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Abstract

A new econometric approach to testing for economic growth convergence is overviewed. The
method is applicable to panel data, involves a simple regression based one-sided t-test, and can be
used to form a clustering algorithm to assess the existence of growth convergence clubs. The
approach allows for heterogeneous technology, utilizes some new asymptotic theory for nonlinear
dynamic factor models, and is easy to implement. Some background growth theory is given which
shows the form of augmented Solow regression (ASR) equations in the presence of heterogeneous
technology and explains sources of potential misspecification that can arise in conventional formu-
lations of ASR equations that are used to analyze growth convergence and growth determinants. A
short empirical application is given illustrating some aspects of the methodology involving techno-
logical heterogeneity and learning in growth patterns for selected groups of countries.
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1. Introduction

An important task in the economic growth literature is to explain the substantial het-
erogeneity in income performance across countries. A number of studies have attempted
to model this heterogeneity empirically, running cross section, time series and panel regres-
sions with various data sets over the past two decades. Most of these studies assume
homogeneity in technological progress, which is convenient in economic growth theory
models but seems unrealistic in the context of many empirical applications. For examples,
see Barro and Sala-i-Martin (1992), Mankiw et al. (1992) among many others. Much of
this theoretical and empirical literature has been expertly overviewed in Durlauf et al.
(2005) and will not be reviewed here. The purpose of the present paper is to examine
the impact of heterogeneity in technical progress on growth and econometric tests of con-
vergence, transition and the determinants of growth.

Under a Cobb–Douglas production function, the per capita real income yit for country i

at time t can be decomposed so that

log yit ¼ log ~yit þ log Ait;

involving technology, Ait, and effective per capita real income, ~yit, which is a function
of real effective capital, ~kit. When technology is homogenous across countries, so that
logAit = logAjt for i 5 j, the cross sectional income differential is explained only by differ-
ences in relative real effective income. Homogenous technology across countries is, of
course, a rather strong and unrealistic assumption and it is of interest to relax the condi-
tion in models that are explicitly designed for empirical use.

Once the condition is relaxed, the possibility of heterogeneous technology in growth
raises some immediate issues. One issue concerns the validity of conventional growth con-
vergence tests and another relates to the appropriate formulation of the cross sectional
regression equations that are conventionally used to investigate growth determinants –
the so-called ‘augmented Solow regressions’ (ASRs). Phillips and Sul (2006a) address
the first issue, showing that, under technological heterogeneity, neither standard panel unit
root tests (using relative log income differentials) nor conventional ASRs are appropriate
vehicles for testing for growth convergence. Another paper (Phillips and Sul, 2006b) deals
with the second issue, showing that commonly used formulations of ASR equations are
misspecified and inappropriate for exploring growth determinants.

The present paper overviews some of the results in the aforementioned papers and pro-
vides some new empirical illustrations involving technological heterogeneity and learning.
The plan of the paper is as follows. The next section explains the sources of misspecification
in conventional augmented Solow regression and the consequent difficulties in using these
regressions to test growth convergence and find growth determinants. Section 3 outlines a
new empirical approach to studying growth convergence with heterogeneous technology
and discusses a new clustering algorithm which can be applied to find growth convergence
clubs. Section 4 illustrates a new empirical analysis of growth determinants, exploring the
relationship between learning and the adoption of advanced technology. Section 5 concludes.

2. Homogeneous vs. heterogenous technology

The production function in the neoclassical theory of growth with labor augmented
technological progress can be written as
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~y ¼ f ð~kÞ
~y ¼ Y =LHA; ~k ¼ K=LHA; y ¼ ~yHA ¼ ~yA;

ð1Þ

where Y is total output, L is the quantity of labor input, H is the stock of human capital, A

is the state of technology, K is physical capital, and ~y is output per effective labor unit. In
the last part of (1), H is normalized to unity by broadly defining technology A to encom-
pass the effects of human capital.

Taking logarithms of (1) and adding subscripts i and t for individual country and year,
respectively, we re-write the neoclassical production function as

log yit ¼ log Ait þ log ~yit; i ¼ 1; . . . ;N ; t ¼ 1; . . . ; T ð2Þ
with log ~yit ¼ log f ð~kitÞ. Phillips and Sul (2006a,b) allowed for heterogenous technological
progress across countries using a nonlinear factor structure of the form

log Ait ¼ log Ai0 þ cit log wt and log wt ¼ nt ð3Þ
so that

log Ait ¼ log Ai0 þ xitt: ð4Þ
where xit = citn. The common factor logwt = nt represents publically available advanced
technology and is assumed to follow a linear trend. Hence, when xit = x for all i, technical
progress is captured by the usual common exponential path; when xit! xi as t!1, tech-
nical progress follows individual exponential paths asymptotically for large t; and, when
xit! xi = x as t!1 for all i, a common path applies asymptotically. In the general for-
mulation (3) and (4), the time varying idiosyncratic component cit may be interpreted as
representing the economic distance between the individual technology of country i (log Ait)
and the advanced common technology.

With exogenous but heterogenous saving and population growth rates and under
Cobb–Douglas production (with share parameter a), the dynamic evolution of the capital
stock is determined according to the differential equation

_kit ¼ sik
a
it � ðni þ xit þ dÞkit: ð5Þ

where si is the saving rate, a is the capital share, ni is the population growth rate, and d is
the discount rate. Correspondingly, we find that log per capita real income, logyit, evolves
under cross section heterogenous technology progress according to the dynamic path (or
DGP)

log yit ¼ log ~y�i þ log ~yi0 � log ~y�i
� �

e�bit t þ xitt; ð6Þ

where

bit ¼ bi �
1

t
log 1� di1

Z t

0

ebimðxim � xÞ dm
� �

; ð7Þ

di1 ¼ 1=ðlog ki0 � log k�i Þ, bi = (1 � a) (ni + xi + d), xi is the technological growth rate in
the steady state, and y�i and k�i (respectively, yi0 and ki0) are the steady state (initial) levels
of per capita real effective income and capital.1
1 As shown in Phillips and Sul (2006b), under Cobb–Douglas production, k�i ¼ ð si
niþxiþdÞ

1=ð1�aÞ. Derivations of
(6) and (7) are given in the same reference.
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By direct calculation, the average growth rate between time q and t + q under heterog-
enous technology progress is found to satisfy the equation

log yitþq � log yiq

t
¼ �bit log ~y�i þ bit log yiq �

1

t
þ bit

� �
log Aiq þ

1

t
log Aitþq; ð8Þ

where

bit ¼ �
1� exp �bþit t

� 	
t

� �
< 0 if bþit > 0; ð9Þ

with bþit ¼ bitþqðt þ qÞ=t � biqq=t.
From (8), a generalized form for an augmented Solow regression (ASR) that applies

under heterogenous technology can be deduced, leading to the empirical regression
equation

t�1ðlog yitþq � log yiqÞ ¼ c0 þ b1 log yiq þ b2ziq þ b3zitþq þ ei; ð10Þ

with covariates ziq and zit+q proxing the corresponding technology variables in (8). Con-
ventional Solow regression equations may be derived as particular cases of (10). The mod-
el may be estimated using cross section observations i = 1, . . . ,N and time series data over
t = 1, . . . ,T.

Table 1 outlines the major differences among three models that have been used in prac-
tical work: the homogeneous technology, saving and population growth model studied by
Barro (1991), which we refer to as Hom 1; the homogeneous technology with heterogenous
saving and population growth model suggested in Mankiw et al. (1992, MRW), referred to
as Hom 2; and the heterogenous technology, saving and population growth model devel-
oped in Phillips and Sul (2006a,b), referred to as Het. These models differ in terms of their
assumptions concerning technology, and these differences become manifest in the empiri-
cal regression (10) in terms of the implied coefficients. The following is a brief discussion of
the implications of these differences for the three models.
Table 1
Pitfalls in augmented Solow regression (ASR) under homogeneous and heterogenous technology

Hom 1 (Barro) Hom 2 (MRW) Het (PS)

DGP: log yit ¼ log ~y�i þ ½log ~yi0 � log ~y�i �e�bit t þ xitt
(a) Assumptions Ai = A, si = s, ni = n Ai = A NA
(b) Restriction on the implied DGP ~y�i ¼ ~y�, bit = b, xit = x bit = bi, xit = x NA

ASR: t�1(logyit+q � logyiq) = c0 + b1logyiq + b2ziq + b3zit+q + ei

(c) Restriction on the ASR b2 = b3 = 0 b3 = 0,
ziq ¼ 1

T

P
zit NA

ziq ¼ f ðlog ~y�i Þ zit ¼ f ðlog ~y�i ; log AitÞ
(d) Condition for convergence b > 0; b1 < 0 bi > 0; b1 < 0 logAit! logAt

(e) Consistency properties EN b̂1 ¼ b1 þOð1TÞ EN b̂2 ¼ Oð1TÞ
EN b̂2 ¼ Oð1TÞ EN b̂3 ¼ b3 þOð1TÞ
EN ;T b̂2 ¼ 0 EN ;T b̂2 ¼ 0

EN ;T b̂3 ¼ 0
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2.1. Model assumptions and restrictions

Hom 1 assumes homogeneous technology, saving, and population growth. Hence the
initial income difference can be explained only by the initial real effective income difference,
log ~yi0, and the initial measure of technological progress, logAi0. Since all economies have
the same steady state, real effective income converges. Moreover, the convergence speed,
bit, is also homogenous. Hom 2 relaxes the homogeneity restriction on the saving and pop-
ulation growth rate parameters in Hom 1. When savings and population growth rates may
differ across economies, so may real effective income, including the steady state path. More
importantly, the speed of convergence parameter bit is also heterogenous, and is a function
of the population growth rate and the technical progress rate, as seen in (7).

2.2. The ASR specification and interpretation of the covariates

Hom 1 does not use control variables, so the true values of b2 and b3 are zero in the
ASR specification (10) for this model. Hom 2 does not include the last observation zit+q,
which is a control or proxy variable for log ~y�i and logAit+q. Moreover, MRW suggests the
use of the time series average of zit to proxy a steady state value, so that in the place of ziq,
MRW use zi� ¼ T�1

PT
t¼1zit. Note also that Barro and Sala-i-Martin (1992) use the initial

observation for total years of schooling.
The Het specification does not require any of these restrictions. However, the economic

interpretation of the zit variables is somewhat different in this model. In Hom 2, ziq is a
proxy variable for log ~y�i only, whereas in the Het model, the variable zit serves both as
a proxy for log ~y�i and logAiq (through ziq) and as a proxy for logAit+q (through zit+q).
Hence, under heterogeneous technology progress, conventional specifications of the
ASR empirical regression are misspecified due to the error endogeneity arising from the
omission of the variable zit+q in the regression.

2.3. The convergence condition

In Hom 1, convergence requires b > 0 or b1 = �t�1(1 � e�bt) < 0. This condition is
known as the ‘beta’-convergence. If the growth path is concave, then an initially poor
country will grow faster under this condition than an initially rich county. The non-aug-
mented Solow regression, under the restrictions b2 = b3 = 0, is used to test b1 < 0 and
thereby tests the concavity of logyit under these side restrictions.

The convergence condition for Hom 2 is conditional on ln ~y�i , and the level of log per
capita real income may not converge even though the growth rate converges. So the neg-
ative sign in the regression coefficient b̂1 does not necessarily imply level convergence.
Also, when xit = x, the relative income differential between economies, (logyit � logyjt),
is explained only by the initial real effective per capita income levels.

In the Het model, a negative sign for b̂1 does not imply convergence because of the pos-
sibility of heterogenous technology progress. When xit 5 x during transition periods, the
relative technological differential between xit and xjt (and the historical trajectory of this
differential) contributes to the income difference. Note that when bit > 0, e�bit t ! 0 as
t!1, and if the convergence rate of this exponential term in (6) is fast relative to the con-
vergence rate of xit, then the main long run determinant of the relative income difference is
the difference in the rates of technological accumulation. In this case, the relative income
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difference between two economies may be well explained by the relative difference in tech-
nology accumulation. For large t, logyit eventually follows a long run path determined by
the term xitt in (6). Hence, analyzing the dynamics of logAit and the past history of xit are
key elements in understanding transitional income dynamics. In particular, the conver-
gence condition for the Het model is limt!1 logAit = limt!1 logAjt for i 5 j. It follows
that the ASR regression model is not a good vehicle for testing growth convergence when
technology is heterogenous across countries and over time.

2.4. Consistency

Under the given conditions for each model, some large cross section (N!1) proper-
ties are derived in Phillips and Sul (2006b). First, for all models, none of the coefficients are
consistently estimated for fixed T. Denote plimN!1 as EN, and plimN,T!1 as EN,T. The
bias in the coefficient estimate b̂1 arises from correlation between the initial income level,
logyiq, and the regression error. The misspecification occurs because initial technology is
heterogenous, so that logAiq = logAq + �i, and �i is absorbed into the regression error.
Since initial technology is positively correlated with initial income, the estimate b̂1 is
biased. For model Hom 2 and model Het, the true DGP based on (8) and (10) consists
of product forms involving observable proxy variables and coefficients bit, which are
not necessarily homogeneous across i or t. Hence, in the regression in (10), the fitted
regression coefficients can be thought of as cross sectional averages, so that the regression
error absorbs deviations from the mean. Phillips and Sul (2006b) show that in the regres-
sion model Hom 2, plimN!1b̂2 6¼ b2 even if the conditions for the Hom 2 model hold.
Instead, plimN!1b̂2 depends on the ratio of the third central moment to the second central
moment of the ziq covariates. The source of the inconsistency is the fact that E(bizi) 5 0
and the sign of the bias in the fitted coefficient b̂2 is dependent on the distribution of
ziq. Hence, the ASR regression under the Hom 2 conditions is misspecified and involves
inconsistencies. Relaxing the homogeneity condition for technological progress does not
resolve this problem. For the Het model, the true sign becomes b2 < 0, but b3 > 0. Conven-
tional ASR regressions do not include the zit+q covariate term, and these regressions there-
fore suffer omitted variable bias under heterogeneous technology. The inclusion of the last
observation zit+q may reduce this bias in the regression, but the regression coefficient b̂2 is
still affected by the endogeneity bias induced by ziq and the fact that b2 ¼ 1

t þ bit from (9).
These findings indicate that there are difficulties in the empirical implementation of

ASR regressions both for testing growth convergence and in searching for growth deter-
minants. The findings apply whether technological progress is heterogenous or
homogeneous.

3. Some new empirics on growth convergence

Phillips and Sul (2003, 2006a,c) show how log per capita real income can be reformu-
lated in terms of the time varying common factor representation

log yit ¼ bitlt; ð11Þ

where bit measures the share of the common trend lt experienced by economy i. The coef-
ficient bit therefore captures the individual transition path of economy i as it moves in rela-
tion to global technology or a common growth path that is determined by lt. During
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transition, bit depends on the speed of convergence parameter bit, the rate of technical pro-
gress parameter, xit, and the initial technical endowment and steady state levels.

By adapting (6) to a factor representation and assuming a common advanced global
technology factor lt = nt, we can find an explicit expression for bit as follows:

log yit ¼ ait þ xitt; ait ¼ log ~y�i þ log ~yi0 � log ~y�i
� �

e�bit t ¼ ait

nt
þ cit

� �
nt ¼ bitlt;

with cit = xit/n. Hence, for large t, we have

bit ¼
ait

nt
þ cit ¼ cit þOðt�1Þ ’ cit: ð12Þ

The time varying parameter cit effectively measures the ratio of individual technology, lo-
gAit = logAi0 + xitt, to advanced common technology lt = nt. More complex forms of ad-
vanced technological progress may be considered in a similar way. The loading coefficient,
bit, retains a similar interpretation and relationship with cit under such complications pro-
vided ait = o(lt).

Relative income differentials can then be written as

log yit � log yjt ¼ bit � bjt

� 	
lt;

so that in the long run these income differences are explained only by technology differ-
ences between the two countries. Growth convergence therefore requires the following
condition:

lim
t!1

bit ¼ b; ð13Þ

or equivalently,

lim
t!1

log yit

log yjt

¼ 1: ð14Þ

Note that condition (14) does not imply overall level convergence of the logyit over i. For
example, suppose

bit ¼ bþ cit�a: ð15Þ
Then bit converges to b whenever a > 0 and condition (14) is satisfied. However, the rela-
tive income difference has the form

log yit � log yjt ¼ ðci � cjÞnt1�a: ð16Þ

Now if a = 1, limk!1(logyit+k � logyjt+k) = (ci � cj)n and logyit+k � logyjt+k diverges
when a < 1. Phillips and Sul (2006c) therefore call condition (14) ‘relative’ convergence.
For large t, relative convergence with bit of the form (15) with a > 0 implies that the rel-
ative growth rate differential tends to zero, as is apparent from (16) upon differentiation.

3.1. The relative transition curve

The estimation of bit is impossible without imposing some restrictions on (11) since the
number of unknowns in the model exceeds the number of observations. Accordingly, Phil-
lips and Sul (2006a,c) suggest a modeling approach based on the following relative
measure
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hit ¼
log yit

N�1
PN

i¼1 log yit

¼ bit

N�1
PN

i¼1 log bit

; ð17Þ

which eliminates the common growth component by scaling and measures the transition
element bit for economy i relative to the cross section average. Over time, the variable
hit traces out an individual trajectory for each i relative to the average, so we call hit the
‘transition path’. At the same time, hit measures economy i’s relative departure from the
common steady state growth path lt. Thus, any divergences from lt are reflected in the
transition paths hit. While many paths are possible, a case of particular interest and empir-
ical importance occurs when an economy slips behind in the growth tables and diverges
from others in particular group. We may then use the transition path to measure the extent
of the divergent behavior and to assess whether or not the divergence is transient.

When there is a common (limiting) transition behavior across economies, we have
hit = ht across i; and when there is ultimate growth convergence we have

hit ! 1; for all i; as t!1: ð18Þ

This framework for studying growth convergence admits the existence of an empirical
family of relative transitions, where the curves traced out by the hit may differ across i

in the short run, while allowing for ultimate convergence when (18) holds in the long
run. This apparatus turns out to be convenient for studying a number of issues, including
growth convergence under heterogeneous technologies, transition behavior of various
types (including transitional divergence), and the determinants of growth.

Sometimes, it is useful to study transition curves in selected subgroups of the cross sec-
tion population of individuals. There are several ways to modify the transition curve so
that appropriate benchmarks are used. Here we illustrate one way of comparing transi-
tions in two different sets of economies. The empirical example is given in Fig. 8 of Phillips
and Sul (2006a), showing that Latin American countries in general have not started to
catch up with OECD countries. To formalize this comparison, we can consider a panel
of countries which consist of two subgroups, involving the OECD (G1) nations and the
Latin American countries (G2). We may be interested in the overall economic performance
of the Latin American countries against that of the OECD. In this case, we can calculate
the relative transition curve for each Latin American country j as

gjt ¼
log yjt

ðG1 þ G2Þ�1P
i2G1[G2

log yit

" #
for j 2 G2:

Next, if can compute an average measure of relative economic performance for the Latin
American countries by taking the cross sectional average of the gjt as

gG2;t ¼
1

G2

XG2

j2G2

log yjt

ðG1 þ G2Þ�1P
i2G1[G2

log yit

" #
;

where the OECD nations serve as the numeraire economy. As another example, for large
distinctive economies such as China and India, we may be interested in the economic per-
formance of these individual countries compared with the OECD. In this case, the second
group G2 is a singleton and we may compute gChina,t, and gIndia,t as in gG2;t above. The rel-
ative economic performance of China and India was compared with that of the OECD in
Fig. 8 in Phillips and Sul (2006a) by using this type of modification.
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A further example is as follows. Suppose that we are interested in comparisons between
each of the Latin American countries and the specific economy of Mexico. In this case, the
countries of interest are the other Latin American countries and the numeraire is the sin-
gleton Mexico. So, the size of G1 is one and the other Latin American countries are allo-
cated to G2. Then we calculate gG2;t. Similarly, we may set Spain to be the numeraire
country and re-calculate gG2;t. These two relative measures are plotted in Fig. 1. The scale
of each graph differs and is shown on the right and left axes. When the other Latin Amer-
ican countries are compared with Spain, we notice from the figure that the relative
transition curve started to diverge (i.e. move away from unity) around 1975. Correspond-
ingly, relative to Spain, the economic performance of the other Latin American has been
deteriorating since 1975. Meanwhile, as the figure also shows, the relative economic per-
formance of the other Latin American countries to Mexico is U-shaped. So, after 1987,
the economic performance of the other Latin American countries began to catch up with
Mexico.
3.2. Convergence testing

Phillips and Sul (2006c) developed a new convergence test and a panel data clustering
algorithm based on the time varying factor presentation (11). In that framework, the null
hypothesis is formulated as

H 0 : Convergence for all i; vs H A : No convergence for some i: ð19Þ

An explicit form of the null hypothesis used in Phillips and Sul (2006c) is given as follows

H 0 : bit ¼ bþ wit; wit ¼ Nð0; r2
it log tÞ; r2

it ¼ r2
i t�2a: ð20Þ

According to this formulation, the coefficient bit may not be equal to b at time t, but its
variance is shrinking at the rate O(t�2alog t) as t!1. This parametric structure leads
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to a direct mechanism for testing the null hypothesis in (11) by running the following sim-
ple least squares regression

log
H 1

H t

� �
� 2 log log t ¼ aþ b log t þ ut; ð21Þ

where

H t ¼
1

N

XN

i¼1

ðhit � 1Þ2; ð22Þ

and hit is defined in (17). The regression equation (21) is called a log t regression because of
the log t regressor. The presence of the log–log t term on the left side of the equation arises
because of the log t component in the variance (20) and is helpful in assuring good power
properties of the test. The regression model (21) and its asymptotic properties are fully ex-
plored in Phillips and Sul (2006c), where it is shown how it can be used in the empirical
analysis of convergence and as a clustering algorithm. The technique has the advantage
of great simplicity in its practical implementation.

In the context of the regression model (21), the null and alternative hypotheses in (19)
can be written as

H 0 : b P 0; HA : b < 0:

The null weak inequality null hypothesis H0 can be tested by using a conventional one-
sided t-test constructed with a heteroskedasticity and autocorrelation consistent (HAC)
estimate from the residuals ût in this regression. The null hypothesis H0 implies relative
convergence rather than the absolute convergence. A test for absolute convergence is also
possible, in which case the null hypothesis must be changed to H0 : b P 2, which applies
when the unknown common factor follows either a random walk with a drift or contains a
linear trend.

Rejection of the null hypothesis H0 does not rule out the possibility of club conver-
gence. In fact, the regression t-test in (21) may be used as the basis of an algorithm for
assessing club convergence and clustering. In particular, Phillips and Sul (2006c) propose
a step by step procedure for evaluating evidence in support of panel data clustering. The
following is a brief outline of the steps involved and their motivation. Full details, simu-
lations and several empirical illustrations are given in the source article.

1. (Last income ordering): Order the individuals in the panel according to the last obser-
vation. This ordering forms the first stage and prepares the panel for a cluster analysis.

2. (Core group formation): The second step is to form a primary cluster of individuals
that comprise a core convergence subgroup against which the other individuals may
be compared. The approach is to run a sequence of log t regressions and calculate
the convergence test statistic tk = t(Gk) for subgroups based on the k highest individu-
als (for some N > k P 2) in the panel from the ordering obtained in step 1. The core
group size k* is selected by maximizing tk over k according to the criterion

k� ¼ arg max
k
ftkg subject to minftkg > �1:65: ð23Þ

The maximum criterion is designed to locate a primary cluster with a high degree of
confidence. This core convergence subgroup is denoted Gk� . If the condition is too se-
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vere and no group is found, the step can be re-run with a different collection of primary
individuals. Details are given in Phillips and Sul (2006c).

3. (Sieve individuals for club membership): The third step, as the name suggests, sifts
through individuals one at time to check for possible membership of the primary clus-
ter. This check is conducted using a log t regression. Suppose Gc

k� is the complementary
set to the core group Gk� . Adding one individual in Gc

k� at a time to the k* core members
of Gk� , the log t test is run and the individual included in the convergence club if t̂ > 0,
using the positive sign test to assure a high degree of confidence in the inequality null.

4. (Recursion and stopping): The final step searches the remaining individuals in the
panel for subgroup clusters by repeating steps 2 and 3 in the above algorithm. When
no other clusters are found in this process, the remaining individuals are assumed to
display divergent behavior.
Phillips and Sul (2006a) gave several empirical illustrations of this clustering method-
ology. For instance, in an application to cross country growth, the algorithm located
three convergent clubs and one divergent group among 88 countries in the Penn World
Tables in terms of real per capita GDP over the period 1960–1996.
4. Some new empirics on growth determinants

Empirical applications involving regression equations such as (8) require some proxy
variables to represent technology. Phillips and Sul (2006b) used a decomposition of log
per capita real income into components involving technology and real effective per capita
income in order to obtain a suitable proxy. Positing a capital share in GDP of 1/3, an
approximate version of log technology may be constructed as

log Âit ¼ log yit �
1

3
log k̂it; ð24Þ

where the approximate capital ratio is calculated as

log k̂it ¼ log
K̂it

Lit

� �
: ð25Þ

Following the conventional perpetual inventory method, we have

Kit ¼ I it þ ð1� dÞKit�1 or Kit ¼ ð1� Bþ dBÞ�1I it;

where B is the backshift operator and Iit is investment. By letting K̂i0 ¼ I i0, we obtain
K̂it ¼ ð1� Bþ dBÞ�1I it, which may be used as the generating mechanism.

Here we suggest an alternative way of approximating technology. From (12), it appears
that the transition parameter may itself be a good proxy for relative technology as t!1.
In particular,

hit ¼
bit

N�1
PN

i¼1bit

’ cit

N�1
PN

i¼1cit

¼ log Ait

N�1
PN

i¼1 log Ait

: ð26Þ

So the transition curve may be regarded as an alternative proxy for the time path of rel-
ative technology. This measure is sufficient for many empirical applications and will be
used in the illustration that follows.

Phillips and Sul (2006a) plotted relative transition curves for China, India, the Asian
Dragons, the NIEs, the Latin American countries and the Sub-Saharan African countries
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against the benchmark of the OECD countries. These curves can be thought as proxes for
relative technological progress. In related work, Phillips and Sul (2006b) showed the
importance of human capital in economic performance by the use of approximate technol-
ogy as measured in (24).

Here we show some empirical relationships between the relative transition curves
defined in (26) and the speed of learning. Examining such relationships is of interest
because poor countries may grow faster as those countries learn faster and are more able
to adopt advanced technology. The relationships therefore provide an empirical mecha-
nism for studying growth determinants.

A country’s speed of learning at time t, Sit, may be approximated in terms of human
capital by the measure

Sit ¼ H it � Hi1;

where Hit is the per capita total years of schooling for the ith country at time t. Then, total
years of schooling between 1 and t provide background information on relative degrees of
learning. Correspondingly, the average speed of learning or creation in the OECD nations
may be measured by

SOECD
t ¼ 1

#ðOECDÞ
X

i2OECD

ðH st � H s1Þ
 !

:

With these two measures, we can proxy the differential between the speed of learning of
individual countries and that of the OECD by

Uit ¼ ðH it � H i1Þ � SOECD
t : ð27Þ

This differential measure is constructed in absolute terms and is useful because, for some
countries, Hi1 is zero and we cannot use logarithms or ratios. However, when Hi1 > 0, we
can use relative measures, analogous to those in the construction of the relative transition
curve as follows

sit ¼
H it

Hi1
; sOECD

t ¼ 1

#ðOECDÞ
X

j2OECD

H jt

Hj0

;

and

/it ¼
H it=H i1

1
#ðOECDÞþ1

P
j2OECD

Hjt

Hj0
þ Hit

Hi0

n o ’ Hit=H i1

sOECD
t

:

In applications, we have found little difference between the measures /it and Uit, but Uit

avoids difficulties with zero initial conditions.
Figs. 2–4 display some empirical relationships between Uit and hit for India, Sub-Sah-

aran Africa, Latin American and Carribean (LAC) countries, the Asian Dragons and the
newly industrialized economies (NIEs).2 In general, when Uit > 0 (i.e, when the relative
speed of learning for the corresponding country or subgroup is faster than the OECD
average) the relative transition curves have positive slopes. Otherwise, the slopes of the rel-
ative transition curves are negative. The relationships are evident in all the figures, but are
2 See Phillips and Sul (2006a) for details of the individual countries.
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particularly strong in the case of India, the NIEs, and the Asian Dragons. The strong
negative effects in the case of Sub-Saharan Africa are also evident.

Further regression analysis can be done to quantify these relationships and estimate the
impact probability of human learning on technology adoption. One approach is to use a
discrete choice framework. Start by defining an index function for technological advance
as follows

IðDhitÞ ¼
1 if Dhit P 0;

0 if Dhit < 0:

�
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Next, assume that the impact of learning on technology can be captured in a panel rela-
tionship of the form

Dhit ¼ ai þ bUit � eit;

where ai is a fixed effect, b is a parameter, and eit are stationary random quantities with
distribution function F. Then, E{I(Dhit)} = P{I(Dhit) = 1} = F(ai + bUit), and we can
run the following limited dependent variable regression with individual fixed effects.

IðDhitÞ ¼ F ðai þ bUitÞ þ uit

to quantify the impact of learning on technology and growth. The simplest approach is to
use a logit or probit specification. However, to gain realism, such a model needs to allow
for cross section dependence and possible serial correlation in the present context. A limit
theory for panel discrete choice modeling with these complications and especially cross
section dependence is still to be developed. So, modeling along these lines is left for future
research.

Economic transitions of the type shown in Figs. 2–4 raise questions about the many
potentially relevant factors that can influence such transitions. The short illustration just
given focuses on explaining economic transitions using human capital in terms of educa-
tional attainment. Clearly, this is only one of a very large group of potential factors that
range over economic, social, cultural and political facets of individual countries. There is
plenty of scope for using the above methodology to assess explanatory evidence from
alternative sources.

5. Conclusion

The paper overviews a new approach to modeling and analyzing economic transition
behavior in the presence of common growth characteristics. The model is a nonlinear fac-
tor model with a growth component and a time varying idiosyncratic component that
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allows for quite general heterogeneity across individuals and over time. The formulation is
particularly useful in measuring transition towards a long run growth path or individual
transitions over time relative to some common trend, representative or aggregate variable.
The formulation also gives rise to a simple and convenient time series regression test for
convergence. The methods discussed have many potential applications outside of the
growth context. Some natural candidates occur in financial economics, where long, wide
panels of asset returns are commonly available and interest centres on finding empirical
clusters of related financial assets. Other potential applications occur in labor, micro-
econometrics, and spatial econometrics. Some further empirical illustrations are given in
Phillips and Sul (2006a,b).
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