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Summary This paper deals with cross section dependence, homogeneity restrictions
and small sample bias issues in dynamic panel regressions. To address the bias problem
we develop a panel approach to median unbiased estimation that takes account of cross
section dependence. The estimators given here considerably reduce the effects of bias and
gain precision from estimating cross section error correlation. This paper also develops an
asymptotic theory for tests of coefficient homogeneity under cross section dependence, and
proposes a modified Hausman test to test for the presence of homogeneous unit roots. An
orthogonalization procedure, based on iterated method of moments estimation, is developed
to remove cross section dependence and permit the use of conventional and meta unit root
tests with panel data. Some simulations investigating the finite sample performance of the
estimation and test procedures are reported.
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1. INTRODUCTION

This paper suggests some simple and practical methods for treating three important and thorny
issues that arise in estimation and testing with dynamic panel models: cross section dependence,
homogeneity testing and small sample bias (hereafter SSB) problems. Each of these issues is
individually important in dynamic panel regression and has received attention; particularly the
SSB problem on which there is a large literature. But the problems are not independent and, when
they are taken together, they substantially complicate estimation and inference in dynamic panel
models. The rapidly growing number of applied panel studies in growth economics, international
finance and empirical labor economics in recent years accentuates the need for these issues to

*The first draft of this paper was written in August, 2000. It was presented at the Midwest Econometrics Conference,
October, 2001, and the York Econometrics Conference, June 2002.
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be addressed in a systematic fashion. As yet, however, there have been few attempt to address
these issues at the same time and this paper is a small step in that direction, offering some new
possibilities in estimation and inference. We start by noting the following implications.

First, when there is cross section dependence in panel data, commonly used econometric
estimators and tests about parameters of interest generally rely on the nuisance parameters of
cross section dependence. As we will show, one of the most striking effects of cross section
dependence is that the pooled ordinary least squares (OLS) estimator provides little gain in
precision compared with single equation OLS when cross sectional dependence occurs but is
ignored in the panel regression. Another effect is that commonly used panel unit root tests are no
longer asymptotically similar. These effects are easily demonstrated using a simple but intuitive
parametric structure for the cross section dependence.

Second, the well known SSB problem in least squares estimation of the coefficients in
dynamic models is much more serious in panel models than it is in univariate autoregressions
(Nickell, 1981). In some cases the bias is so marked that the true autoregressive coefficient lies
completely outside the empirical distribution of the pooled OLS estimator of the coefficient. To
address this problem, this paper introduces some new panel estimation procedures that are based
on the idea of median unbiased estimation (Lehmann, 1959; Andrews, 1993). This approach
works well in the context of panel models with a simple dynamic structure and no additional
regressors, and provides a benchmark for other procedures which have greater flexibility for
application in more general models but which also need extension to allow for cross section
dependence, like the bias corrected IV/IGMM estimators considered in recent work by Hahn and
Kuersteiner (2002).

Third, homogeneity assumptions in dynamic panel models are convenient and commonly
employed to take advantage of pooling in panel regression. But these restrictions are sometimes
not well supported by the data and they can produce misleading results and invalidate inference,
as argued for example, by Durlauf and Quah (1999) in connection with homogeneity restrictions
used in the economic growth and convergence literatures. Of particular importance in applied
work is the need to take account of cross section dependence in testing homogeneity restrictions
in non-stationary panels, especially in connection with panel unit root testing. This paper shows
how to test for panel unit roots in the presence of cross section dependence and proposes two
types of test statistic. The first type is based on median unbiased correction after eliminating
cross section dependence. The second type involves the use of meta statistics which seek to
avoid small sample biases rather than correct for them.

This paper gives precedence initially to the treatment of the SSB problem. This is not because
this issue is more important than that of cross section dependence or homogeneity, but because
the SSB problem arises irrespective of homogeneity testing or the presence of cross section
dependence. Further, as is already well recognized, bias can make a huge difference in applied
work, as the examples of HAC and dynamic response time estimation given in the next section
illustrate?

To handle the SSB problem in dynamic panel estimation and the difficulties that can arise
from it, this paper proposes some panel median unbiased estimators (MUES) that follow the

1The SSB problem in least squares estimation of the coefficients in an autoregression has a long history, two important
early contributions being Hurvicz (1950) and Orcutt (1948). In simple autoregressions, asymptotic formulae for the SSB
were worked out by Kendall (1954) and Marriott and Pope (1954). Orcutt (1948) was the first to show that fitting an
intercept in an autoregression produced an additional source of bias that can exacerbate SSB, and this was confirmed in a
later simulation study by Orcutt and Winokur (1969). The point was echoed in Andrews (1993), which provided further
simulations that included the case of a fitted linear trend.
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approach taken by Andrews (1993) in the time series ¢&3ar. starting point is a panel version

of the MUE of Andrews in which the innovations in the panel are assumed to be free of cross
sectional dependence and the autoregressive coefficient is assumed to be homogenous across
cross sectional units. Since both these assumptions are strong and are unlikely to be satisfied in
empirical work, we explore the consequences of relaxing these assumptions and develop some
alternate MUE procedures that are more suitable in that event.

For this purpose, we use a generalized CTE model to parameterize the structure of cross
section dependence (see equation (6) below). This structure has been used in practical work (for
example, Barro and Sala-i-Martin (1992)) because of its simplicity and economic interpretability.
Also, other authors (e.g., let al. (1997)) have suggested this parametric structure as a possible
model for cross section dependence and have indicated, without providing analysis, that such
formulations can be expected to complicate asymptotics in both stationary and non-stationary
cases. Under this structure, we find that pooling GLS (which takes account of the dependence)
reduces variance, but the pooled GLS estimator suffers from downward bias. To deal with these
effects of cross section dependence, we develop a panel generalized MUE and find that this
procedure restores the precision gains from pooling in the panel and largely removes the bias
in GLS. Next, we consider the more realistic case in empirical research where there is cross
sectional dependence among the innovations and heterogeneity in the autoregressive coefficients.
In this case, we provide a seemingly unrelated MUE that deals with heterogeneity and cross
section dependence in much the same way as the conventional SUR estimator, while also
addressing the SSB bias problem.

In panel applications it is often of interest to test whether the data support homogeneity
restrictions on the coefficients, an important example being that of panel unit roots, as mentioned
above. In view of the potential gains from pooling and the changes in the limit theory in the
non-stationary case, homogeneity of the autoregressive coefficients in a panel is an important
restriction in dynamic panel models. In developing tests of such restrictions in dynamic panels
it is particularly important in empirical applications to allow for cross section dependence. To
this end, this paper investigates the properties of Wald and Hausman-type tests of homogeneity
under cross section dependence and proposes a modified Hausman test procedure that helps
to deal with the effects of such dependence in testing for the presence of homogeneous unit
roots. An orthogonalization procedure is developed which validates the implementation unit
root tests for panel models when there is cross section dependence. The procedure involves an
iterative method of moments approach to estimate the cross section dependence parameters and
removes cross section dependence by means of a suitable projection. Moon and Perron (2002)
have independently suggested the same approach but use principal components methods rather
than iterative method of moments estimation in their implementation of the procedure.

The remainder of this paper is organized as follows. The next section shows how even a small
time series SSB can make a large difference in estimation and testing in the context of panel
pooling. Section 3 studies the invariance properties of the panel MUE under the assumption of
cross sectional independence. Since invariance breaks down under cross sectional dependence,
this section also investigates alternative invariance properties that hold in the presence of cross
section dependence and proposes two new estimators for this case—a pooled feasible generalized

20ur work is also related to some recent independent work by Cermeno (1999). Using simulation methods, Cermeno
investigates the use of MUE estimation in a dynamic panel regression with fixed effects, a common time effect (CTE)
and homogeneous trends. Our framework extends Cermeno’s study by developing a class of PMUESs that address a more
general case of cross section dependence and that enable tests of homogeneity restrictions on the dynamics, including
the important case of unit root homogeneity.
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MUE and a seemingly unrelated MUE. Section 4 considers the asymptotic properties of Wald and
Hausman tests for homogeneity under cross section dependence and develops some alternative
procedures that offer advantages, especially in the case of unit roots. In Section 5, we report
the results of a simulation experiment examining the bias and efficiency of the various panel
estimators and the performance of the tests of cross section homogeneity. Section 6 concludes.
Derivations and some additional technical results are given in the Appendices: A derives some
invariance results; B develops limit theory for the stationary and unit root non-stationary cases;

C provides an iterative algorithm for estimating the cross section dependence coefficients.

2. DYNAMIC PANEL MODELS AND BIAS ILLUSTRATIONS
2.1. Model definitions

Three basic models are considered. These are panel versions of the models given in Andrews
(1993). As in that work, Gaussianity is assumed in order to construct the MUE. Each of the basic
models involves a latent pan{e;l;‘jt :t=0,1,...,T;i =1,..., N} that is generated over time
as an AR(1) with errors that are independent across section. The more complex case of cross
section error dependence is taken up in Section 3.2 and allowance for more general time series
effects is considered in Section 4.3.

The model fory, is

Vit = pYit_1+Uit, fort=1,...,T, andi =1,..., N, wherep € (-1, 1],
1)
Uit ~ i.i.d. N(O, aiz) overt anduj is independent oflj s for all i # j and for alls, t and
initialization is as follows:

o2
yio~ N (o, 1_—02) pe(-1D
B
Op (1) o =1

Whenp € (-1, 1), y7, is a zero mean, Gaussian panel that follows an AR(1) structure over time
and that is independent ovierWhenp = 1, y*; is a Gaussian panel random walk starting from

a (possibly random) initializatiog", (not necessarily Gaussian) and that is independentiover
The observed panel dafg+ :t = 0,1,...T; i = 1,..., N} are defined in terms ojﬁjt as
follows:

M1 yit =Yy for{t=0,....,T; i=1...,N}andp € (-1,1)
M2: yit=pui+ Yy fort=0,....,T,i=1...,N,uj €e Randp € (-1,1]
M3: yi,tz,ui+ﬁi’t+yﬁtfort=0,...,T,i =1,...,N, ui, i € Randp € (-1, 1].

In each case, there is an equivalent dynamic panel representation in teyyms of

MLl vit=pYit—1+uifort=1,...,T,i=1,...,Nandp € (-1,1)

M2 vt = Kt pYit-1 + Uit fort =1,...,.T,i = 1,...,N,Withﬁi = ui(l - p) and
,06(—1,1]

M3 vt = p, + Bt + pYit-1 + Uit fort=1,...,T,i =1,...,N,withﬁi =ui(l—p) +

In M1-M3, the initialization isyi o ~ N(0, 0?/(1—p?)) whenp € (-1, 1) andyi g = Op(1)
whenp = 1.
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2.2. Pooled estimation and bias illustrations

Denote the pooled panel least squares (POLS) estimatobpipoisin each of the three models
M1, M2 and M3. In M2, for instancegpois has the form

ool = SN S i1 — Vi D it — W)
ols — B
P SN i1 — Yi-1)2

T T
wherey; =T "y, andyi 1 =T 1) yie1. )
t=1 t=1

The exact quantiles ofpois Were computed by simulation using 100,000 replications for a
selection ofN, T and p values and foro—i2 = 1. We report some summary statistics here
(detailed results are available upon request) and make the following general observations: (i)
the median values of the pooled OLS estimators are less than the true values for all models
and all cases; (ii) the difference between the median value and the true value (which we call
the median bias) is increasing as the true valug ofcreases for all configurations oR( T).
These observations reflect what is known about the bias from the asymptotic formulae. Nickell
(1981) first obtained the asymptotic biasdbis under time series stationarity and cross section
independence. Nickell’'s formula has recently been extended by Phillips and Sul (2002, 2003) to
cases of cross section dependence, where the bias formul {asoo) is the same up to the
first order inT ~1, and to the non-stationagy = 1 case.

Table 1 shows the bias of the POLS estimator for each model when0.9. For model
M1, the bias of the OLS estimator vanishes for moderate sizé¢ ahd T. For example, the
median values ofpos are 0.88 forN = 1, T = 50,0.89 for N = 1, T = 100 and (®0
for N = 10, T = 50. Also, the empirical distribution gdpo1s becomes tighter alsl increases.
In contrast to model M1ppqis suffers from substantial SSB in model M2 even whéror T
are moderately large. But, as in model M1, the distributiofs concentrates quickly ais
increases. In several cases, the bias and concentration of the POLS estimator are such that the
true value ofp lies almost completely outside the empirical distribution for modehaté-or
example, forT = 50, the upper 95% points @hois are 0.94, 0.89, 0.88 and 0.88 f= 1, 10,
20 and 30, respectively, when= 0.9. Even forT = 200 andN = 30, 95% of the distribution of
Ppols is below the true value. This problem becomes more severe for model M3, where the upper
95% points ofppels are 0.904, 0.843, 0.831 and 0.825 for= 1, 10, 20 and 30 an@ = 50.

The bias and concentration of the pooled estimajgk are pertinent in applications where
they influence the distribution of derived statistics such as impulse responses, cumulative impulse
response functions, the half-life of a unit shobtly &nd the long run variancér ¢). We provide
some brief illustrations of these effects in the cash ahdlIr v. In the panel AR models above,
the h andlr v estimates based gfpois areh = N 0.5/1n jpois andITv = 1/(1 — fpois)?. AS
is apparent from Table 1(B) and 1(C), even a small SSB can have large effects on these derived
functions in the panel case because of the concentration of the esfisgatnd the non-linearity
of the functions. As discussed in the last paragraph, the upper 95% point of the distribution of
Ppols i smaller tharp whenN is moderately large, and then 95% of the distributiom dg less
than the true half-lifén. In model M3, for example, when = 0.9, N = 10 andT = 100, 95%
of the distribution of is less than %18, whereas the actual half-lifelis= 6.597. Similarly, for
the same model and parameter values, 95% of the distribution pifr v lies below 0696. Even
for N = 30, T = 200, 95% of the distribution dﬂ)/lr v lies below 081. Table 1(C) shows how
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Table 1. Downward bias in dynamic panel estimation.

Sample Model M1 Model M2 Model M3
5% 50% 95% 5% 50% 95% 5% 50% 95%
Part A: quantiles ofpols for p = 0.9
N=1T =50 0.710  0.883 0.962 0.628  0.830 0.937 0.548 0.772  0.904
N=1T =100 0.787  0.891 0.948 0.749  0.868 0.935 0.713  0.842  0.920
N=1T =200 0.829  0.896 0.938 0.814 0.885 0.931 0.798 0.874 0.924
N=10T =50 0.858  0.898 0.928 0.799  0.850 0.889 0.735 0.795 0.843
N=10T=100 0.874 0.899 0.920 0.847  0.877 0.902 0.820 0.853  0.882
N=10T =200 0.882 0.900 0.915 0.870  0.890 0.906 0.858 0.879  0.897
N=20,T =50 0.872  0.899 0.921 0.816  0.850 0.880 0.755 0.796 0.831
N=20,T=100 0.882 0.900 0.915 0.857 0.878 0.896 0.830 0.854 0.874
N=20,T=200 0.888 0.900 0.911 0.876  0.890 0.902 0.864 0.878 0.892
N =30,T =50 0.878  0.900 0.917 0.824 0.851 0.875 0.763 0.796  0.825
N=30,T=100 0.885 0.900 0.913 0.861 0.878 0.893 0.835 0.853  0.870
N=30T=200 0.890 0.900 0.909 0.879  0.890 0.900 0.868 0.879  0.890
Part B: quantiles of whenp = 0.9 andh = 6.579
N=1T =50 2.027 5569 18.036 1487 3.709  10.730 1.153 2.685 6.905
N=1T =100 2890 6.029 13.034 2403 4.895 10.393 2.051 4.033 8.342
N =1T =200 3.704 6.303 10.783 3.366  5.670 9.698 3.071 5130 8.734
N=10T =50 4532  6.465 9.244 3.086  4.250 5.897 2248 3.024 4.071
N=10T =100 5130 6.502 8.332 4184 5293 6.753 3.487 4362 5518
N =10, T = 200 5.524 6.549 7.764 4.995 5.921 7.041 4.520 5.352 6.364
N=20T =50 5.073  6.479 8.454 3.407  4.257 5.422 2462 3.033 3.745
N =20, T =100 5.530 6.550 7.799 4.477 5.310 6.305 3.717 4.377 5.164
N =20 T =200 5.831 6.557 7.410 5.254 5.922 6.689 4.745 5.348 6.042
N =30 T =50 5.313 6.556 8.019 3.573 4.306 5.171 2.561 3.046 3.614
N =30 T =100 5.698 6.554 7.617 4.645 5.321 6.095 3.847 4.372 4.973
N =30, T =200 5.957 6.573 7.242 5.391 5.934 6.555 4.882 5.360 5.920
Part C: quantiles oﬁ:g whenp = 0.9 andlr v = 100

N=1T =50 0.113  0.763 7.047 0.064  0.339 2.580 0.040 0.182 1.091
N=1T =100 0.206 0.863 3.880 0.147 0.575 2.501 0.109 0.403 1.643
N=1T =200 0.337 0.918 2.608 0.282 0.753 2.127 0.235 0.616 1.726
N =10 T =50 0.501 0.965 1.933 0.235 0.425 0.810 0.129 0.220 0.390
N =10 T =100 0.620 0.986 1.565 0.420 0.656 1.035 0.292 0.449 0.696
N =10 T =200 0.717 0.994 1.385 0.587 0.810 1.137 0.489 0.669 0.928
N =20 T =50 0.615 0.981 1.596 0.281 0.432 0.670 0.152 0.223 0.331
N =20 T =100 0.711 0.988 1.382 0.478 0.658 0.908 0.333 0.449 0.616
N =20 T =200 0.791 0.996 1.264 0.649 0.815 1.029 0.537 0.670 0.845
N =30 T =50 0.671 0.990 1.479 0.307 0.435 0.626 0.164 0.225 0.309
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Table 1.Continued.

Sample Model M1 Model M2 Model M3
5% 50% 95% 5% 50% 95% 5% 50% 95%
Part C: quantiles o}’r—”j whenp = 0.9 andir v = 100
N=30T=100 0.759 0.993 1.302 0.510 0.663  0.866 0.352 0.453  0.587
N=30T=200 0824 0993 1201 0.678 0.814 0.986 0.557 0.670 0.810

serious the bias iff v can be. Whe = 50 andN = 1, the median value df v for model M2
is about 76% of the trul v. For model M3, it is less than 20% of the true value wiies= 50
andN = 1, and still less than 46% whéeh = 100 andN = 30. Thus, when estimation of the
Ir v is based on panel data with fitted fixed effects or individual trends, the estitnatsdffers
from serious downward bias. We can expect test statistics that rely onlthesstimates to be
correspondingly affected.

3. PANEL MEDIAN UNBIASED ESTIMATION

This section proposes three PMU estimators. As in Andrews (1993), the basic idea is that the
median functionrm(p) in the relationP[ppois < M(p) | p] = % can be inverted to give an
estimator ppemu = m‘l(ﬁpms) for which the relationP[fpemu < o | pl = % or median
unbiasedness, holds. The first estimator considered is the panel exactly median unbiased (PEMU)
estimator, ppemu constructed under the assumptions of a homogenous AR(1) parameter and
cross sectional independence. This estimator is simply a panel version of Andrews’ exactly
MUE for the time series case. Our interest is in how well this procedure works in a panel
data set up and what can be done to allow for cross section dependence. As mentioned in the
introduction, Cermeno (1999) has independently proposed the use of a PEMU estimator for
dynamic panel models with a CTE, homogeneous trends and no cross section dependence. He
shows in simulations that the approach can work well in models of this type.

The PEMU estimator is based on the assumption of cross section independence (or the
presence of a CTE) which will often be too strong in practical work, particularly with
macroeconomic panels. In such applications, PEMU is likely to be less relevant than our second
and third estimators, which are designed to take account of cross section dependence that is
more general than a CTE. We will calibrate the performance of the new MUEs against that of
the conventional POLS estimator in cases where there is cross sectional dependence amongst the
regression errors. This comparison will highlight the gains of working with MUES in the panel
context, especially when there is cross section dependence.

3.1. Panel exactly median unbiased estimation
As discussed in Andrews (1993), it is useful in the construction of MUESs for the distribution of
the least squares estimator to be invariant to scale and other nuisance parameters. It is well known
(e.g. Dickey and Fuller (1979)) that least squares estimates of the autoregressive coefficient in

pure time series versions of models 1-3 satisfy such distributional invariance properties. These
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invariance results extend to the pooled panel forms of the least squares estimators in models 1-3
under certain conditions, which we now provide. The following property is a panel version of
the property given in Andrews (1993) for the time series case. As before, the POLS estimator of
p is generally denoted bgpols for each of the three models M1, M2 and M3; but when there is
possible ambiguity, we use an additional subscript and vig¢g; for the POLS estimator gf

in modelj.

Invariance Property IP1. Under the assumption of cross section independence, the distribu-
tion of ppolsj depends only op when model j is correct and the error varianoé = o2 for
all i. When y; is stationary, it does not depend on the common variarif‘l:&)r model M1, or
(aiz, wi) for model M2, or &2, i, Bi) for model M3, nor on the value of,ywhenp = 1 and
Vit IS non-stationary.

The common variance condition in IP1 is a strong one and will be inappropriate in many
applications. It may be relaxed by allowing the individual error variaraxfeB) bei.i.d. draws
from a known distributionf with common scale. For example, df?/o? arei.i.d. xZ, then
Uit/o = (Ujt/oi)(oi/o), which is independent of nuisance parameters. The numerator and
denominator ofpols May then be rescaled byd? and it is apparent that IP1 continues to hold,
as shown in the Appendix. In this case, the distributfois assumed known, like the normal
distribution of the errors, so that the median function of the POLS estimator can be constructed.
For more general cases of variationdﬁ overi, we may use weighted least squares in the
construction of the panel estimator. This extension and other generalizatigipgiothat are
better suited to empirical applications are discussed in the consideration of the GLS approach
later. For the time being, we confine our discussion to the estinggéarand those cases where
property IP1 holds.

Property IP1 enables the construction of a panel version of the exactly median unbiased
estimator (PEMU) in Andrews (1993). We start by noting tlagéis has a median function
m(p) = mt n(p) which simulation shows to be strictly increasinggdron the parameter space
p € (—1,1].3 Using this function (which depends dh and N), the panel median-unbiased
estimatorppemucan be defined as follows:

1 !f Ppols > M(1),
poemu= M *(fpots) i M(=1) < ppois < M(D), €)
-1 i Ppois < M(=1),
wherem(—-1) = lim,_._1m(p) and m~1 is the inverse function ofn(:) = mt n(-) so that

m~—1(m(p)) = p. Furthermore, a 10Q — p)% confidence interval fop in model j can be
constructed as follows. Lef (-) andqy (-) be the lower and upper quantile functions feis.
Define

1 ?f Ppols > qu (1),
éII5U = qal(ﬁpols) !f qU (=D < ppas < qu (D), 4)
-1 it Ppois < qu (=D,

3an analytic demonstration of this property would be useful but is not presently available either in the panel or the
pure time series case (Andrews, 1993). The simulation evidence is strongly confirmatory at least fof val@ésand
N > 5. There seems to be some evidence from simulations that the property fails folTsmadn N = 1. Andrews
(1993, fn. 4) reports that the 0.95 quantile function appears to dip slightly for valyeslo§e to unity for small values
of T.
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1 ?f rapols >quD),
By =1 Ppo9) if GL(=D) < Ppois < AL (D), 6)
-1 it pPpois < qL(—=1).

Then,&3,, andék,, provide upper and lower confidence limits and the (109 p)% confidence

interval forp is {p : CEU <p< éLFJ,U}. This construction follows Andrews (1993). The intervals

are obtained in precisely the same way as in that paper, but use tables of the quantiles of the panel
estimatoropols.

3.2. Panel feasible generalized median unbiased estimator

The assumption of no cross sectional correlation among the regression residuals is a strong one
and is unlikely to hold in many applications. When the structure of cross sectional dependence
among the regression errors is completely unknown, it is generally infeasible to deal with the
correlations because of degrees of freedom constraints. Hence, it is common to assume some
simplifying form of dependence structure. The most conventional way to handle cross section
dependence has been to include a common time dummy in the panel regression. The justification
for the CTE is that certain co-movements of multivariate time series may be due to a common
factor. For example, in cross country panels it might be argued that the time dummy represents
a common international effect (e.g. a global shock or a common business cycle factor), or in a
panel study of purchasing power parity it may represent the numeraire currency.

The model we use here allows for a CTE that can impact individual series differently.
Specifically, the model for the regression errors has the form

Uit = &i 6t + sit, 0 ~i.i.d. N(O, 1) overt, (6)

in which 6; is a CTE, whose variance is normalized to be unity for identification purposes and
whose coefficients§j, may be regarded as ‘idiosyncratic share’ parameters that measure the
impact of the common time effect on seriesThe §; are assumed to be non-stochastic and we
letd = (81, ...,8N). In (6) the general error componett is assumed to satisfy

it ~ 1.0.d.N(0, oiz) overt, ande;y is independent ofj s and6s for all i # j and for alls, t.

In this formulation, the source of the cross sectional dependence is generated from the common
stochastic serieg; and the extent of the dependence is measured by the coeffigjents
particular, the covariance betweej andujt (i # j) is given by

E(uitujt) = &éj. (7)

There is no cross sectional correlation widea= 0 for all i, and there is identical cross sectional
correlation wher$; = §; = 6o for all i and j. Thus, the degree of cross sectional correlation
is controlled by the components 6f Settingu; = (uy, ..., Unt) we have the conditional
covariance matrix

Vu=EWuy; |o?,...,08) =2 +88, X =diago? ...,03). 8)

The model (6) can be regarded as a single factor model in whichthe common factor and
8i is the factor loading for serigs It has been used in empirical research in studying growth
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convergence by Barro and Sala-i-Martin (1992). More general versions of this model that allow
for weakly dependent time series effects and multiple factors have been considered in recent work
by Bai and Ng (2001) and Moon and Perron (2002) that concentrates on model determination
issues relating to the number of factors and panel unit root testing. The models used by these
authors are more complex than (6), especially with regard to time series properties. Nonetheless,
(6) is general enough to allow for interesting cases of high and low cross sectional dependence
and yet simple enough to enable us to develop good procedures for bias removal in dynamic
panel regressions where cross section dependence arises. In the panel unit root case, we show
later in the paper that time series effectsjincan be treated by a simple augmented dynamic
panel regression and that time series effects oan be treated simply by projecting on the space
orthogonal tcs.

With this formulation for the error variances, the numerator and denominatéo@fmay
be rescaled by /b2, giving some invariance characteristics to the panel estindgtpy Stronger
invariance properties apply to the panel generalized least squares esjipgatdefined by

ZtT=1 i1 Vi

—, )
Zthlyt,lvu Y1

lapgls =

wherey; = (Y1, ..., Ynt)’ and whereji; denotesyi; or demeaned or detrendgg, respectively
for models M1, M2 and M3. In particular, we have the following property.

Invariance Property IP2. Under cross sectional dependence of the f¢dnthe distribution
of the panel GLS estimatgipgis depends only op. When p = 1 and y; is non-stationary, the
distribution of ppgis for models2 and 3 does not depend on the value .y

Since the distribution of the panel GLS estimator depends only,ome now propose an
iterative procedure that involves the use of a feasible GLS estimajgfs, whose form is
specified in what follows in (10). Our objective is to reduce the SSB problem of the least squares
procedure by constructing a feasible generalized version of the PMU estimatait ehould be
pointed out that, while the distribution of the panel GLS estimaggk depends only op, this is
not necessarily true of a feasible GLS procedure. However, provided a consistent estimator of the
covariance structure is employed, this property will hold asymptotically. Moreover, it is known
that covariance matrix estimation generally only has a second-order effect on the distribution
of feasible GLS estimates (see Phillips (1977, 1993), Rothenberg (1984)), although such results
have not yet been shown for the dynamic panel model considered here. For these reasons, use
of feasible GLS in the construction of a corresponding panel median unbiased procedure seems
promising.

The first stage in the iteration we propose uses the residuals from a panel regression in
which we use our MUEppemy rather than OLS to reduce the SSB problem in the primary stage.
Simulations we have conducted that are reported below (see Figure 2) indicate that the use of the
PMU estimator in the first stage helps to remove bias and improve estimates of the error variance
matrix even in the presence of cross section dependence. The error variance matrix is estimated
by an iterated method of moments procedure which is explained in Section 4.2 below. The next
stage of the iteration involves the construction of a panel feasible generalized median unbiased
(PFGMU) estimator that utilizes this estimated error covariance matrix. In this construction, we
use the median functiom(p) = mt n(p) of the estimatopprgis, Which simulations show to be
strictly increasing ino on the parameter spagee (—1, 1]. Using this median function (which
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Figure 1. Empirical distributions of single equation OLS, POLS and PEMU under no cross sectional
dependencel( = 100, N = 20, p = 0.9).

depends ol andN), the PFGMU estimatofpigmu, can be defined as in (3). The process can
be continued, revising the estimate of the error covariance matrix in each iteration.
To fix ideas, the steps in the iteration are laid out as follows:

Step 1: Obtain the estimatoppemy and using the residuals from this regression construct the
error covariance matrix estima\f%emu by the method explained in Section 4.2.

Step 2: Using \7pemu perform panel generalized least squares as in (9) and obtain the PFGLS
estimate ofo defined by

T o -1 ¢
Zt:lyt—lvpem&'t

T o vlo
> t=1Yt_1Vpem¥t-1

ﬁpfgls = (10)

Step 3: The PFGMU estimator is now calculated@gymu = m‘l(ﬁpfg|s) justasin (3) but using
the median functiom(p) = mt n(p) of the estimatopprgis.

Step 4: Repeat steps 1-3 (using updated estimatgsiotthe first stage rather thgipemy until
Ppfgmu CONvVerges.

Figure 1 displays a kernel estimate of the distribution of POLS based on 100,000 replications
with N = 20, T = 100,p = 0.9 when there is no cross sectional dependence. Apparently, the
POLS estimatoppois is more concentrated than single equation OLS (which does not use the
additional cross section data) but is badly biased downwards. The bias is sufficiently serious that
almost the entire distribution giyois lies below the true value of.

Figure 2 shows the distributions of the POLS and PMU estimators for the same parameter
configuration as Figure 1 and based on the same number of replications, but with high cross
sectional correlatiofi.As shown in Phillips and Sul (2002), the POLS bias in the case of cross
section dependence is the same to first order as the bias in the cross section independent case, and
this bias equivalence between the two cases is born out by the simulation results. As is apparent

4When5i € (1, 4) in (6), the average cross sectional correlation is arouda.0
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Figure 2. Empirical distributions of POLS, PFGLS and PFGMU under high cross section dependence
(T =100 N = 20, p = 0.9).
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Figure 3. Same as in Figure 2 with the addition of POLS with a CTE under high cross section dependence
(T =100, N = 20, p = 0.9).

from Figure 2, the main effect of the cross sectional dependence is to increase the variation of
both the POLS and PMU estimators. In fact, in the displayed case (where the average cross sec-
tion correlation is around.B82) the POLS and PMU estimators show only a slight gain in concen-
tration over single equation OLS. In other words, if there is high cross sectional correlation, there
is not much efficiency gain from pooling in the POLS estimator. Figure 3 shows the distribution
of the POLS estimator in which a CTE has been estimated. While this estimator is obviously
inappropriate under the general form of cross section dependence considered in (6), it is a com-
monly used procedure in practice and is applicable when the elemehtsl édke on a common
value. As is apparent from Figure 3, this estimator successfully reduces variance even though the
presence of a CTE in estimation provides only a crude approximation to the error structure (6).
Figures 2 and 3 show that the PMU estimator is still quite effective in removing the bias of
POLS even under cross section dependence. However, its high variance makes it a less appealing
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Figure 4. Extended comparison of PMU with common panel IV estimators under high cross section
dependencel( = 100, N = 20, p = 0.9).

estimator for applications than our PFGMU estimator, which reduces variance and removes bias,
as we now discuss. Figures 2 and 3 show the distributions of both the feasible GLS procedures,
PFGLS and PFGMU. Evidently, the PFGLS estimatgigs does restore much of the original
gains from pooling in terms of variance reduction that were apparent in FiguregpdigrBut,

as is also apparent from Figure 2, the distributiobgfis is seriously downward biased. Use of

the PFGMU median unbiased procedure corrects for this bias while retaining the concentration
gains of the GLS estimator. In particular, the distributiogfmu is well centered about the true
value and has concentration close to that of the MBd&x,yunder cross sectional independence
(Figure 1).

Figure 4 shows some comparisons of POLS and PMU in the cross section dependent case
against some alternative procedures that have been suggested for dynamic panel regression. The
first of these is the crude first difference instrumental variable (FD-IV) estimator which uses
Yit—2 as an instrument in a first differenced form of the model. Apparently, FD-IV has variation
substantially in excess of all the other estimators. The commonly used GMM estimator which
uses the full set of instrumentg;s : s =0, 1,...,t — 2} shows downward bias, although not
as severely as POLS, and it seems to have comparable variance. HK is the bias corrected GMM
estimator suggested in Hahn and Kuersteiner (2002) and Etaah(2001) and this estimator
apparently has performance closest to that of the PMU estimator. All these procedures clearly
show inferior performance to th&gmy estimator under high cross section dependence.

3.3. Seemingly unrelated median unbiased estimation

The results above indicate that, if we are to gain from panel estimation by pooling cross section
and time series information when there is cross section dependence, we need to take account
of the dependence in estimation. In contrast, most empirical studies that utilize dynamic panels
in the international finance and the macroeconomic growth literatures tend to ignore issues of
cross sectional dependence when pooling. Our results indicate that there is information in cross
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sectional correlation that is valuable in pooled estimation and that it can be accounted for, at least
in situations where the cross section sample 8izis not too large. Moreover, one can utilize
this information and at the same time deal with SSB bias problems in dynamic panel estimation.

Notwithstanding these potential advantages of pooling dependent data and adjusting for
bias in dynamic panels, perhaps the most important issue in pooled regressions relates to the
justification of the homogeneity restriction on the autoregressive coeffipieint the absence
of this restriction, it might be thought that there would be little gain from pooling time series
and cross section data. However, because of cross section dependence, there are advantages to
pooling panel data even in the estimation of heterogeneous coefficients. The reasoning is the
same as that of a conventional seemingly unrelated regression (SUR) system. But in a dynamic
panel context there are still SSB bias problems that need attention. This section shows that these
can be addressed using a SUR version of the panel median unbiased procedure.

An additional advantage to performing heterogenous coefficient estimation is that it facili-
tates testing of the homogeneity restriction. Therefore, this section also proposes a test for homo-
geneity that is based on the seemingly unrelated panel median-unbiased (SUR-MU) estimator.

We start the discussion by combining models M1, M2 and M3 with the following heteroge-
nous autoregressive panel model for the latent panel varjgble

Vit = piYii_q + Uit, fort=1,...,T, andi =1,..., N, (11)
in which the regression errors
ug ~i.i.d. N(O, Vy), fort=1,..., T, (12)
whereu; = (Ujt, ..., unt)’. This formulation allows for a general form of cross section error

correlation as well as the more specific set up (6). The same rangevalues as before is
permitted for each of the models.

When|p;| < 1 foralli, the cross section error correlations are higher than the cross section
correlations among the regressgis. 1. To see this, note that the correlation betwggrandy;q

is given by
.2 2
Y EOhy) _V'Mﬂg,- "
T 1= P ij»
] {E(yizt)E(szt)}Z 1— pipj
iAo E(uitujt)/{E(uizt)E(”JZt)}%- We might therefore anticipate the potential gains

from SUR estimation to be substantial—the regressors are different and less correlated across
individual equations in the panel for which the errors are more correlated. In consequence, we
propose a SUR-MU estimator based on the following iteration.

Step 1: Obtain the time series panel median unbiased estimatgs for each series =
1,...,N (and the appropriate model) and use the regression residuals to construct the

error covariance matrix estimatéz vy as explained in Section 4.2.

Step 2: UsingVemu perform a conventional SUR on the panel and obtain the SUR estimates
of the pi, pisur- ) ) . . . .

Step 3: The panel SUR-MU estimator is now calculatedgagrmu = M~ 1(pisur) just as in (3)

but using the median functiam(p) = mt N (p) of the estimatopisy, for eachi.
Step 4: Repeat steps 1-3 unfilsyrmuy CONVeErges.

The limit theory for this estimator and some associated tests of homogeneity are derived in
Appendix B and are discussed in the following section. Finite sample performance is considered
in Section 5.
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4. TESTING HOMOGENEITY RESTRICTIONS

Using unrestricted estimates of the coefficientdn the heterogeneous dynamic panel model

(11), Wald tests can be constructed to test the homogeneity restrldtianp; = p for all i.

It is well known that in finite samples, Wald tests suffer from size distortion that is sometimes
serious even in simple univariate regressions. For the panel regression case here we have found
that the size distortion of Wald tests becomes even more serious as the cross section sample
sizeN increases. This section first investigates the asymptotic properties of Wald tests based on
the SUR approach in both the stationary and non-stationary cases and shows how cross section
dependencies affect the asymptotic theory under non-stationarity. We then propose an alternative
Hausman-type procedure for testing homogeneity that utilizes the structure of the cross section
dependence. Again this approach is affected by nuisance parameters in the non-stationary case.
To address these difficulties with conventional approaches, we propose an orthogonalization
process that enables panel unit root testing under cross section dependence. These issues are
considered sequentially in the following sections. Derivations are given in Appendix B.

4.1. The Wald test and its asymptotic properties

The stationary case. Using the unrestricted estimat@égs,rmy Of the coefficientsp; in the
heterogeneous dynamic panel model (11), Wald tests can be constructed to test the homogeneity
restrictionHp : pj = p for all i. More specifically, letosurmu = (fisurmw) be the SUR-MU
estimate of the vectop= (p1, ..., pon)’ and write the restrictions itg asDp = 0 where

D = [in—1, —INn—_1] and s has A unit elements. Under Gaussianity and in the stationary
case wherep;| < 1 for all i, the SUR-MU estimatopsyrmy is asymptotically T — oo, N

fixed) equivalent to the unconstrained maximum likelihood estimate®dh that case, standard
stationary asymptotics and some algebraic manipulations (outlined in Appendix B) lead to the
limit theory

VT (Bgymy— #) —d NO VsuR), (14)
where )
Vair = [0 EMityj)ij] = Vot © E(yiyp). (15)

In (15) the operator is the Hadamard produc&iuj is theijth element oNJl, whereVy =
E(utup) = X + 88" asin (8), and

8idj . .

1*ﬁiJPj 7]

EGVitYjt) = § 02462 . .
7 =],

so that

E(ytyp) = (2 +388) OR, whereR = (rjj)  andrj; = (16)

1-pipj

SNote that the median functiam(-) is asymptotically T — oo, N fixed) the identity function and the SUR estimator
of p is the vector of Gaussian maximum likelihood estimators of the autoregressive coefficients in the unconstrained
models.
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From (15) and (16) it is apparent that the covariance ma#giyg depends on botp and$ as
well asX. WhenHg holds,E(yty;) = (2 + 88")/(1— p?) andVsyr has a simpler form in which

_ 1 -
Voln= 1_—pzvu1 O V., (17)

which depends on the commerand again on the cross section dependence paradeter
The Wald statistic for testinglo is

Wsurmu = ﬁ;urmuD/[D\A/SU RMUD/]_lDésurmu’
where
T -1
Vsurmu = [Z Z{\A/let:| ;
t=1
in which Z; = diag(y1t-1, ..., Ynt—1) and V, is an estimate of the error covariance matrix

Vu computed from the SUR-MU regression residuals. Urldgiand in the stationary case, the
traditional chi-squared limit theory holds faVsyrmy i-€. Wsurmu —>d Xﬁ-

The unit root case. In the non-stationary = 1 case, the asymptotic results depend, as might

be expected, on whether M1, M2 or M3 is employed in estimation and also on the boundary
condition that arises in the transition from the SUR estimator to SUR-MU—cf. (3). In addition,
the asymptotic theory for the SUR estimator is more complex than that of a traditional unit root
model when there is cross section dependence. For instance, when model M1 is used and the null
hypothesisHp : pj = 1Vi holds, derivations (outlined in Appendix B) using standard unit root
limit theory deliver the limit distribution of the SUR estimatag,,. This estimator is defined as

T 1,7
ésur: (Z ZEVU_lZI) (Z Z{Vlet> ’
t=1 t=1

whereV,, is an estimate 0¥, based on residuals from a first stage regression. Appendix B gives
the following asymptotic distribution fqﬁsur

1 o
T (g, — tN) 4 [v;lefo BB/} [/0 Bo(VJldB):| =&, (18)

whereB is vector Brownian motion with covariance matkiy. It is clear from (18) that the limit
distribution OfT@sure — tN) depends on the cross section dependence parasneten in the
homogeneous case where= 1Vi. Correspondingly, the asymptotic distribution@firmyin the

unit root case also depends on cross section dependence and error variance nuisance parameters.
The Wald statisticWsy, for testingHg is given by

Wsur = E/SURD/[D\A/SURD/]_:LDESUR

-1

-1
1

4 ¢D D(V;lo/ BB’) D'| Dg, (19)
0
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whereVsur = (311 Z{V;1Z)71, and again the limit distribution (19) depends on nuisance
parameters.

In contrast, in the unit root case where homogeneity atross is imposed, the pooled GLS
estimator ofp is

T 17
o= (Z YE_1V51Yt1> (Z YE_lValw) :
t=1 t=1
with a corresponding feasible SUR version. By straightforward derivation detailed in Appendix B,
we find that

d fol Wdw YLy fol WidW

fol WwW ZiNzl fol Wi2

whereW = (W) is standard Brownian motion with covariance matrix The limit (20) here
depends only on the cross section sample kize

T(p—-1

: (20)

4.2. Hausman and modified Hausman tests under cross section dependence

The stationary panel case:gH pj = p.  The main problem with the conventional Wald test, as
mentioned earlier, is that size distortion can be serious and it typically increases with the number
of restrictions. Also, the Wald test based on SUR or SUR-MU estimation requiresT , and is
heavily influenced by the nuisance parameters of cross section correlation. This section proposes
an alternative procedure for dealing with cross section dependence that takes into account the
structure of the dependence.

Start by writing the model M1 (with suitable adjustments for models M2 and M3) in vector
form as

Yo =2Ztp+U,  Zi=diagyu-1,...,ynt-1), o =(p1,..., pN)". (21)
Let gi (resp.p) be the OLS estimate gf (p) Then
-1

T T
t=1 t=1

Let p mu be the corresponding vector of median unbiased estimatgs.dfinder the null
hypotﬁesis of homogenous autoregressive coefficignts: p Vi, and asT — oo, we have
VT (5 — p) —d N(0, 1 — p?) for models M1, M2 and M3, with the same result for the MUEs
piemu. Under cross section independence andl as oo for finite N, we have

N A
M —4 N(O, N).

o V1-p?

On the other hand, if there is cross section dependence of the form implied by (6), then in the
stationary case for model M1 we have

oo oo oo
Yie = Do) (86— +eini) =8 Y plj + ) pleie =dime+me,  say.
=0 =0 =0
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It follows that the asymptotic covariance betwegrandp;j is given by

2

a1 @8- p?) 1 v 2

acov(pi, pj) = = == (1-p9),
vl T (5i2+‘7i2)(5j2+‘7j2) T vij vjj

wherev;; is theijth element oV, = X + §4'. Settingé = (p1, ..., pn)" and lettinginy be an
N-vector with unit elements, we find that standard derivations lead to the following limit theory:

1 T d
ﬁ(é—ptm:(?zzgzt) (Ft;z;ut)

t=1
~a N (0. D7 Vu © EqeypIDy?)
= N(0, (1 - p»Ry ORy), (22)

whereDy = diag(E(y2), ..., E(y%,)) and the matriRy hasijth elementvij /{vij vjj; }/2. It
follows that

\/_(Pl—
Z ey

The same result applies when the median unbiased estifatgare used in place qf; .

We propose to construct an estimate of the maRix that appears in the asymptotic
covariance matrix of (22) and use this estimate to develop an alternative tgtTfe following
moment based procedure may be u$ed.

—d N(O, (jy(Rv © Ry)n).

Moment based estimation &, (X).

Step 1: Estimate thep; by using OLS or EMU and obtain the regression residulls =
Vit — piYit—1, Which are asymptotically equivalent to OLS residuals and consistent (as
T — oo, N fixed) foruj;. In particular,

it = Uit + (pi — 0i)Yit—1 = Uit + 0p(1)

in both stationary and non-stationary cases.

Step 2: Construct the moment matrix of residudlsr = %Zthl 0¢Q;, which is a consistent
(asT — oo, N fixed) estimate oV. Let mrjj be theijth element oM.

Step 3: Estimate the cross section coefficieisteand the diagonal elements & using the
following moment procedure that finds the least squares best fit to the rivdrixhat
is

$,%) = arg mintr{(Mt — ¥ — 88)(MT — X — 88)1. (23)

The solution of (23) satisfies the system of equations
A A~ A Al A A2 {2
§=M78—-X48)/534, 6-=Mmii —45,i=1...,N

6Appendix C gives an explicit algorithm for Gaussian maximum likelihood estimation of the cross section coefficients.
Simulation results indicate that the moment based method described here gave superior results, especiallij{for large
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and this can be solved using the iteration

§M — (MTa(f—l) _ Za(f—l))/s(r—l)/a(f—l)’
o = Mrij — 812, (24)

starting from some initializatiors® (such as the largest eigenvector bfr) until
convergence. Sinddt —p Vy = X + 88 asT — oo, it follows that(S, i) —p (6, %)
asT — oo, with N fixed. SinceX —, £ > 0asT — oo,  will be positive definite for
large enougit .

Step 4: Construct the variance matrix estimatg = 3. + §3 . Let; be theij th element of/,,
and construct the estimal®, whosei j th element ishij /{1 0j; /2.

SinceVy —p Vy, we haveRy —p Ry asT — oo. Now let 5 be the PFMGU estimate
of p under the assumption of homogeneity. Unétl; the pooled estimatg is asymptotically
equivalent to GLS and then by standard limit theory

T -1 T
1 1
JT(5 — =—§ L Vly —E Vgt
(0 —p) (T t:13/t—1 u Yt l) (ﬁt:13’t—1 u ut)

—d N(O, {tracdV 1E(yyp1} ™.

Since
EGty) = (B +0°88) OR =Vu O R = 7= Vu,
underHp, we end up with the simple result
1— 2
VT — p) =4 N(O, Np )
Next consider the asymptotic covariance
1 T 1 T
acov | — Y Ziu, — Y y._,Vity
(\/T ; t \/T ; t—=1%u
E(y;)
T T 2
1 _ 1 E(yx)
=) ZE@uwViya==) Zyyea—> | 0 | =Dy,
t=1 t=1 .
E(YRo)

asT — oo, from which we deduce that
acov (VT (4 — ptn), VT (5 — p)
= D, ![Dyen]ftracelV ' E(yyp 1}t
=in(L - p?). (25)
Our test statistic foHg is based on the difference between the estimates

VT By = PN = VT (B, = ptN) = VT (5 — p)en,
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and from (22), (25) and joint convergence we find that

VT By = PN VTBp =) VTG — P,

1- 72 V1= 72 Vi-7?
It follows that we may construct the Hausman-type test statistic

T

G=1 ~2(/o

1
N (O, Ry ® Ry — NLNL/N> .
(26)

— PN, (27)

emu —emu

— )’ {[Rv ORyI™t- %lNl/N} (o
which is based on the difference between the robust-to-heterogeneity esﬁlmate‘ p and the
efficient estimated of p under the null, and which uses the moment based procedure outlined
above to construct estimates \¢f, and Ry. We use the notatio®pmgy to indicate that the
pooled estimatg in (27) is the PFMGU estimate of the (comman)Then, in view of (26) and

the consistency dRy, we have

One practical difficulty that can arise with (27) is that the variance mERx® Ry 172 — LNty
is not necessarily positive definite and, in our simulations negative valug@fate occasionally
occurred wherN andT are small N = 10, T = 50).

The panel unit root case (-t pj = 1, Vi) and orthogonalization. As shown in Appendix B,
the Hausman test has a limit distribution in the unit rgpt=€ 1, Vi) case that is dependent on the
Cross section nuisance parameters. It is therefore unsuitable for testing homogeneity. However,
there is a simple way of constructing a modified test that is free of nuisance parameters, which
we now describe.

Under the null hypothesis, we have as in (B.6)

1 [Tr]

Y= ;ut —d B(r) = BM(Vy). (29)
Note that we can decompo&einto component Brownian motions as follows:
B(r)= 8By (r)+B.(r), (30)
where
1 [Tr] [Tr]
\/_Zet —d By(r) = BM(c?), andTth —4 B.(r) = BM(X).

Letd, beanN x (N — 1) matrix that spans the orthogonal complement of the vektdhen

(&' 28.)" %8 ]Ty[m —q (8, 281) 128 B(r) = (8, 281) 128 B.(r) = WL (1),

(31)
whereW | (r) = BM(In-1), or (N — 1) — vector standard Brownian motion. The transformation
matrix that appears in (31) can be estimated by implementing the following modification of our
earlier procedure.
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Orthogonalization procedure (OP).

Step 1: Construct the moment matrix of differences (for models M1 and M2) or demeaned
differences (for model M3) which we write &1 = % Zthl Gt (;. As in the stationary
caseMr is a consistent (a§ — oo, N fixed) estimate oV . Again, letmrij be theijth
element oM 7.

Step 2: Estimate the cross section coefficiedtand ¥ by moment based optimization as in
(23) leading to(8, ). As before,(§, £) —p (8, £) asT — oo, with N fixed, and¥. is
positive definite for large enough.

Step 3: Using$ and$, construct 8, andfs = (3, £5,)~1/2§', . Clearly,
Fs =8 £8)" Y28 —, 3, x8,) Y2, (32)

asT — oo.

Using Fs we transform the data (or demeaned/detrended data in the case of models M2 and
M3) giving y;” = = Fsy:. As is apparent from (31), the transformatienasymptotically removes
cross section dependence in the panel ghds asymptotically cross section independent as
T — oo. Usingy;” we may now construct estimates of the autoregressive coefficients; Let

(resp.fr) be the OLS estimate ¢f =1 (p = ¢tn-1). Then, in an obvious notation,

T -1,7
= (Z zt+’zt+> (Z zt+’yt+) .
t=1 t=1

Let é:mu be the corresponding vector of median unbiased estimates. Gimilarly, let 5T

be the PFMGU estimate qf obtained from the transformed data under the assumption of
homogeneous unit roots. The modified Hausman statistic is defined as

G}, = T%(p;

Por—PTN-D) (pemu— prin-). (33)

As shown in Appendix B
Gy} —>d EN_1EN-1, (34)
where
1 —1r r1 1 —15 1
[fo Wil] [fo WL,ldWl»l] - [fo Wlwl] [fo WldWL]
EN_1= , (35)
1 —1r (1 1 —1r (1
[fo WJz_,N—l] [fo Wl»N—ldquN—l] - [fo WlWL] [fo WldWL]
and whergW, ; :i = 1,..., N — 1} are the components of thi¢ — 1 vector standard Brownian

motionW ; Clearly,G}, is free of nuisance parameters in the limit and is suitable for testing the
null Hp : pj = 1Vi.

"The orthogonal complement matrﬁg can be constructed by taking the eigenvectors of the projection matrix

Py=1- 6(5 ) 6 corresponding to unit eigenvalues.
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An alternative approach is to construct panel unit root test statistics directly by taking the
sum of the differences between the estima?g*e‘sﬁifemuand their limits under the null, viz.

N-1 ~p

o —1
Gl = L (36)
ols IZ:; (7154—
N—1 a+
P emu— 1
Gmu= 2 —5 — (37)
i=1 Pi .emu

In contrast to (33), the test statistics (36) and (37) do not involve a pooled estimate of the
homogenous unit root parameter. As shown in Appendix B, for fidede have the following
limit theory for these statistics & — oo

N-1

N-1
G(;S’ —d Z gl ) Ggmu —d Z ‘i:i71 (38)
i=1 i=1

whereg; = (fo1 V\/iz)‘l(fo1 W dW) and

- _J& & <O
i ‘{o § =0,

The limits in (38) depend only oN. Both Gjls, G{n, are therefore suitable for testing the null
Ho.

Note that there are onl¥ — 1 elements in (36)—(38). This is because the panel system has
been transformed to dimensidh — 1 in Step 4 above in order to remove the effects of cross
section dependence in the limit.

The tests (36) and (37) have the advantage that they lend themselves to simplBl large
asymptotics. In particular, the means and variances

EG), EE) =pe, e~ Var@), Var§ ) =of, 02

can be computed and, noting ti§até,~ arei.i.d. overi, we have the larg@l limit theory

N1 N-1
1 1 B
N ;@i ~ 1) ~d N(O.09). 7N i;(é”i — ug-) —>a N, o).

It follows that in sequential asymptotics (see Phillips and Moon (1999)J abl — 00)seq

++_ 1 N-1|A -1
Gos = VNop —i=1 |: Gt /LS:|

. —4 N(O, 1).
G++ — 1 _N—l pi,emu_l — -
e \/NU$7 =t &/3i+emu ¢

All of these procedures are easy to implement. Their finite sample performance is assessed in
Section 6 below. As shown in the next section, once the OP procedure has been applied to the
data, a wide class of panel unit root and stationarity tests become applicable.
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4.3. Dynamic AR(p) panels with cross section dependence

The procedures outlined above for panel unit root testing under cross section dependence may be
applied to cases of higher order panel dynamics and cases where the common factor component
0 is weakly dependent. Specifically, consider a panel of dynamic panel autoregressions with
(possibly) heterogenous lag ordefsfor eachi and allow for cross section dependence of the
same form as (6) above. The model is written in augmented format as

L

AYit = p, +éit+(/0—1)Yit—l+2¢ijAYit—j + Uijt. (39)
=1

The OP procedure leading to (32) above is the same as that laid out above except for the first step.
Here, instead of using the moment matrix of differences or demeaned differences, one simply
uses the moment matrix of the regression residdalobtained under the (null hypothesis)
restrictionp = 1in (39).

Since the transformed dayﬁ“ are asymptotically uncorrelated acrossegressions like (39)
of yif on yﬁ{_l and the lagged differenceSyﬁ_ i do not suffer (asymptotically) from cross
section dependence. Importantly, this will be so even when the common time seriesfactor
is weakly dependent rather than uncorrelated over time. This is because the transformation
procedure leading to (32) continues to eliminate the contribution of the common factor
componen®; to the limit Brownian motion in (30). It follows that several existing panel unit
root tests that were designed to work with data that are independent across section can now
be applied to test for panel unit roots when there is cross section dependence. Accordingly, we
consider here two broad types of panel unit root tests.

Meta-analysis tests for panel unit roots and stationarity under cross section dependente
first type of test is based on meta-analysis, whereinRthalues of tests for each cross section
individual i are combined to construct a new test. Tests of this type were suggested in Choi
(2001a) and Maddala and Wu (1999) for use in testing unit roots with panel data under cross
section independen&These tests apply here under cross section dependence after our OP
orthogonalization procedure has been implemented. Choi (2001a) provides a full discussion of
tests of this type and his simulation results suggest use of the three tests that we concentrate on
here.

Let p; be theP-value of a unit root test associated with cross section elem®&fine

N—-1
P= _22 In(pi), (40)
i=1
1 N—-1
Pn=——= ) [In(p)+1], (41)
N i=1
and
1 N—-1 L
Z=— o L(p). 42
7R ; (pi) (42)

8Choi (2001b) considers several statistics based on meta-analysis with random individual and time effects in (1).
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The P test is called the inverse chi-square test or Fisher test after Fisher (1932 ltest
statistic is a centred and normalized versiorPothat is useful for largeN. The Z test is called
the inverse normal test, following Stouffet al. (1949). As discussed in Choi (2001a), we have
the following limit distributions forP andZ asT — oo

P—dxén_1. Z—daN©O1 forfixedN, (43)
leading to the following sequential limit theory €5, N — 00)seq
Pm, Z =4 N(O, 1). (44)

Each of these tests and the limit theory applies under the null hypothesis to dynamic panel
autoregressions like (39) with cross section dependence after the OP procedure has been
implemented.

Other tests for panel unit roots. In fact, after transforming the data using the OP procedure,

we can apply most other methods for testing panel unit roots that are valid under cross section

independence. Baltagi (2001) provides a recent discussion and overview of these tests, which

generally take the form of cross section averages of time series test statistics and have the generic
form

1 N-1
Gr=m§'ﬁ,

wherer; stands for an individual unit root test statistic. This class of tests can also be extended by
using the bias reduction techniques discussed earlier in this paper. For instance, we could use an
ADF-t statistic based not on OLS estimation but instead on EMU estimation as explained earlier
(cf. Andrews and Chen (1994)).

Im et al.(1997) use two cross sectional average tests constructed Jiked study their small
sample properties using simulations. Without modification, this type of test typically suffers from
serious size distortion in small samples due to SSB bias. IPS use simulation to calculate the mean
and variance of th&; statistics and they employ bias correction in the implementation of these
procedures. However, in the dynamic panel AR(p) case, the means and variancesGef the
statistics heavily depend on the nuisance parameters that arise in the augmented dynamic terms.
Tanaka (1984) and Shaman and Stine (1988) provide formulae for the mean bias for cases up to
an AR(6) for models 1 and 2. For example, for an AR(2), the OLS estimatqriaf(39) will be
biased downward when the true coefficienty:jtﬁ2 is negative, while it will be biased upward
when the true coefficient oyf{_z is large and positive. IPS also found that the size distortion
problem of theirG; tests relies heavily on the sign of the true coeﬁ‘icienlyﬁnz. Since their
Monte Carlo studies are based on AR(2) process, their size distortion corrections are based on
the sign and magnitude of the coefficientyﬂﬁ_z. For general dynamic panel AR(p) processes,
the size of theG; test will depend on all the nuisance parameters arising in the augmented
terms and, in the absence of analytic formulae, extensive simulations are needed to make the
appropriate corrections in such cases.

The finite sample performance of these panel unit root tests and, more generally, tests of
homogeneity are considered in the simulation experiments reported in Section 5 below.
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5. SIMULATION EXPERIMENTS

This section consists of three parts. First, we report the finite sample performance of the three
panel median unbiased estimators. Second, we show the finite sample performance of the Wald
statisticWsyrmuand theGpmgy Statistic. Finally, we examine the small sample performance of the
panel unit root test& 1, G:;,;r Pn andZ and show how well the orthogonalization procedure

for handling cross sectional dependence works.

5.1. Design of data generating process
The data generating process for the first two parts is given by

Yit = oi Yit—1 + Uit, (45)
Uit = 3i ¢ + e&it, (46)

wheregj; ~ i.i.d. N(0, 1) overi andt, 6; ~ i.i.d. N(O, 1) overt, and for (o, §;) parameter
selections are used that are detailed below. The primary distinction is between the homogenous
case wherg = p for all i and the heterogenous case whereghdiffer across individuals.

We also distinguish cases of high and low cross section dependence according to the &alue of
Estimation is based on the following two regression models that involve a fitted mean and trend:

Vit = & + piYit—1 + Uit for model M2
Vit = & + bit + pi Vit—1 + Uit for model M3

Panel data are generated under four specifications which differ according to the degree of the
cross sectional dependence and whether or not the homogeneity restriction is impgsed on
These specifications are as follows:

Case | Homogeneity and Low Cross sectional Dependendée homogeneity restriction is
imposed and we sef; = p2 = --- = pn = 0.9, and allow low cross sectional dependence by
settings; ~ U[O0, 0.2], whereU [a, b] represents the uniform distribution over the interfaalb].

In this experiment, the average errar;j cross sectional dependence has correlation coefficient
around 0.03.

Case Il (Homogeneity and High Cross sectional Dependenégjin, we seto; = 0.9 for all
i ands; ~ U[1, 4]. Here, the lowest errom(;) cross sectional correlation is around 0.52, the
median is around 0.82 and the highest is around 0.94.

Case Il (Heterogeneity and Low Cross sectional Dependendeye, pi ~ U[0.7,0.9], and
8i ~UJ[0,0.2].

Case IV (Heterogeneity and High Cross sectional Dependendefe o ~ UJ[0.7,0.9] and
8 ~UJ1, 4].

Case V (Testing Homogeneity under Stationarity)nder the null hypothesis of homogeneity of
0, we setp; = 0.8 for alli to investigate test size. Under the alternative, wepset U[0.7, 0.9]
and consider test power.
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Each experiment involves 5,000 replications of panel sampleslpfl() observations. We
useN = 10, 20, 30 andT = 50, 100, 200.

The third part of the simulation has two sections. In the first section the fitted models have
intercepts and trends (as in M2 and M3) and the DGP is based on (45) and (46) with the following
parameter settings:

Case VI (Testing Panel Unit Roots under Cross sectional Dependehtae, o = 1.0 for all
i under the null, and we s&% ~ U[L, 4] for high cross sectional dependence. We use
pi ~ U[0.8, 1.0] as the alternative hypothesis to calculate the power of the tests.

In the second section, the fitted models again have intercepts and trends (as in M2 and M3)
and the DGP is based on

Vit = piYit—1+ vit,

vit =¢ivie-1+ Uit AR(1) errors, (47)
Vit = KiUjt—1 + Uit MA(1) errors, (48)
Uit = 66t + éit,

with the following parameter settings:

Case VIl (Testing Panel Unit Roots under Cross sectional Dependence and Weak Dependence).
As in Case Vo = 1.0 for alli under the null§; ~ U[1, 4] for high cross sectional dependence
andp; ~ U[0.8, 1.0] is used as the alternative hypothesis. In addition the parameters of the time
series models in (47) and (48) are set as follows:

¢i ~ U[0, 0.4] AR(1) errors,
ki ~ UJ0, 0.4] MA(1) errors,kj > O,
ki ~U[-0.4,0] MA(1) errors,kj < 0.

5.2. Finite sample properties

Table 2 reports mean square errors (MSE’s) of the POLS, PFGLS and PFGMU estimators. The
first column shows the MSE 107 of the POLS estimator, and the second and third columns
show the ratios of the MSE of the other estimators to that of the POLS estimator. When the
degree of cross sectional dependence is low, the PFGLS estimator becomes less efficient than the
POLS since the MSE ratio is greater than one in all these cases. Surprisingly, two panel median
unbiased estimators have much better MSEs than POLS even for low degrees of cross sectional
dependence. The ordering among the estimators in terms of MSE performance (higher is better)
is PFGLS< POLS < PFGMU for both models M2 and M3. When there are high degrees of
cross sectional dependence, the performance ordering changes toPPESLS < PFGMU.

The performance of the PFGMU estimator is substantially better than POLS in all cases, yielding
MSEs that are 5-20 times better than POLS.

Table 3 shows the average MSE of the OLS, EMU, SUR and SUR-MU estimatordNover
When the degree of cross sectional dependence is low (Case lll), the order among the estimators
in terms of MSE performance (again, higher is better in what follows) is SUBLS < SUR-

MU < EMU. When there are high degrees of cross sectional dependence, this ordering changes
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Table 2. Monte Carlo performance of POLS, PFGLS and panel FGMU estimators under homogenous
(cases | & II): MSE and MSE ratios.

Sample size Only constant Constant and trend

MSE MSE ratio MSE MSE ratio

POLS PFGLS PFGMU POLS PFGLS PFGMU

Low cross sectional dependence: Case |

N =10 T =50 0.372 1.294 0.331 1.282 1.336 0.183
N =20 T =50 0.306 1.725 0.208 1.174 1.719 0.137
N =30 T =50 0.279 2.136 0.177 1.140 2.017 0.168
N =10 T =100 0.082 1.161 0.401 0.269 1.189 0.189
N =20 T =100 0.067 1.360 0.261 0.247 1.414 0.106
N =30 T =100 0.060 1.581 0.208 0.233 1.636 0.081
N =10 T =200 0.025 1.070 0.544 0.063 1.086 0.252
N =20 T =200 0.016 1.182 0.393 0.052 1.208 0.151
N =30 T =200 0.016 1.261 0.302 0.052 1.309 0.110

High cross sectional dependence: Case |

N =10,T =50 1.210 0.515 0.139 2.585 0.779 0.113
N =20,T =50 1.224 0.730 0.188 2.654 1.033 0.143
N =30T =50 1.172 1.013 0.318 2.583 1.299 0.238
N =10, T =100 0.368 0.324 0.108 0.668 0.544 0.085
N =20,T =100 0.327 0.379 0.092 0.626 0.648 0.070
N =30,T =100 0.340 0.465 0.121 0.623 0.790 0.090
N =10, T =200 0.124 0.216 0.103 0.192 0.370 0.081
N =20,T =200 0.120 0.202 0.066 0.191 0.381 0.050
N =30, T =200 0.118 0.214 0.059 0.180 0.437 0.048

to OLS < EMU < SUR < SUR-MU. Overall, the SUR-MU estimator has MSE performance that
is 5 times better than that of the OLS estimator and twice as good as that of the SUR estimator.
Table 4 displays finite sample properties of the Wald test for dynamic homogeneity, i.e.
Ho : pi = p foralli with p = 0.7 (Case V). As mentioned earlier, the size distortion of the Wald
test is substantial and the distortion gets larger and becomes very serious as the number of cross
sectional units increases. Even for large value$ tfie size distortion is considerable. It is also
worse for the fitted trend case. Interestingly, the size distortion is worse under low cross sectional
dependence than it is under high dependence. We deduce that the Wald test for homogeneity in
dynamic panels is very unreliable and not to be recommended.
In contrast, Table 5 shows much more reasonable finite sample performancé&cdtttestic
in the stationary case. AN becomes large for small, the size of theG test increases, due to
reduced degrees of freedom. But for modef&téhe G test suffers only mild size distortion and
the size is conservative for larg@r. Moreover, the size adjusted power of Betest is nearly
unity in all the cases considered.
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Table 3. Monte Carlo performance of OLS, MU, SUR and SUR-MU estimators under heterogepeous
(cases lll & IV): MSE and MSE ratios.

Sample size Constant Constant and trend

MSE MSE ratio MSE MSE ratio

oLS MU SUR SUR-MU oLs MU SUR SUR-MU

Low cross sectional dependence: Case lll

N =10 T =50 1.691 0.812 1.134 1.028 2.827 0.660 1.108 0.846
N =20 T =50 1.740 0.807 1.212 1.351 2.923 0.654 1.153 1.114
N =30 T =50 1.727 0.806 1.222 1.827 2.876 0.650 1.130 1.453
N =10 T =100 0.610 0.856 1.066 0.936 0.858 0.717 1.057 0.796
N =20 T =100 0.603 0.856 1.144 1.079 0.870 0.715 1.121 0.930
N =30 T =100 0.601 0.859 1.195 1.217 0.863 0.717 1.168 1.062
N =10 T =200 0.242 0.921 1.044 0.966 0.302 0.803 1.039 0.845
N =20 T =200 0.241 0.919 1.079 1.002 0.302 0.800 1.070 0.878
N =30 T =200 0.239 0.922 1.117 1.048 0.299 0.806 1.106 0.925

High cross sectional dependence: Case IV

N =10,T =50 1.734 0.815 0.484 0.308 2.856 0.658 0.584 0.355
N =20,T =50 1.736 0.801 0.530 0.353 2.916 0.642 0.599 0.506
N =30T =50 1.732 0.813 0.617 0.616 2.913 0.656 0.632 0.793
N =10, T =100 0.633 0.863 0.383 0.265 0.900 0.726 0.458 0.229
N =20,T =100 0.613 0.866 0.381 0.248 0.861 0.730 0.462 0.221
N =30,T =100 0.606 0.873 0.413 0.259 0.853 0.729 0.488 0.242
N =10, T =200 0.241 0.925 0.349 0.284 0.302 0.813 0.400 0.246
N =20,T =200 0.242 0.915 0.317 0.244 0.303 0.798 0.373 0.213
N =30, T =200 0.249 0.922 0.305 0.228 0.311 0.805 0.361 0.202

Table 6 deals with the panel unit root case and shows the size and size adjusted power of the
IPS,GJS, G P andZ tests in respective columns. Overdigh, shows better performance
than Gjl;r in terms of both size and power comparisons. Fhand Z tests are in turn superior
to theG tests and have considerably greater power. All of these tests outrank the IPS test, which
shows considerable size distortion as well as lower power. Generally, the power of the tests for
model M2 (the fitted intercept case) is higher than that for model M3 (fitted constant and linear
trend). The results for thPand Z tests are particularly good and indicate that these panel unit
root tests work well in the presence of cross section dependence.

Tables 7 and 8 report further results for tAReZ and IPS tests in the case where the model
has AR(1) and MA(1) errors, respectively. Apparently, b&tand Z tests work very well in
terms of size and power for AR(1) errors. This is not unexpected given that the ADF procedure
is used to obtain estimates of the errors in the first stage of the procedure leading to these
tests. On the other hand, neither tRenor Z tests work well for MA(1) errors, both tests
showing size distortion in this case. Similar results were obtained for the case of MA(1) errors
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Table 4. Wald test for homogeneity (case \Blg : pj = p = 0.7. Cross sectional correlation (min 0.52,
med= 0.82, max= 0.94).

Sample size Constant Constant and trend
Size (5%) Size (2.5%) Size (5%) Size (2.5%)
Low cross sectional dependence

N =10 T =50 0.466 0.369 0.571 0.474
N =10 T =100 0.185 0.123 0.225 0.153
N =10, T =200 0.103 0.051 0.115 0.059
N =20 T =50 0.983 0.973 0.982 0.971
N =20 T =100 0.584 0.488 0.653 0.555
N =20 T =200 0.253 0.174 0.285 0.198
N =30 T =50 1.000 1.000 0.998 0.996
N =30 T =100 0.906 0.781 0.937 0.855
N =30 T =200 0.433 0.207 0.478 0.251

High cross sectional dependence

N =10,T =50 0.351 0.263 0.522 0.440
N =10, T =100 0.155 0.107 0.176 0.120
N =10, T =200 0.096 0.059 0.101 0.063
N =20,T =50 0.873 0.820 0.959 0.938
N =20,T =100 0.421 0.341 0.464 0.377
N =20,T =200 0.226 0.153 0.236 0.163
N =30T =50 1.000 0.995 0.979 0.968
N =30,T =100 0.703 0.503 0.742 0.558
N =30, T =200 0.337 0.159 0.341 0.162

with negative coefficients but these are not reported here. An alternative approach to removing
serial dependence, such as the non-parametric adjustments used in Phillips (1987), may be more
successful in this case, although we have not implemented that procedure in the present work.
The IPS test shows substantially greater size distortion in all cases and generally seems to be
inferior to the other tests.

6. CONCLUDING REMARKS

Panel models with dynamic autoregressive components are now extensively used in empirical
research in growth economics and international finance, both areas where cross section depen-
dence is likely to be important. In the absence of alternative approaches, it is often convenient
in such studies to deal with cross section dependence by means of a CTE, to ignore issues of
bias and to presume the validity of homogeneity restrictions. The bias problem in dynamic panel
regressions with fixed effects is shown here to persist and be compounded by high variance when
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Table 5. G-test for homogeneity (case W : pj = p = 0.8 with cross sectional correlation (min 0.52,
med= 0.82, max= 0.94).

Model 2 Model 3
Sample 1% 2.5% 5% 10% 1% 2.5% 5% 10%
Size

N =10T =50 0.028 0.043 0.065 0.092 0.027 0.046 0.068 0.089
N =20 T =50 0.051 0.075 0.100 0.136 0.047 0.069 0.094 0.126
N =30 T =50 0.082 0.110 0.136 0.172 0.071 0.092 0.114 0.140
N =10 T =100 0.017 0.032 0.050 0.080 0.019 0.030 0.052 0.077
N =20 T =100 0.015 0.027 0.045 0.069 0.017 0.035 0.048 0.076
N =30 T =100 0.025 0.039 0.056 0.085 0.028 0.043 0.055 0.086
N =10, T =200 0.003 0.014 0.024 0.043 0.004 0.014 0.024 0.043
N =20 T =200 0.008 0.015 0.028 0.044 0.008 0.016 0.028 0.051
N =30, T =200 0.008 0.016 0.024 0.046 0.008 0.016 0.027 0.046

Size adjusted power

N =10T =50 0.981 0.972 0.959 0.920 0.972 0.959 0.944 0.906
N =20,T =50 0.990 0.984 0.978 0.968 0.991 0.985 0.980 0.964
N =30T =50 0.999 0.998 0.997 0.995 0.999 0.997 0.996 0.996
N =10, T =100 0.988 0.979 0.961 0.941 0.984 0.972 0.952 0.924
N =20,T =100 0.994 0.987 0.979 0.968 0.995 0.989 0.978 0.969
N =30, T =100 0.999 0.999 0.998 0.998 0.999 0.999 0.999 0.998
N =10, T =200 0.997 0.993 0.987 0.978 0.978 0.966 0.957 0.932
N =20, T =200 0.995 0.992 0.989 0.981 0.995 0.992 0.988 0.982
N =30, T =200 0.999 0.998 0.997 0.996 0.999 0.999 0.997 0.996

there is cross section dependence. Tests for homogeneity are also affected by cross section depen-
dence, including the case of homogenous unit roots. These are issues that need corrective action
in applied work.

The solutions offered in this paper to address these issues start with the use of median
unbiased estimation procedures for estimation, testing and confidence interval construction.
On the whole, the new estimation methods work well to correct for bias and reduce variance,
accounting for cross section dependence in conditions (viz. correct specification, no additional
regressors, and Gaussianity) that might be described as ‘ideal’ for these methods. When
conditions are not ‘ideal’, for example when the distributional assumptions underlying the
median function are incorrect, other bias correction methods such as those based on higher order
expansions (e.g Hahn and Kuersteiner (2002)) may be useful. The present analysis is useful in
calibrating how well such methods can work in relation to the median unbiased approach.

On the other hand, the present paper shows that Wald tests for homogeneity suffer from
unacceptable size distortions even under ideal conditions, including stationarity. We have
therefore proposed a modified Hausman test for homogeneity that utilizes a pooled panel MUE
estimator that is asymptotically efficient under the null, in conjunction with MUE estimates
that are robust to heterogeneity and moment based estimates of the cross section dependence
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Table 6. Tests for homogenous panel unit roots under cross section dependence (case VI): cross sectional
correlation (min= 0.52, med= 0.82, max= 0.94).

Sample IPS Gl Gy P z

Panel A: model M2—fitted intercept case

Size: 5%
N=10T =50 0.257 0.052 0.052 0.044 0.046
N=20,T =50 0.353 0.061 0.046 0.044 0.050
N=30T =50 0.367 0.061 0.041 0.044 0.049
N =10, T = 100 0.263 0.047 0.063 0.045 0.047
N =20, T = 100 0.333 0.051 0.055 0.044 0.049
N =30, T = 100 0.376 0.054 0.057 0.039 0.048
N =10, T =200 0.242 0.046 0.054 0.041 0.047
N =20, T =200 0.337 0.043 0.049 0.044 0.044
N =30, T =200 0.391 0.049 0.047 0.046 0.049

Size adjusted power

N =10T =50 0.247 0.252 0.270 0.997 0.996
N =20 T =50 0.223 0.329 0.330 0.988 0.974
N =30T =50 0.256 0.519 0.532 0.978 0.969
N =10 T =100 0.646 0.687 0.739 1.000 1.000
N =20,T =100 0.627 0.692 0.779 0.997 0.993
N =30, T =100 0.587 0.811 0.866 0.991 0.987
N =10, T = 200 0.991 0.970 0.983 1.000 1.000
N =20, T =200 0.989 0.934 0.968 0.999 0.998
N =30, T =200 0.986 0.975 0.988 1.000 0.999

Panel B: model M3—fitted intercept and trend

Size: 5%
N =10 T =50 0.278 0.077 0.072 0.043 0.048
N =20 T =50 0.366 0.086 0.073 0.044 0.049
N =30 T =50 0.390 0.098 0.067 0.046 0.052
N =10 T =100 0.280 0.062 0.073 0.049 0.052
N =20 T =100 0.357 0.064 0.063 0.044 0.047
N =30 T =100 0.379 0.078 0.068 0.049 0.053
N =10, T = 200 0.260 0.049 0.062 0.046 0.049
N =20, T =200 0.313 0.044 0.056 0.042 0.045
N =30, T =200 0.363 0.047 0.055 0.042 0.046

Size adjusted power
N =10,T =50 0.122 0.086 0.088 0.985 0.983
N =20,T =50 0.142 0.097 0.095 0.969 0.947
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Table 6. Continued.

Sample IPS Gl Gty P z
Size adjusted power

N =30,T =50 0.133 0.158 0.160 0.960 0.943
N =10, T =100 0.349 0.342 0.380 0.998 0.996
N =20, T =100 0.350 0.413 0.435 0.990 0.975
N =30, T =100 0.344 0.558 0.609 0.981 0.971
N =10, T =200 0.885 0.853 0.890 1.000 1.000
N =20, T =200 0.881 0.815 0.878 0.999 0.994
N =30, T =200 0.886 0.892 0.938 0.998 0.993

Table 7. Tests for homogenous panel unit roots under cross section dependence & AR(1) errors (case VII).
Cross sectional correlation (mia 0.52, med= 0.82, max= 0.94).

Sample IPS P z
5% 10% 5% 10% 5% 10%

Panel A: fitted intercept

Size
N =10 T =50 0.202 0.272 0.056 0.112 0.057 0.111
N =20 T =50 0.329 0.381 0.057 0.110 0.055 0.113
N =30 T =50 0.374 0.412 0.066 0.117 0.064 0.115
N =10 T =100 0.188 0.256 0.047 0.094 0.046 0.099
N =20 T =100 0.315 0.364 0.047 0.099 0.049 0.100
N =30 T =100 0.363 0.402 0.047 0.094 0.048 0.095
N =10, T =200 0.198 0.261 0.042 0.093 0.047 0.095
N =20, T =200 0.330 0.382 0.040 0.091 0.049 0.100
N =30, T =200 0.373 0.412 0.043 0.088 0.046 0.092
Power
N =10T =50 0.294 0.415 0.993 0.997 0.992 0.998
N =20T =50 0.225 0.343 0.984 0.991 0.979 0.986
N =30 T =50 0.199 0.325 0.981 0.989 0.981 0.988
N =10 T =100 0.632 0.763 1.000 1.000 0.999 1.000
N =20 T =100 0.592 0.706 0.998 0.999 0.995 0.997
N =30 T =100 0.539 0.689 0.997 0.999 0.995 0.997
N =10, T =200 0.984 0.994 1.000 1.000 1.000 1.000
N =20, T =200 0.967 0.987 1.000 1.000 1.000 1.000
N =30, T =200 0.967 0.987 1.000 1.000 1.000 1.000

(© Royal Economic Society 2003



Dynamic panel estimation 249

Table 7. Continued.
Sample IPS P Z
5% 10% 5% 10% 5% 10%

Panel B: fitted intercept and trend

Size
N =10 T =50 0.218 0.279 0.051 0.100 0.050 0.096
N =20T =50 0.327 0.372 0.049 0.096 0.049 0.098
N =30T =50 0.382 0.414 0.054 0.107 0.056 0.104
N =10 T =100 0.205 0.259 0.047 0.091 0.050 0.098
N =20 T =100 0.319 0.366 0.049 0.092 0.051 0.100
N =30, T =100 0.360 0.393 0.048 0.094 0.053 0.100
N =10, T =200 0.193 0.254 0.039 0.084 0.042 0.085
N =20, T =200 0.312 0.355 0.037 0.083 0.044 0.093
N =30, T =200 0.365 0.402 0.040 0.086 0.045 0.091

Power
N =10 T =50 0.168 0.259 0.976 0.987 0.973 0.985

Power
N =20 T =50 0.143 0.229 0.953 0.978 0.938 0.960
N =30 T =50 0.116 0.206 0.955 0.973 0.938 0.961
N =10 T =100 0.400 0.535 0.993 0.997 0.988 0.995
N =20 T =100 0.353 0.477 0.986 0.991 0.970 0.984
N =30 T =100 0.334 0.467 0.988 0.993 0.974 0.983
N =10 T =200 0.890 0.940 1.000 1.000 1.000 1.000
N =20, T =200 0.831 0.903 1.000 1.000 0.997 0.998
N =30, T =200 0.813 0.895 1.000 1.000 0.998 0.999

parameters. Simulations indicate that this homogeneity test, whose limit distribution is chi-
squared, works well except in cases whirandT are both small.

In the important case of tests for homogenous panel unit roots, we utilize the same moment
based approach to estimation of the cross section dependence paramatetsuse these
estimates to project on the space orthogonal to the common time effect in the panel. After this
data transformation, it becomes possible to employ conventional panel unit root tests that have
been developed under the assumption of independence. Simulations reveal that there are major
differences between test procedures in practice, with some procedures (like the IPS test of Im
al. (1997)) suffering serious size distortion. TRevalue based metZ test of Choi (2001a) is
found to work particularly well with stable size and good power and is easy to compute and apply
in practice. Moon and Perron (2002) have independently suggested a related procedure for panel
unit root testing that involves principal components estimation. They show that the approach may
be used in dynamic panels with multiple factors in which the rank of the factor space itself has
to be estimated.
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Table 8. Tests for homogenous panel unit roots under cross section dependence & MA(1) errors (case VII).
Cross sectional correlation (mia 0.52, med= 0.82, max= 0.94).

Sample IPS P z
5% 10% 5% 10% 5% 10%

Panel A: fitted intercept

Size

N =10 T =50 0.247 0.323 0.083 0.150 0.084 0.151
N =20 T =50 0.371 0.421 0.090 0.173 0.089 0.163
N =30 T =50 0.421 0.466 0.108 0.192 0.110 0.193
N =10 T =100 0.235 0.315 0.072 0.131 0.071 0.137
N =20 T =100 0.344 0.404 0.083 0.159 0.086 0.161
N =30 T =100 0.430 0.467 0.100 0.173 0.101 0.169
N =10, T =200 0.242 0.305 0.066 0.131 0.073 0.134
N =20, T =200 0.366 0.414 0.081 0.153 0.090 0.161
N =30, T =200 0.409 0.450 0.092 0.170 0.103 0.177

Power
N =10 T =50 0.284 0.433 0.998 1.000 0.998 0.999
N =20 T =50 0.233 0.367 0.988 0.993 0.982 0.987
N =30T =50 0.246 0.359 0.993 0.997 0.987 0.992
N =10, T =100 0.695 0.821 1.000 1.000 1.000 1.000
N =20, T =100 0.639 0.773 0.999 1.000 0.997 0.998
N =30, T =100 0.590 0.723 1.000 1.000 0.997 0.999
N =10, T =200 0.998 1.000 1.000 1.000 1.000 1.000
N =20, T =200 0.987 0.996 1.000 1.000 1.000 1.000
N =30, T =200 0.986 0.996 1.000 1.000 1.000 1.000
Panel B: fitted intercept and trend

Size
N =10T =50 0.290 0.358 0.087 0.164 0.088 0.158
N=20T=50 0.387 0.431 0.111 0.206 0.107 0.198
N =30,T =50 0.458 0.492 0.155 0.253 0.152 0.250
N =10, T =100 0.280 0.336 0.087 0.164 0.090 0.165
N =20, T = 100 0.390 0.434 0.111 0.201 0.121 0.207
N =30, T = 100 0.460 0.495 0.143 0.234 0.155 0.248
N =10, T = 200 0.257 0.325 0.082 0.150 0.086 0.163
N =20, T =200 0.384 0.430 0.099 0.189 0.111 0.197
N =30, T =200 0.438 0.474 0.131 0.225 0.142 0.239

Power
N=10T =50 0.131 0.225 0.990 0.996 0.990 0.994
N=20,T =50 0.123 0.217 0.958 0.976 0.939 0.959

(© Royal Economic Society 2003



Dynamic panel estimation 251

Table 8.Continued.

Sample IPS P z
5% 10% 5% 10% 5% 10%
N =30,T =50 0.130 0.215 0.969 0.984 0.952 0.971
N =10,T =100 0.406 0.528 1.000 1.000 1.000 1.000
Power
N =20, T =100 0.361 0.506 0.985 0.990 0.970 0.978
N =30, T =100 0.349 0.481 0.992 0.996 0.980 0.986
N =10, T = 200 0.934 0.974 1.000 1.000 1.000 1.000
N =20, T =200 0.853 0.928 0.999 1.000 0.995 0.997
N =30, T =200 0.849 0.931 1.000 1.000 0.999 0.999
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APPENDIX A

Proof of Property IP1. For model M1, the result follows directly by scaling. For model M2, we have

SN it = YD Mt — W)
ZiNzl Z;I-:l(Yit—l —¥.—1)?

Now, Yit = i +¥i} = Wi +Z‘j’iopi Uit—jandsoyit — Y. = ¥ii — YV andyit—1—Yi—1=Yi_1- ¥ _1
are both invariant tei; . Also

ﬁpolsZ = (A1)

Yit-1—VYi-1 _ Yit-1— V¥ -10i

o oj o
whose factors are invariant g, oj ando. For model M3, we have in the stationary case

o
Vit = i + Bit+ Y = mi +Bit+ Y pluiij.
i=0
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When we regressi; andyji_1 onx{ = (1,t) fort = 1,..., T, the residuals are linear functions of
the y:{ and are invariant tqu;, ). Let Qt be the orthogonal projection matrix onto the orthogonal
complement of the space spanned by the maXrix= [xq,...,x7]’ and lety; = (Yi1,...,%T),
Yi—1 = (Yio. ..., ¥iT—1)’, with a corresponding notation for andyi*j_l. The residual vectors from
these detrending regressions are
9i = Quyi = Quyf =97,

and

Ji—1=QtYi—1=Quy 1 =¥ _1.
The POLS estimator in model M3 is

~ ~ N T ~ ~
Poolea= YN Yl Sieafie | Xica Teea Bioa¥i (A2)
POIS3= "N T 02 NN T o2 :
izt 2t=1¥%i-1 it =1 %0
N T ¥ of
Yt T s

i

k2
Z'N ZT Y1 o;iz
i=14-t=1 Giz o2

)

and invariance tdy;, B;, o2) is clear. Proofs for the non-stationary cage= 1) for models 2 and 3 carry
over in a similar fashion using} — ', = th;% uj t—j and the fact thay;}, is removed by the demeaning
and detrending filters.

Proof of Property IP2. Invariance to(u;, i) follows precisely as in the proof of Property IP1. Let
Vi = Vs - YN andyf = (95, ., 9" where it denotesy;; or demeaned or detrendefi,
respectively for models M1, M2 and M3, with corresponding notatioryfaandy:. Let  be the matrix
whoseijth element iSp“_”/(l — p2). In the stationary casey ~ N(O, l_—lpzvu), and, vectorizing

_1
[yi‘,...,yﬁﬁ] into the columny* ~ N(0,  ® Vy), we have(ln ® Vy 2)y* ~ N0, 2 ® Iy), which
depends only op. A similar result holds for the vectorized coluryh, of lagged variablesya", B VY ¢
Next, using the notatiof* = (Qt ® I y)y* andy* ; = (Qt ® IN)Y* ;, we have

_1 _1
(IN ®Vy 2)Y*, (IN®Vy?)¥*, ~ N©O, QtR0Qt ® In),
and the GLS estimator

Y19 qVa _ Y%y Ve 9T evehy
YV Vaa YSLasVal, YT e vahit
is seen to depend only gn
Again, proofs in the non-stationary cage = 1) for models 2 and 3 carry over in a similar fashion
usingy; — yip = th_:% uj.t—j and the fact thay;;, is removed by the demeaning and detrending filters.

ﬁpgls =

APPENDIX B
Derivation of SUR limit theory

Stationary case. We use the heterogenous model for SUR estimation yytk= y;; (i.e. model M1)

it = piYis_q + Uit fort=1,...,T, andi =1,..., N, (B.1)

(© Royal Economic Society 2003



254 Peter C. B. Phillips and Donggyu Sul

in which the regression errors are from (6)
Uit = 3i 6t + &it» 6t ~i.i.d. N(0, 1) overt, (B.2)
and
gj t ~i.i.d. N(O, aiz) overt, ande; 1 is independent ofj s andds for alli # j and for alls, t.  (B.3)
The proof in the case of models M2 and M3 is a straightforward extension. From (B.2) and (B.3)
ut ~i.i.d. N(O, Vy), fort=1,...,T,
where, as in (8), we have
Vu=EWu; |of,...,08) =2 +88, T =diago? ...,ad).
Now write (B.1) in vector form as
ye=Zip+u,  Zt=diagyr-1,.--,YNt-1> P =(p1, .-, pN) - (B.4)
Then the GLS estimate is

T 1/r
p=>zivi'ze Y zivity |
t=1 t=1

and the SUR estimate is simply a feasible version of this estimatéfyiéistimated by a consistent estimate.
GLS and SUR are obviously asymptotically equivalent.
Under stationaritypj | < 1 for alli we have by standard theory that

VT(p—p) =4 N(O.VsuR). (B.5)
with
1 -
VsUR=PIimT_ o | Y zivy'ze
t=1
We can calculate the inverse of this matrix as follows. Note that
1 i
. — I
plimt_, o T ZZ{VU 1zl =1l EitYjt)ij I,
t=1
whereuiuj is theij th element o, so that
Vslr = [od EGityjo)ij1 = Vit © Eiyp).

Next note that

o0 o
E(vityjt) = E Zpisuit—s Z Pjpujt—p

s=0 p=0
Ui2+8i2 . .
_ Blituj) _ ) 372 =
C l-pipp | _E8
Tpip 71

so that

Edyp) = (Z+388)OR,
with R = [(rjj)] andrjj = ﬁ}ipj' Note thatvg! = x-1 — % The same result (B.5) holds for
models M2 and M3 in the stationary case as trend elimination does not affect the limit theory.
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Unit root case. Whenp; = 1 for alli, we have the functional law

1 [Tr]

—=Y[Tr = —= )_ Ut >d B(r) =BM(Vy). (B.6)
VM, PP
Settinge to be vector withN unit components, the centred GLS and feasible SUR estimates have the form
T -1 T
R 1 1
Psyr TIN = ZZ{VU Zy ZZ{VU Ut
t=1 t=1
Now
1 il =1 i 1 T i 1
ﬁZZtVu Zy = bu ﬁZYitflﬁtfl —d | |v Bi Bj
= =1 i 0 i
1
=Vu‘1®/ BB,
0
and
gy N1 & N
_ i i
T ZZ{Vulut = ZUUJ?Zin—lujt —q ZUUJ/ B; d Bj
t=1 j=1 t=1 i =1 0 i

1
/ BoVyldB.
0

This gives the stated limit result

-1
1 1
T(Pg,,— tN) —d [v;lc)/o BB/} [/0 B@VJldB:| =

Note that the quadratic variation process of the stochastic intf&n&l@ VJldB is

r r
U B@VJldB} =v;1@/ BB',
0 r 0

so the matrin/g* © fol BB’ is a suitable metric fofol B ® Vg 1dB. The joint Wald test for unit roots is

.
Wsur = (b, —tN) | D_ZIVi'Zt | (bg,, — tN)
t=1

1 ! 1 “1r
o /OB@VJldB v;lefo BB /OBOVu_ldB :

which is dependent on nuisance parameters. Also, if we were to test homogeneity using the SUR estimate
é, then noting that

D(Pgyr— tN) = Dgp
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we would have the statistic

W Dsyr = p, D'IDVsurD'I Dy,

_1 -1
1
—q &'D D(Vulcafo BB/> D'| Dt

Next consider the pooled estimate@ivhenHg holds. In this case, we have

T -1 T
p={> v Valyia > yiaVain
t=1

t=1

and by straightforward derivation

1 ! / 1 1 / 1 1 / N 1 2
—Tz E yt_qu_ Vi—1 —>d / B'V "B =q / W'W = E / V\/I s
t=1 0 0 i—170

1 J 1 1 N 1
nyLlVJlUt —>d/0 B'V;ldB =d/0 W’dW:Z/O W dW,
t=1 i=1
and so
fowdw N fg widw
Joww oy N w?

whereW = (W) is standard Brownian motion with covariance matrix Hence, the limit distribution of
T (,6 — 1) is free of nuisance parameters.

T(ﬁ—l)—)d

, (B.7)

Hausman Test Limit Theory (Unit Root Case)

The Hausman statistic relies on the differenéf(éemu— IN) = «/T(éemu— tN)- From (B.7) we have
JRYYY;
W/ dw
T(p—1 —¢g foli,
Jo WwW

and

T (Bomu— tN) = T(B = tn) +0p()

l T U o l T /
(pEe) (r5e)
-1
—d |:/(;1D52:| |:/(;1DBdBi|
I Bf]_l /3 Baty

I3 Bﬁ]fl [ /o BrdBy]

: (B.8)
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where we use the notatidy = diag(A1(r), ..., AN (r)). In view of the correlation between the Brownian
motions{B; :i = 1, ..., N} the limit distribution (B.8) is dependent on nuisance parameters arising from
the cross section dependence.

We also have the joint convergence
-1

5

[T@emu—w)] N [folDBz]il [/5 DedB|

To-1b I EEE

and then

[folB’B]_l[fOlB’dB]

T(Bamy— ) > |
[folB’B]_l[/OlB’dB]

Again, this limit distribution is dependent on nuisance parameters arising from cross section dependence.
Thus, the Hausman statistic does not produce an asymptotically similar test in the unit root case.

Modified Hausman and Panel Unit Root Tests Limit Theory

First note that we have the joint convergence

)

[T 0] [ Dwf]‘l[_flg v, W
[fowiwi] [ fowiaw, ]

which is free of nuisance parameters. Then

- —1 -1
1 1 1 1
T(hg = ATiN-1) —d /oDWf} [/O DWLdWJ_i|—|:fO Wlwl] [/0 WJ_’dWJ_}LN_l

(w2 ) [ weadw o] - [Ewiw, ] R waw, ]

[ &WE,N—1:|_1 [fol WL,N—ldWL,N—l:| - [I&WLWL]_l [folWL/dWL]
N-1s (B.9)

O]

and it follows that the modified Hausman test has the following limit:
Gy = T2(Bd = A -0 (B, = AT iN-1) —d EN_1EN-1.

Similarly, the modified unit root tests have the limit

N-1T .1 -2 4
Ggs Gamu—d ZUO vviz} [/0 V\/ide] for fixed N.
i=1
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APPENDIX C
Algorithm for MLE Estimation of Cross Section Dependence Coefficients

We develop here an iterative procedure for estimating the cross section dependence coefficiet vector
using maximum likelihood. As above, we work with model M1 and make suitable adjustments in the case
of models M2 and M3. Write the model in vector form as in (21) above, viz.

yt=Ztp+u,  Zi=diagyr-1,-.-,ynt-1): P =(p1,-.., N

with errorsuy that are.i.d. N(0, Vy) whereVy = ¥ + 88’ and¥ = diaglo2, ..., o3). The log likelihood
function has the form

T

NT T 1 _
INT(p. Z,8) = ——=log 21 — = 10gVu — 5 Yt — Ztp) Vi Ot — Zip)
t=1

NT T T 1
=—— log2r — 2 logVy — Etr[Vu MT],

whereM T (p) = % Zthl(yt —Zip) (Yt — Ztp)’. First-order conditions for maximization éf7 (o, =, 8)
leadto N N N

T a1 -1 T a1
p=1>zVy 'zt Yz v . (C.1)
t=1 t=1

and
w[(Vy -V MV ) avy] =0, (C.2)

whereVy = £ + 83, % = diag6Z, ..., 63) anddVy = d¥ +dss’ +8ds’. Expanding (C.2) leads to the
following system of equations:

. 52/52 5887 . £7'55 .
146X 76 1+6% 76 146X 76
P A
~ M1(@X 75
§ = 7;’\_1,\ N (C4)
146X 76

which we may solve by the following iteration:

a(i—=1.2 ,22(j—1
(‘Si(J ))2/0i (-1

&22(1')
Ai=1)/~(1— —1.(j—1

1+3(1 )/<E(J 1)) 8(1 )

i1y A(i— A (=1 —1
3(-D3d l)/<):(l 1))

_ el(_ J
- A(j—1
14507V

(DN —La(i—1) (i
(Z(I 1)> 6(1 1>5i(1 1
Mt(p) | & —

(i(j—n)—lg(j—l) 14 3(1‘—1)/@(1—1))—13(1—1)

A (a(-D\1a(-D
500 _ MT(£)<E ) 8

NPT TS TR
1+6(J )/<Z(J 1)) 6(1 )

(© Royal Economic Society 2003



Dynamic panel estimation 259

L . . . ~ (0 ~ A
which is continued until convergence. For starting values we may chﬁége: 621N wheres?2 =

NOP . . i
%tr[MT] ands( ) is the largest eigenvector & 1. In place of the the residual moment mati;r (),
from maximum likelihood estimation that appears in (C.3) and (C.4), we propose that theM@(@ému)
corresponding to the median unbiased estiméé%su be used.
Note that in the special case whefe= o2l , the first-order equations lead to the following system
simplifying (C.3) and (C.4):

Al A An/ Anl
. 58 88 ) 88
UZ[N—AA/A}=”K|N—AA/A)MT<P) (lN_AA/A>i|’
624686 624686 62466

and

o>
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