n~Y2T2InT) ifa=1<25,
O (T72) + O, (n=1/2T72) if 1 <o <28,

so that T4 dominates Iy when n/T — oo.

(i) The Asymptotic Limit of ¢, when o, # 0

When o,,, # 0,and ., 3 > 0, we have: A = a and b = 7, for M1; A = 28 and b = ¢ for M2; A = min [, 23]
for M3, with b = 04, if \ = a, and b = o2 if A = 23 for M3. When b = 0, the sign of I4 is consonant with

that of —b. Hence, when o, > 0, I4 is negative, and when o,, < 0, I4 is positive.
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Under M1 QASnT can be written as

Gpr = (La+Io){l+op (1)}
O(T717) + 0, (n=12T73/%)  ifa<1,
= ¢ O(T2InT) + O, (n~Y2T73/%) ifa=1, (27)
O (T2) + O, (n=1/27-3/2) if a>1,

so that if a < 0.5, then T4 dominates I for any n. Otherwise, I4 dominates I when n/T — cc.
Under M2 For M2, the behavior of (2>nT when o, # 0 is the same as when o,, = 0.

Under M3 When o,, # 0, we have

I.— 0] (ngTT (1, a)) if a <28,
YT 0@ T (1,28)) ifa > 28,

where 77 (1,a) = ZtT:l o = ZZ;I t=(a=) — (TH) 23:1 t~ is defined in the proof of Lemma 2.

From the analysis above, the term I~ has the following order

O, (n=1/2T3/2-5) if <1/2,
Ic=4{ 0, (n’l/QT’Q [1nT}1/2) if B=1/2,
O, (n=1/27-2) if B> 1/2.

Case 1: (a <28) When o,, # 0 and o < 26,

b = {IA+Ic}{1+0( )}
O (T71%) + 0, (n=V2T-3/2-5) if <28 <1,
O(T72) + 0, (n 2T 2 1)?)  ifa<28=1,
O(T~2InT) + 0, ( —1/2p-2 [1nT]1/2> fa=28=1,
= O (T72InT) + O, (n=1/272) if 1 =a<28,
o (T 21nT)+O (n 272 mT]?) i1 =a =28,
o(T7?) + ( —127-2) if 1 <o <28,
O (T =)+ 0, (n=1/2T72) ifa <1< 28,
O(Tr—t==) ifa<l,
= O(I2InT) ifa=1, (28)
(0] (T 2) ifa>1.

Note that since O (T~172+3/248) = O (T—o+1/245) > O (T=2A+1/2+8) when a < 23, the first term domi-

nates the second term.
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Case 2: (o >28) When o4, # 0 and a > 243,

bur = Ia+Ic
O (T71728) + 0, (n= /2T -3/275) if 8<1/2,
= { o(r?m1)+0, (n’l/QT’Q In T]1/2) if B =1/2, (29)
O (T72) + O, (n=1/2772) if 3> 1/2.

The first term always dominates the second term.

The Asymptotic Limit of éﬁnT When aa<0or <0

Recall the OLS estimate is decomposed in the form

. T T . T
by = thl ayriy + thl arr, ; + thl airényt =: o+ Ip + Ic.

Note that when a@ < 0 or f < 0, we have: A = 2« and b = O'i in M1; A = 28 and b = o2 in M2;
A = min (2, 2/3) in M3. As shown above, I4 always dominates I since Iz = O, (nil/z) 1,.Using Lemma

2, we have

A —1-X N
IA:—b<(26_)j\;(1_)\)> {i+o(T7")}.

Note the sign of I, is positive when o < 0 or § < 0.

Under Model M1 and M2:
First, we consider the term Ic. If a < 0 (for M1) or 8 < 0 (for M2), the dominating term in &,; is

20t Y gt~ in M1 and (02, — 02,,1) 727 in M2. By using lemma 3, we have

T\ T -
le=(2,, ) X, tw
O, (n=YV2T=2 [rp (2a)]1/2 for M1,

Op (n=Y2T2 [r1 (48)]"/?)  for M2.

Combining the two parts we have

¢nT

Iy +1c
_Jo(@ ) + 0, (nV2T73/27)  for ML,
| o(T ) 4 0, (RT3 for M2,

Thus, 4 dominates I~ for M1 and M2.

Under Model M3

We proceed case by case as follows.
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Case 1: (a<0and 8>0) If & < 0 but 8 > 0, the dominating term is Jzt_%‘ in n, and is
o\ 1L ~
2n S0 i€t~ P in ey Then Iy = (Zthl tz) St = O (T7172%) and

-1
Io= (ZtT—l 52) Zthl tene = Op (Tfl/zT?2 77 (2a + 25)]1/2) .

Note from Lemma 1 that 77 (2o + 2/3) reaches the largest order of O (T 2*~2%) when o+ 8 < 1/2. Even
at this case, Ic = O, (n_l/QT_?’/Q_O‘_'B) ,and is still dominated by I4.Hence, we have

Gpr =0 (T7'72%) + 0, (n—l/?T—2 [rr (20 + 25)}1/2) =0 (T,
Case 2: (a>0and 3<0) If a > 0 and B < 0, the dominating term is o?t=2# in 7,, and is
(02,0 — UanT) t=2 in g,. Then Iy = O (T7'72) and I = O, (n’l/?T’2 [T7 (45)]1/2> . Hence we have

(z)nT

0 (171 + 0, (w12 [rr (49)))

= 0 (T71—2ﬁ) +0, (n71/2T73/272B) -0 (T7172ﬁ) _

Case 3: (e <0and <0) Ifa<0andf <0,the dominating terms are ait*% +02t=28 in n,, and

20t Y it P + (02, —02,p) 727 in e,y Then we have

(bnT

(0] (T—3) [aiTT (1,20) + o277 (1, 28)] + O, (n—1/2T—2 rr (20 + 2@]1/2)

+0, (w7272 [ (45)) )
9] (T71726) ,

where 6 = min (o, ) .

The Asymptotic Limit of &nT When a=5=0

This case is covered by standard theory and the proof is omitted.
O

Proof of Theorem 2: (t-ratio of ¢,;)

The proof under o = 5 = 0 is standard and is omitted.

(i) The Asymptotic Limit of ¢, . When a>0,5>0

The asymptotic behavior of the t-ratio is determined by the three component factors of

) 1/2
ty .= ur (ZtT_l EZ) RVALYE

The behavior of ¢,,1 is described above in (23) - (29), and 23;1 t2=5T3{1+ 0 (T~')}. The behavior of
the long run variance estimate Qf\,l is obtained as follows. As in the proof of Theorem 1, it is convenient to

use the following specifications of A for each model.
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Model specifications of A
e MIl: A = a(or 2a) when o4, # 0 (respectively, 4, = 0);
e M2: A =24;
e M3: X\ = min[e, 25] (or min [2«,25]) when o4, # 0 (respectively, o4, = 0).
__ — — N1
We write M,,; = m; + Rp:, where the deterministic part is m; =t — ¢ (ZtT:l tt—/\) (Zle t2) and

the random part is R,,; = émt —t(Ig + Ic). Note that as n/T — 0o, Ry = o, (17) uniformly in ¢t < T. The

regression residual is given by

Uy = Kﬁt - qAﬁnT{ = (ﬁn,t - &nT£> +En =t Mnt + Ent-

We decompose Qi, the long run variance estimate with lag truncation parameter L and Bartlett lag kernel

Yer,, as follows
SR DU SEE DT DN
= T (Maraa) 12 0 0w S (Wt 2ae) (M + 2
S D DRI LS ST S
+% Zj:l Ene t 2% Z;l Ver ZtT:_le EntEntte
+2% Z; MopiBns + 2% Z; VoL, ZtT: ( MoEnige + EntMops H)

D= 03+ Q2 4+ 20,

where
A 1 T - 2 L T—¢ ¢ o
2 _ 1 9 2 -
Dy = T Zt:l M3+ T Z(Z:l Zt:l (1 T 1) My Maiie, (30)
1 T 2 1L T—¢ )
2 _ 1 o, 2 N
P = T Zt:l mit g 24:1 Zt:l (1 Tr + 1) MeMite- (31)
Note that

A 1 T ~ 2 L T—¢ ( 5 B
2 _ - 2 z ot
QM - T t=1 Mnt + T Zf:l thl (1 T,{ 4 1) MntMnt+f

1 T 5 9 2 L T—¢ Y/ 5 B
- T Zt:l (mt * R”t) B T 24:1 Zt:l (1 B Tr 4 1) (mt * Rm) (th * R"HZ)

1 T 4 2 L T—¢ /¢ o
TT thl mt T Z32:1 Zt:l <1 T TRt 1) MMyt
1 T 9 2 L T—¢ E
+T Zt:l Rnt + T 2221 Zt:l (1 - W) RﬂtRnt-i-e

1T 2 L Tt ¢ N N
25 thl il + & Ze=1 thl <1 - T“+1> (1T Ryte + Rygivie)

We have shown that R,; = o, (/) uniformly in ¢ < T It follows that 02 = Q% + op (23) , which we

: . 02 2
write as 2%, ~ Q5.
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From Lemma 4, we know that

X OFD® o2tk .
(172,\)(,\273,\+2)2b T if A <1/2,
271t 1n T i\ = 1/2’
) bQT—1+n< (2/\) if 1/2 <A< 1/ (1 + K,) 7
Q ~Y
o 2;192T_’\+”_M if1/(14+k) <A<,
TESVEESY
ST T+ 0 (T~2InT) FA=1,
T2 {2 A0 —C 2N} ifA> 1.

Recall that
on~t 21;1 i€ + 2n1 E?:l €t~ + (Uf,m — af’nT) for M1,
ent =1 2 'Y At P+ (02, — ol p)t7 for M2,
207t a4+ 207 Y0 it P + (02, — o2, p)t72F for M3.
For fixed t, e, = Op, (n"*/2) . When o > 0 and 8 > 0, the dominant term in &, is 2n =1 37" | ;& for M1
and 2n~ 1 >0 | @;€;t 7 for M2 and M3. From Lemma 3, we have

N 1 T 1 L e

Qg = T Zt:l 5$Lt + 2? Zé:l Yor, thl EntEnt+e
- O, (n7'T718(B)) in M2 & M3,
- O, (n71) in M1.

Comparing Q% and Qg, it is evident that the order of Q?\/{ exceeds that of Qg as long as n/T — oco. Next,

consider Q.. By Cauchy-Schwarz, Qe is bounded above as
1/2 1/2
1 T . 1 T, 1 T, B 1 T,
T i MEnt < (T thl Mm) (T thl 5nt> = 0p <T i1 M ) s

. 1 T ~2 1 T ~
since 73311 &p = 0p (T PO M%t) .
Combining these results, we find that

and therefore o
+1 2 —2X+k .

Tyt L if A <1/2,
BT In T if A =1/2,

. DT —1HRC (20) if1/2<XA<1/(1+k),

02 = 1 e . 53
T if1/(1+k)<A<1,
(I=X"(2-X
ERT 2T 4+ 0 (T~2InT) it =1,
T2 (Y0 72 (A 0 — (20} ifA> 1.

Using (32), the t ratio t, . has the same asymptotic form as

s ~ (AbnT (Z 52) 2 ~ &nT (Z 52)1/2
PR 2o VO
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where Q3% is deterministic. Therefore, using (33) as n/T" — oo with £ = 1/3 and a finite )\, the asymptotic

behavior of the t-ratio in all models can be represented as follows:

—V3(1 -2
VB2 e 1/2-8/2) _, _ if A < 1/2
T (-1) xO(T ) = —o0 ifA<1/2,
—2VBTY2 R )T = (<1) x O (TV2+/2 inT) ™ /7) = —o0 ifA=1/2,
_/3)\ _
(N TR = (1) 0 (T ) o 1A <1 (1),
Lo (—f)?/zT(l NA-M/2 = (L1) x O (TA-NA-R/2) = _og i1/ (14 k) <A<,
- 2\
6T 2T (L T%)"
s n (12 2/2 =-3v6 ifA=1,
(’“;b2T—11n2T
—6bT2¢ (A) (L72)"° -
i()(lz ) N CVV3 73> V3 i > 1.
(T2 {322t C(A 1)) (2 72 1)

(34)
Note that with k = 1/3, we have 1 — A — k/2 > 0 as long as 1/2 < A < 1/ (1 + k). The last inequality in
(34) is obtained by noting that when ¢ > 1, ( (A, t) < ¢ (A) and hence

DOREEWIED SRIRD S S q eV

¢\
(252, 2 (A )

giving

> 1 for all A > 1.

Moreover, when A — oo we have

o {000 -can) = {373

A—00

o 1
sOt)\ t+$ _thlﬁi)\
- (L }—o-

Then, as A — co we have

,\lggo t%nT - )\h—{réo 00 CE);\) L 2 = /\hjr;o % - _\/§,
Qo= 72N D) qe2y

giving a sharp result for the t-ratio for large A.
On the other hand, as A — 0, the t-ratio has the following limit

. 1—o\)1/2
lim £, = lim MTUQ—”/2 = —3TY?7 52 5 _x0as T — oo.
A——+0 ¢nT A——+0 ()\ + 1)

(ii) The Asymptotic Limit of ¢, . When a <0 or <0

Recall the representation

. — T L .
My =0 [tA -1 (ZH 52) thl =2

+ Rnt = bmt + Rnt; (35)




where A = 2« for M1, A = 23 for M2, and A = min [2«, 23] for M3. The factor b in (35) is positive since

b=o0?or ai. Then we have

T Z =B\ =0, (T"*),
since from Lemma 2, B(\) = O (T~?*) when A < 0. Note also that when A < 0,

T—¢ Y T—0 2 T1-2A
\Ifmzzt:l (t* +t0) :Zt: A+ 0)" Z t+€ ~ o

Then . o
T - - = —2X+K
221( >\I/e11 T ox O(T )
This implies from lemma 4 that
! " o ¢ o 17 —2\+k
T Z£:1 thl (1 o L+1) mymyre = O (T ) .

The order of Q3 is at least O, (T_Q)‘) and is less than O (T‘Q’\‘*‘"‘) ;where \ = 2« for M1, A = 238 for M2,

and A = min [2a, 28] for M3. From Lemma 3, we have

Op (n7'T71S (@) = O (n™1T72) in M1,
Q2 =2 0,(n 'T718(28)) = O, (n~'T~*) in M2,
max [0, (n~1T-2(+/) 0, (n~1T~*)] in M3.

Hence, Qf\,l dominates Q2.And Q%,l also dominates . since
1/2 1/2
1 T I =T 1T B LT e
T i1 M7Lt€nt = (T Zt:l Mnt) (T Zt:l 5nt> - OP (T Zt:l Mnt ’
Hence the long run variance has the following order
O =0 (T2

Then

T
d)nT t
tA =

bnr 02 ) (TR/Q ,\)

u

O (T3/2> —-0 (T1/2—n/2) .

In this event, t¢ — +o00 as n, T — o0, since the sign of t, . is consistent with qAbnT which is positive when
A <0.

Power Trend Regression

We explore the impact on Theorem 1 of using a power trend regression of the form (34) in KPS in place of
a linear trend regression. In (34) in KPS the empirical regression involves the power trend regressor t¥ for
some given power parameter ¥ > 0. Direct calculations extending the results in Theorem 1 show that the

asymptotic behavior of the regression coefficient (EbnT in this case is as follows:

O, (T7¢77) ifo<A<1,
Gur =14 Op (T7'"¥IWnT) if A=1, (36)
O, (T717%) if A> 1.

21



rather than ¢, = O, (Ory), where X in (36) is as given in Theorem 1. Upon calculation, we find that

—1
T 1 T 2 T 1 T
Y _ P Y P — —1/27p—1/2—%)
(Zt_l -2 v ) S| ] s =0y (),

and then
O (n'/21'/27%) if0< A<,
ntPTVG =0 O (AT IT) i A =1,
O (n'/27-1/2) if A > 1.

Hence divergence of the scaled statistic n!/27/ QJ“%SHT requires n/T — oo regardless of the value of ¢. Thus
using a power trend regression with regressor t¥ instead of a simple linear trend does not lead to different

requirements regarding (n,T) .

Additional Numerical Calculations

We extend the numerical calculations given in Section 5 of the paper for model M1 by conducting related
computations for models M2 and M3. As either n or § increases, the variance of e, ; shrinks to zero for
given 7', so that the t-ratio diverges to a negative infinity under the alternative as n — oo with a fixed S,
or approaches the limit value of —v/3 given in Theorem 2 as 3 — oco. We first investigate the finite sample
behavior of the t-ratio for given n and T. Figure S1 plots the empirical density functions of the t-ratio with
various 3 values in M2. We set n = 100, T = 200, 02 = 1, and €;; ~ #dN (0,1) . As 3 decreases, the variance
of the t ratio increases and the mean of the distribution moves to the left. Even for moderately large n and
T, the entire empirical distribution of the t-ratio still lies in the left side of the critical value, —1.65, with
for B = 2. As J passes to infinity, the empirical distribution collapses to a mass point at —v/3 = —1.73.

For 8 = 0.5, x;; is convergent, the trend regression test is consistent, and its strong discriminatory power is
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evident in the density shown in Figure S1.

1
0.8
—Dbeta=0.5
-=-beta=0.7
0.6 1 —=-beta=1
—e—beta=2

Figure S1: Empirical distribution of ¢ P in M2
T =200, n = 100, 02 =1, €4 ~ 4dN (0,1), k = 1/3

1
0.8
0.6 = n=T=25
——n=T=50
—--n=T=100
0.4
0.2 5 . Pr[t$ < -1.65]
0 . . : :
n 1 1.5 2 2.5 3

Figure S2: Rejection Frequencies plotted against 8 in Model M2

for a 5% level test with o2 =1, 02 = 4.

Figure S2 displays the rapid changes in the power function of a 5% level test near 3 = 0 as n and
T increase with ' = n. As Theorem 2 indicates, no asymptotic n/T ratio condition is required for test
consistency in this case. Evidently, as sample size increases, the rapid movement in the power function near
B = 0 becomes more accentuated. The power function is unity outside a small neighborhood of 5 = 0 even
for n =T = 25 because the empirical distribution of the t-ratio is well separated from the test critical value
of —1.65.
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0.8
= n=T=25
—-n=T=50

0.6 n
--n=T=100

0.4 1

Prit; < - V3]
0.2 1
0 . . . . .
0 0.5 1 1.5 2 2.5 3

Figure S3: The Rejection Frequencies with
the critical value of —/3 over A = 23 in Model 2 (02 = 1, 02 = 2)

Since Figure S2 reports the rejection probability for the 5% level test with critical value of —1.65, which
exceeds —v/3, this figure does not reveal the relationship of the density function of the t-ratio to the limit
value —v/3. To explore this issue, we set the critical value of the test to —y/3 and plot the associated rejection
frequencies in Figure S3. When n, T is small, some portion of the t-ratio is in fact larger than —+/3 so that
in that case the rejection frequency is less than unity. However as n increases, the power function reaches

unity rapidly, thereby indicating that the asympotic theory holds well in finite samples.

Figure S4: Test Rejection Frequencies in Model M3 (a = 23 — 0.1,02 = 8, Oau =0, ol = 0’% =1)
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Finally, we consider model M3. As shown in Theorems 1 and 2, when either 28 > a > fora < (<1
the n/T ratio matters in the limit theory and we explore finite sample performance in this case, setting
a =28—-0.1, 02 = 8 and fixing T = 50 for all values of n. Figure S4 displays the power of the test for
various values of 8. The power functions are seen in the figure to have a mild U—shape and minimum power
is found around 5 = 1. When 8 > 1 power increases as  increases. It is also apparent from Figure S4 that

as n increases with T fixed, the n/T ratio increases and test power approaches unity around 8 = 1.
Approximation accuracy of (13) for G (T, \)

We can assess the adequacy of the approximation (13) in a graphical demonstration by using the determin-
istic DGP in (35) in KPS to characterize the large T behavior of G (T, A) = + Zle ZtT;le (1 - L%Ll) M Mgt

when A < 1. We let kK = 1/3 and compute the ratio %for various values of A\ and k = 3,4, 5. The plots
are shown in Figure S5. Evidently, the ratios exceed unity for large A but rapidly decrease as A decreases.
The threshold value of A for G (T, ) to decay as T — oo is A > k/2 = 1/6 ~ 0.167 for k = 1/3, which is
evidently well-matched in the figure, corroborating the limit behavior G (T, \) = O (T"H‘“_)‘“) N\, 0 given
in (13).

2
— k=3
= k=4
k=5
G(10K,2)
Gaos ) !
0 : : : - -
0 0.05 0.1 0.15 0.2 0.25 0.3

A

Figure S5: Approximation Accuracy of (13) for G (T, \)

References

[1] Kong, J., P.C.B. Phillips and D. Sul (2019). Weak o—convergence: Theory and Applications, Journal of

FEconometrics.

25



