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Summary This paper deals with cross section dependence, homogeneity restrictions
and small sample bias issues in dynamic panel regressions. To address the bias problem
we develop a panel approach to median unbiased estimation that takes account of cross
section dependence. The estimators given here considerably reduce the effects of bias and
gain precision from estimating cross section error correlation. This paper also develops an
asymptotic theory for tests of coefficient homogeneity under cross section dependence, and
proposes a modified Hausman test to test for the presence of homogeneous unit roots. An
orthogonalization procedure, based on iterated method of moments estimation, is developed
to remove cross section dependence and permit the use of conventional and meta unit root
tests with panel data. Some simulations investigating the finite sample performance of the
estimation and test procedures are reported.
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1. INTRODUCTION

This paper suggests some simple and practical methods for treating three important and thorny
issues that arise in estimation and testing with dynamic panel models: cross section dependence,
homogeneity testing and small sample bias (hereafter SSB) problems. Each of these issues is
individually important in dynamic panel regression and has received attention; particularly the
SSB problem on which there is a large literature. But the problems are not independent and, when
they are taken together, they substantially complicate estimation and inference in dynamic panel
models. The rapidly growing number of applied panel studies in growth economics, international
finance and empirical labor economics in recent years accentuates the need for these issues to

* The first draft of this paper was written in August, 2000. It was presented at the Midwest Econometrics Conference,
October, 2001, and the York Econometrics Conference, June 2002.
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be addressed in a systematic fashion. As yet, however, there have been few attempt to address
these issues at the same time and this paper is a small step in that direction, offering some new
possibilities in estimation and inference. We start by noting the following implications.

First, when there is cross section dependence in panel data, commonly used econometric
estimators and tests about parameters of interest generally rely on the nuisance parameters of
cross section dependence. As we will show, one of the most striking effects of cross section
dependence is that the pooled ordinary least squares (OLS) estimator provides little gain in
precision compared with single equation OLS when cross sectional dependence occurs but is
ignored in the panel regression. Another effect is that commonly used panel unit root tests are no
longer asymptotically similar. These effects are easily demonstrated using a simple but intuitive
parametric structure for the cross section dependence.

Second, the well known SSB problem in least squares estimation of the coefficients in
dynamic models is much more serious in panel models than it is in univariate autoregressions
(Nickell, 1981). In some cases the bias is so marked that the true autoregressive coefficient lies
completely outside the empirical distribution of the pooled OLS estimator of the coefficient. To
address this problem, this paper introduces some new panel estimation procedures that are based
on the idea of median unbiased estimation (Lehmann, 1959; Andrews, 1993). This approach
works well in the context of panel models with a simple dynamic structure and no additional
regressors, and provides a benchmark for other procedures which have greater flexibility for
application in more general models but which also need extension to allow for cross section
dependence, like the bias corrected IV/GMM estimators considered in recent work by Hahn and
Kuersteiner (2002).

Third, homogeneity assumptions in dynamic panel models are convenient and commonly
employed to take advantage of pooling in panel regression. But these restrictions are sometimes
not well supported by the data and they can produce misleading results and invalidate inference,
as argued for example, by Durlauf and Quah (1999) in connection with homogeneity restrictions
used in the economic growth and convergence literatures. Of particular importance in applied
work is the need to take account of cross section dependence in testing homogeneity restrictions
in non-stationary panels, especially in connection with panel unit root testing. This paper shows
how to test for panel unit roots in the presence of cross section dependence and proposes two
types of test statistic. The first type is based on median unbiased correction after eliminating
cross section dependence. The second type involves the use of meta statistics which seek to
avoid small sample biases rather than correct for them.

This paper gives precedence initially to the treatment of the SSB problem. This is not because
this issue is more important than that of cross section dependence or homogeneity, but because
the SSB problem arises irrespective of homogeneity testing or the presence of cross section
dependence. Further, as is already well recognized, bias can make a huge difference in applied
work, as the examples of HAC and dynamic response time estimation given in the next section
illustrate.1

To handle the SSB problem in dynamic panel estimation and the difficulties that can arise
from it, this paper proposes some panel median unbiased estimators (MUEs) that follow the

1The SSB problem in least squares estimation of the coefficients in an autoregression has a long history, two important
early contributions being Hurvicz (1950) and Orcutt (1948). In simple autoregressions, asymptotic formulae for the SSB
were worked out by Kendall (1954) and Marriott and Pope (1954). Orcutt (1948) was the first to show that fitting an
intercept in an autoregression produced an additional source of bias that can exacerbate SSB, and this was confirmed in a
later simulation study by Orcutt and Winokur (1969). The point was echoed in Andrews (1993), which provided further
simulations that included the case of a fitted linear trend.

c© Royal Economic Society 2003



Dynamic panel estimation 219

approach taken by Andrews (1993) in the time series case.2 Our starting point is a panel version
of the MUE of Andrews in which the innovations in the panel are assumed to be free of cross
sectional dependence and the autoregressive coefficient is assumed to be homogenous across
cross sectional units. Since both these assumptions are strong and are unlikely to be satisfied in
empirical work, we explore the consequences of relaxing these assumptions and develop some
alternate MUE procedures that are more suitable in that event.

For this purpose, we use a generalized CTE model to parameterize the structure of cross
section dependence (see equation (6) below). This structure has been used in practical work (for
example, Barro and Sala-i-Martin (1992)) because of its simplicity and economic interpretability.
Also, other authors (e.g., Imet al. (1997)) have suggested this parametric structure as a possible
model for cross section dependence and have indicated, without providing analysis, that such
formulations can be expected to complicate asymptotics in both stationary and non-stationary
cases. Under this structure, we find that pooling GLS (which takes account of the dependence)
reduces variance, but the pooled GLS estimator suffers from downward bias. To deal with these
effects of cross section dependence, we develop a panel generalized MUE and find that this
procedure restores the precision gains from pooling in the panel and largely removes the bias
in GLS. Next, we consider the more realistic case in empirical research where there is cross
sectional dependence among the innovations and heterogeneity in the autoregressive coefficients.
In this case, we provide a seemingly unrelated MUE that deals with heterogeneity and cross
section dependence in much the same way as the conventional SUR estimator, while also
addressing the SSB bias problem.

In panel applications it is often of interest to test whether the data support homogeneity
restrictions on the coefficients, an important example being that of panel unit roots, as mentioned
above. In view of the potential gains from pooling and the changes in the limit theory in the
non-stationary case, homogeneity of the autoregressive coefficients in a panel is an important
restriction in dynamic panel models. In developing tests of such restrictions in dynamic panels
it is particularly important in empirical applications to allow for cross section dependence. To
this end, this paper investigates the properties of Wald and Hausman-type tests of homogeneity
under cross section dependence and proposes a modified Hausman test procedure that helps
to deal with the effects of such dependence in testing for the presence of homogeneous unit
roots. An orthogonalization procedure is developed which validates the implementation unit
root tests for panel models when there is cross section dependence. The procedure involves an
iterative method of moments approach to estimate the cross section dependence parameters and
removes cross section dependence by means of a suitable projection. Moon and Perron (2002)
have independently suggested the same approach but use principal components methods rather
than iterative method of moments estimation in their implementation of the procedure.

The remainder of this paper is organized as follows. The next section shows how even a small
time series SSB can make a large difference in estimation and testing in the context of panel
pooling. Section 3 studies the invariance properties of the panel MUE under the assumption of
cross sectional independence. Since invariance breaks down under cross sectional dependence,
this section also investigates alternative invariance properties that hold in the presence of cross
section dependence and proposes two new estimators for this case—a pooled feasible generalized

2Our work is also related to some recent independent work by Cermeno (1999). Using simulation methods, Cermeno
investigates the use of MUE estimation in a dynamic panel regression with fixed effects, a common time effect (CTE)
and homogeneous trends. Our framework extends Cermeno’s study by developing a class of PMUEs that address a more
general case of cross section dependence and that enable tests of homogeneity restrictions on the dynamics, including
the important case of unit root homogeneity.
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MUE and a seemingly unrelated MUE. Section 4 considers the asymptotic properties of Wald and
Hausman tests for homogeneity under cross section dependence and develops some alternative
procedures that offer advantages, especially in the case of unit roots. In Section 5, we report
the results of a simulation experiment examining the bias and efficiency of the various panel
estimators and the performance of the tests of cross section homogeneity. Section 6 concludes.
Derivations and some additional technical results are given in the Appendices: A derives some
invariance results; B develops limit theory for the stationary and unit root non-stationary cases;
C provides an iterative algorithm for estimating the cross section dependence coefficients.

2. DYNAMIC PANEL MODELS AND BIAS ILLUSTRATIONS

2.1. Model definitions

Three basic models are considered. These are panel versions of the models given in Andrews
(1993). As in that work, Gaussianity is assumed in order to construct the MUE. Each of the basic
models involves a latent panel{y∗

i,t : t = 0, 1, . . . , T ; i = 1, . . . , N} that is generated over time
as an AR(1) with errors that are independent across section. The more complex case of cross
section error dependence is taken up in Section 3.2 and allowance for more general time series
effects is considered in Section 4.3.

The model fory∗

i,t is

y∗

i,t = ρy∗

i,t−1 + ui,t , for t = 1, . . . , T, andi = 1, . . . , N, whereρ ∈ (−1, 1],

(1)
ui,t ∼ i .i .d. N(0, σ 2

i ) over t andui,t is independent ofu j,s for all i 6= j and for alls, t and
initialization is as follows:

y∗

i,0 ∼

N

(
0,

σ2
i

1−ρ2

)
ρ ∈ (−1, 1)

Op (1) ρ = 1.

Whenρ ∈ (−1, 1), y∗

i,t is a zero mean, Gaussian panel that follows an AR(1) structure over time
and that is independent overi . Whenρ = 1, y∗

i,t is a Gaussian panel random walk starting from
a (possibly random) initializationy∗

i,0 (not necessarily Gaussian) and that is independent overi .
The observed panel data{yi,t : t = 0, 1, . . . T; i = 1, . . . , N} are defined in terms ofy∗

i,t as
follows:

M1: yi,t = y∗

i,t for {t = 0, . . . , T; i = 1, . . . , N} andρ ∈ (−1, 1)
M2: yi,t = µi + y∗

i,t for t = 0, . . . , T , i = 1, . . . , N, µi ∈ R andρ ∈ (−1, 1]

M3: yi,t = µi + βi t + y∗

i,t for t = 0, . . . , T , i = 1, . . . , N, µi , βi ∈ R andρ ∈ (−1, 1].

In each case, there is an equivalent dynamic panel representation in terms ofyi,t :

M1 yi,t = ρyi,t−1 + ui t for t = 1, . . . , T , i = 1, . . . , N andρ ∈ (−1, 1)
M2 yi,t = µ

i
+ ρyi,t−1 + ui t for t = 1, . . . , T , i = 1, . . . , N, with µ

i
= µi (1 − ρ) and

ρ ∈ (−1, 1]

M3 yi,t = µ
i
+ β

i
t + ρyi,t−1 + ui t for t = 1, . . . , T , i = 1, . . . , N, with µ

i
= µi (1 − ρ) +

ρβi , β i
= βi (1 − ρ), andρ ∈ (−1, 1].

In M1–M3, the initialization isyi,0 ∼ N(0, σ 2
i /(1−ρ2)) whenρ ∈ (−1, 1) andyi,0 = Op(1)

whenρ = 1.
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2.2. Pooled estimation and bias illustrations

Denote the pooled panel least squares (POLS) estimator ofρ by ρ̂pols in each of the three models
M1, M2 and M3. In M2, for instance,̂ρpols has the form

ρ̂pols =

∑N
i =1

∑T
t=1(yi t−1 − yi .−1)(yi t − yi .)∑N

i =1
∑T

t=1(yi t−1 − yi .−1)2
,

whereyi . = T−1
T∑

t=1

yi t , andyi .−1 = T−1
T∑

t=1

yi t−1. (2)

The exact quantiles of̂ρpols were computed by simulation using 100,000 replications for a
selection ofN, T and ρ values and forσ 2

i = 1. We report some summary statistics here
(detailed results are available upon request) and make the following general observations: (i)
the median values of the pooled OLS estimators are less than the true values for all models
and all cases; (ii) the difference between the median value and the true value (which we call
the median bias) is increasing as the true value ofρ increases for all configurations of (N, T).
These observations reflect what is known about the bias from the asymptotic formulae. Nickell
(1981) first obtained the asymptotic bias ofρ̂pols under time series stationarity and cross section
independence. Nickell’s formula has recently been extended by Phillips and Sul (2002, 2003) to
cases of cross section dependence, where the bias formula (asN → ∞) is the same up to the
first order inT−1, and to the non-stationaryρ = 1 case.

Table 1 shows the bias of the POLS estimator for each model whenρ = 0.9. For model
M1, the bias of the OLS estimator vanishes for moderate sizes ofN andT . For example, the
median values of̂ρpols are 0.88 forN = 1, T = 50, 0.89 for N = 1, T = 100 and 0.90
for N = 10, T = 50. Also, the empirical distribution of̂ρpols becomes tighter asN increases.
In contrast to model M1,̂ρpols suffers from substantial SSB in model M2 even whenN or T
are moderately large. But, as in model M1, the distribution ofρ̂pols concentrates quickly asN
increases. In several cases, the bias and concentration of the POLS estimator are such that the
true value ofρ lies almost completely outside the empirical distribution for moderateN. For
example, forT = 50, the upper 95% points of̂ρpols are 0.94, 0.89, 0.88 and 0.88 forN= 1, 10,
20 and 30, respectively, whenρ = 0.9. Even forT = 200 andN = 30, 95% of the distribution of
ρ̂pols is below the true value. This problem becomes more severe for model M3, where the upper
95% points ofρ̂pols are 0.904, 0.843, 0.831 and 0.825 forN = 1, 10, 20 and 30 andT = 50.

The bias and concentration of the pooled estimatorρ̂pols are pertinent in applications where
they influence the distribution of derived statistics such as impulse responses, cumulative impulse
response functions, the half-life of a unit shock (h) and the long run variance (lr v). We provide
some brief illustrations of these effects in the case ofh andlr v. In the panel AR models above,
the h and lr v estimates based on̂ρpols are ĥ = ln 0.5/ ln ρ̂pols and l̂r v = 1/(1 − ρ̂pols)

2. As
is apparent from Table 1(B) and 1(C), even a small SSB can have large effects on these derived
functions in the panel case because of the concentration of the estimateρ̂pols and the non-linearity
of the functions. As discussed in the last paragraph, the upper 95% point of the distribution of
ρ̂pols is smaller thanρ whenN is moderately large, and then 95% of the distribution ofĥ is less
than the true half-lifeh. In model M3, for example, whenρ = 0.9, N = 10 andT = 100, 95%
of the distribution ofĥ is less than 5.518, whereas the actual half-life ish = 6.597. Similarly, for
the same model and parameter values, 95% of the distribution ofl̂r v/ lr v lies below 0.696. Even
for N = 30,T = 200, 95% of the distribution of̂lr v/ lr v lies below 0.81. Table 1(C) shows how
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Table 1.Downward bias in dynamic panel estimation.

Sample Model M1 Model M2 Model M3

5% 50% 95% 5% 50% 95% 5% 50% 95%

Part A: quantiles of̂ρpols for ρ = 0.9

N = 1, T = 50 0.710 0.883 0.962 0.628 0.830 0.937 0.548 0.772 0.904

N = 1, T = 100 0.787 0.891 0.948 0.749 0.868 0.935 0.713 0.842 0.920

N = 1, T = 200 0.829 0.896 0.938 0.814 0.885 0.931 0.798 0.874 0.924

N = 10, T = 50 0.858 0.898 0.928 0.799 0.850 0.889 0.735 0.795 0.843

N = 10, T = 100 0.874 0.899 0.920 0.847 0.877 0.902 0.820 0.853 0.882

N = 10, T = 200 0.882 0.900 0.915 0.870 0.890 0.906 0.858 0.879 0.897

N = 20, T = 50 0.872 0.899 0.921 0.816 0.850 0.880 0.755 0.796 0.831

N = 20, T = 100 0.882 0.900 0.915 0.857 0.878 0.896 0.830 0.854 0.874

N = 20, T = 200 0.888 0.900 0.911 0.876 0.890 0.902 0.864 0.878 0.892

N = 30, T = 50 0.878 0.900 0.917 0.824 0.851 0.875 0.763 0.796 0.825

N = 30, T = 100 0.885 0.900 0.913 0.861 0.878 0.893 0.835 0.853 0.870

N = 30, T = 200 0.890 0.900 0.909 0.879 0.890 0.900 0.868 0.879 0.890

Part B: quantiles of̂h whenρ = 0.9 andh = 6.579

N = 1, T = 50 2.027 5.569 18.036 1.487 3.709 10.730 1.153 2.685 6.905

N = 1, T = 100 2.890 6.029 13.034 2.403 4.895 10.393 2.051 4.033 8.342

N = 1, T = 200 3.704 6.303 10.783 3.366 5.670 9.698 3.071 5.130 8.734

N = 10, T = 50 4.532 6.465 9.244 3.086 4.250 5.897 2.248 3.024 4.071

N = 10, T = 100 5.130 6.502 8.332 4.184 5.293 6.753 3.487 4.362 5.518

N = 10, T = 200 5.524 6.549 7.764 4.995 5.921 7.041 4.520 5.352 6.364

N = 20, T = 50 5.073 6.479 8.454 3.407 4.257 5.422 2.462 3.033 3.745

N = 20, T = 100 5.530 6.550 7.799 4.477 5.310 6.305 3.717 4.377 5.164

N = 20, T = 200 5.831 6.557 7.410 5.254 5.922 6.689 4.745 5.348 6.042

N = 30, T = 50 5.313 6.556 8.019 3.573 4.306 5.171 2.561 3.046 3.614

N = 30, T = 100 5.698 6.554 7.617 4.645 5.321 6.095 3.847 4.372 4.973

N = 30, T = 200 5.957 6.573 7.242 5.391 5.934 6.555 4.882 5.360 5.920

Part C: quantiles of̂lr v
lr v

whenρ = 0.9 andlr v = 100

N = 1, T = 50 0.113 0.763 7.047 0.064 0.339 2.580 0.040 0.182 1.091

N = 1, T = 100 0.206 0.863 3.880 0.147 0.575 2.501 0.109 0.403 1.643

N = 1, T = 200 0.337 0.918 2.608 0.282 0.753 2.127 0.235 0.616 1.726

N = 10, T = 50 0.501 0.965 1.933 0.235 0.425 0.810 0.129 0.220 0.390

N = 10, T = 100 0.620 0.986 1.565 0.420 0.656 1.035 0.292 0.449 0.696

N = 10, T = 200 0.717 0.994 1.385 0.587 0.810 1.137 0.489 0.669 0.928

N = 20, T = 50 0.615 0.981 1.596 0.281 0.432 0.670 0.152 0.223 0.331

N = 20, T = 100 0.711 0.988 1.382 0.478 0.658 0.908 0.333 0.449 0.616

N = 20, T = 200 0.791 0.996 1.264 0.649 0.815 1.029 0.537 0.670 0.845

N = 30, T = 50 0.671 0.990 1.479 0.307 0.435 0.626 0.164 0.225 0.309
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Table 1.Continued.

Sample Model M1 Model M2 Model M3

5% 50% 95% 5% 50% 95% 5% 50% 95%

Part C: quantiles of̂lr v
lr v

whenρ = 0.9 andlr v = 100

N = 30, T = 100 0.759 0.993 1.302 0.510 0.663 0.866 0.352 0.453 0.587

N = 30, T = 200 0.824 0.993 1.201 0.678 0.814 0.986 0.557 0.670 0.810

serious the bias in̂lr v can be. WhenT = 50 andN = 1, the median value of̂lr v for model M2
is about 76% of the truelr v. For model M3, it is less than 20% of the true value whenT = 50
andN = 1, and still less than 46% whenT = 100 andN = 30. Thus, when estimation of the
lr v is based on panel data with fitted fixed effects or individual trends, the estimatedlr v suffers
from serious downward bias. We can expect test statistics that rely on theselr v estimates to be
correspondingly affected.

3. PANEL MEDIAN UNBIASED ESTIMATION

This section proposes three PMU estimators. As in Andrews (1993), the basic idea is that the
median functionm(ρ) in the relationP[ρ̂pols < m(ρ) | ρ] =

1
2 can be inverted to give an

estimatorρ̂pemu = m−1(ρ̂pols) for which the relationP[ρ̂pemu < ρ | ρ] =
1
2, or median

unbiasedness, holds. The first estimator considered is the panel exactly median unbiased (PEMU)
estimator,ρ̂pemu, constructed under the assumptions of a homogenous AR(1) parameter and
cross sectional independence. This estimator is simply a panel version of Andrews’ exactly
MUE for the time series case. Our interest is in how well this procedure works in a panel
data set up and what can be done to allow for cross section dependence. As mentioned in the
introduction, Cermeno (1999) has independently proposed the use of a PEMU estimator for
dynamic panel models with a CTE, homogeneous trends and no cross section dependence. He
shows in simulations that the approach can work well in models of this type.

The PEMU estimator is based on the assumption of cross section independence (or the
presence of a CTE) which will often be too strong in practical work, particularly with
macroeconomic panels. In such applications, PEMU is likely to be less relevant than our second
and third estimators, which are designed to take account of cross section dependence that is
more general than a CTE. We will calibrate the performance of the new MUEs against that of
the conventional POLS estimator in cases where there is cross sectional dependence amongst the
regression errors. This comparison will highlight the gains of working with MUEs in the panel
context, especially when there is cross section dependence.

3.1. Panel exactly median unbiased estimation

As discussed in Andrews (1993), it is useful in the construction of MUEs for the distribution of
the least squares estimator to be invariant to scale and other nuisance parameters. It is well known
(e.g. Dickey and Fuller (1979)) that least squares estimates of the autoregressive coefficient in
pure time series versions of models 1–3 satisfy such distributional invariance properties. These
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invariance results extend to the pooled panel forms of the least squares estimators in models 1–3
under certain conditions, which we now provide. The following property is a panel version of
the property given in Andrews (1993) for the time series case. As before, the POLS estimator of
ρ is generally denoted bŷρpols for each of the three models M1, M2 and M3; but when there is
possible ambiguity, we use an additional subscript and writeρ̂polsj for the POLS estimator ofρ
in model j .

Invariance Property IP1. Under the assumption of cross section independence, the distribu-
tion of ρ̂polsj depends only onρ when model j is correct and the error varianceσ 2

i = σ 2 for
all i . When yi t is stationary, it does not depend on the common varianceσ 2

i for model M1, or
(σ 2

i , µi ) for model M2, or (σ 2
i , µi , βi ) for model M3, nor on the value of yi 0 whenρ = 1 and

yi t is non-stationary.
The common variance condition in IP1 is a strong one and will be inappropriate in many

applications. It may be relaxed by allowing the individual error variancesσ 2
i to be i .i .d. draws

from a known distributionf with common scale. For example, ifσ 2
i /σ 2 are i .i .d. χ2

1 , then
ui t /σ = (ui t /σi )(σi /σ), which is independent of nuisance parameters. The numerator and
denominator ofρ̂pols may then be rescaled by 1/σ 2 and it is apparent that IP1 continues to hold,
as shown in the Appendix. In this case, the distributionf is assumed known, like the normal
distribution of the errors, so that the median function of the POLS estimator can be constructed.
For more general cases of variation inσ 2

i over i , we may use weighted least squares in the
construction of the panel estimator. This extension and other generalizations ofρ̂pols that are
better suited to empirical applications are discussed in the consideration of the GLS approach
later. For the time being, we confine our discussion to the estimatorρ̂pols and those cases where
property IP1 holds.

Property IP1 enables the construction of a panel version of the exactly median unbiased
estimator (PEMU) in Andrews (1993). We start by noting thatρ̂pols has a median function
m(ρ) = mT,N(ρ) which simulation shows to be strictly increasing inρ on the parameter space
ρ ∈ (−1, 1].3 Using this function (which depends onT and N), the panel median-unbiased
estimatorρ̂pemucan be defined as follows:

ρ̂pemu=


1

m−1(ρ̂pols)

−1

if
if
if

ρ̂pols > m(1),

m(−1) < ρ̂pols ≤ m(1),

ρ̂pols ≤ m(−1),

(3)

wherem(−1) = limρ→−1m(ρ) and m−1 is the inverse function ofm(·) = mT,N(·) so that
m−1(m(ρ)) = ρ. Furthermore, a 100(1 − p)% confidence interval forρ in model j can be
constructed as follows. LetqL(·) andqU (·) be the lower and upper quantile functions forρ̂pols.
Define

ĉL
PU =


1

q−1
U (ρ̂pols)

−1

if
if
if

ρ̂pols > qU (1),

qU (−1) < ρ̂pols ≤ qU (1),

ρ̂pols ≤ qU (−1),

(4)

3An analytic demonstration of this property would be useful but is not presently available either in the panel or the
pure time series case (Andrews, 1993). The simulation evidence is strongly confirmatory at least for valuesT ≥ 20 and
N ≥ 5. There seems to be some evidence from simulations that the property fails for smallT when N = 1. Andrews
(1993, fn. 4) reports that the 0.95 quantile function appears to dip slightly for values ofρ close to unity for small values
of T .
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ĉU
PU =


1

q−1
L (ρ̂pols)

−1

if
if
if

ρ̂pols > qL(1),

qL(−1) < ρ̂pols ≤ qL(1),

ρ̂pols ≤ qL(−1).

(5)

Then,ĉU
PU andĉL

PU provide upper and lower confidence limits and the 100(1− p)% confidence
interval forρ is {ρ : ĉL

PU ≤ ρ ≤ ĉU
PU}. This construction follows Andrews (1993). The intervals

are obtained in precisely the same way as in that paper, but use tables of the quantiles of the panel
estimatorρ̂pols.

3.2. Panel feasible generalized median unbiased estimator

The assumption of no cross sectional correlation among the regression residuals is a strong one
and is unlikely to hold in many applications. When the structure of cross sectional dependence
among the regression errors is completely unknown, it is generally infeasible to deal with the
correlations because of degrees of freedom constraints. Hence, it is common to assume some
simplifying form of dependence structure. The most conventional way to handle cross section
dependence has been to include a common time dummy in the panel regression. The justification
for the CTE is that certain co-movements of multivariate time series may be due to a common
factor. For example, in cross country panels it might be argued that the time dummy represents
a common international effect (e.g. a global shock or a common business cycle factor), or in a
panel study of purchasing power parity it may represent the numeraire currency.

The model we use here allows for a CTE that can impact individual series differently.
Specifically, the model for the regression errors has the form

ui t = δi θt + εi t , θt ∼ i .i .d. N(0, 1) overt, (6)

in which θt is a CTE, whose variance is normalized to be unity for identification purposes and
whose coefficients,δi , may be regarded as ‘idiosyncratic share’ parameters that measure the
impact of the common time effect on seriesi . Theδi are assumed to be non-stochastic and we
let δ = (δ1, . . . , δN). In (6) the general error componentεi t is assumed to satisfy

εi,t ∼ i .i .d.N(0, σ 2
i ) overt, andεi,t is independent ofε j,s andθs for all i 6= j and for alls, t.

In this formulation, the source of the cross sectional dependence is generated from the common
stochastic seriesθt and the extent of the dependence is measured by the coefficientsδi . In
particular, the covariance betweenui t andu j t (i 6= j ) is given by

E(ui t u j t ) = δi δ j . (7)

There is no cross sectional correlation whenδi = 0 for all i , and there is identical cross sectional
correlation whenδi = δ j = δ0 for all i and j . Thus, the degree of cross sectional correlation
is controlled by the components ofδ. Settingut = (u1t , . . . , uNt)

′ we have the conditional
covariance matrix

Vu = E(utu′
t | σ 2

1 , . . . , σ 2
N) = 6 + δδ′, 6 = diag(σ 2

1 , . . . , σ 2
N). (8)

The model (6) can be regarded as a single factor model in whichθt is the common factor and
δi is the factor loading for seriesi . It has been used in empirical research in studying growth
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convergence by Barro and Sala-i-Martin (1992). More general versions of this model that allow
for weakly dependent time series effects and multiple factors have been considered in recent work
by Bai and Ng (2001) and Moon and Perron (2002) that concentrates on model determination
issues relating to the number of factors and panel unit root testing. The models used by these
authors are more complex than (6), especially with regard to time series properties. Nonetheless,
(6) is general enough to allow for interesting cases of high and low cross sectional dependence
and yet simple enough to enable us to develop good procedures for bias removal in dynamic
panel regressions where cross section dependence arises. In the panel unit root case, we show
later in the paper that time series effects inεi t can be treated by a simple augmented dynamic
panel regression and that time series effects inθt can be treated simply by projecting on the space
orthogonal toδ.

With this formulation for the error variances, the numerator and denominator ofρ̂pols may
be rescaled by 1/σ 2, giving some invariance characteristics to the panel estimatorρ̂pols. Stronger
invariance properties apply to the panel generalized least squares estimatorρ̂pgls defined by

ρ̂pgls =

∑T
t=1 ŷ′

t−1V−1
u ŷt∑T

t=1 ŷ′

t−1V−1
u ŷt−1

, (9)

whereŷt = (ŷ1t , . . . , ŷNt)
′ and wherêyi t denotesyi t or demeaned or detrendedyi t , respectively

for models M1, M2 and M3. In particular, we have the following property.

Invariance Property IP2. Under cross sectional dependence of the form(6), the distribution
of the panel GLS estimator̂ρpgls depends only onρ. When ρ = 1 and yi t is non-stationary, the
distribution of ρ̂pgls for models2 and3 does not depend on the value of yi 0.

Since the distribution of the panel GLS estimator depends only onρ, we now propose an
iterative procedure that involves the use of a feasible GLS estimator,ρ̂pfgls, whose form is
specified in what follows in (10). Our objective is to reduce the SSB problem of the least squares
procedure by constructing a feasible generalized version of the PMU estimator ofρ. It should be
pointed out that, while the distribution of the panel GLS estimatorρ̂pgls depends only onρ, this is
not necessarily true of a feasible GLS procedure. However, provided a consistent estimator of the
covariance structure is employed, this property will hold asymptotically. Moreover, it is known
that covariance matrix estimation generally only has a second-order effect on the distribution
of feasible GLS estimates (see Phillips (1977, 1993), Rothenberg (1984)), although such results
have not yet been shown for the dynamic panel model considered here. For these reasons, use
of feasible GLS in the construction of a corresponding panel median unbiased procedure seems
promising.

The first stage in the iteration we propose uses the residuals from a panel regression in
which we use our MUÊρpemurather than OLS to reduce the SSB problem in the primary stage.
Simulations we have conducted that are reported below (see Figure 2) indicate that the use of the
PMU estimator in the first stage helps to remove bias and improve estimates of the error variance
matrix even in the presence of cross section dependence. The error variance matrix is estimated
by an iterated method of moments procedure which is explained in Section 4.2 below. The next
stage of the iteration involves the construction of a panel feasible generalized median unbiased
(PFGMU) estimator that utilizes this estimated error covariance matrix. In this construction, we
use the median functionm(ρ) = mT,N(ρ) of the estimator̂ρpfgls, which simulations show to be
strictly increasing inρ on the parameter spaceρ ∈ (−1, 1]. Using this median function (which
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Figure 1. Empirical distributions of single equation OLS, POLS and PEMU under no cross sectional
dependence (T = 100, N = 20, ρ = 0.9).

depends onT andN), the PFGMU estimator,̂ρpfgmu, can be defined as in (3). The process can
be continued, revising the estimate of the error covariance matrix in each iteration.

To fix ideas, the steps in the iteration are laid out as follows:

Step 1: Obtain the estimator̂ρpemu and using the residuals from this regression construct the
error covariance matrix estimatêVpemuby the method explained in Section 4.2.

Step 2: Using V̂pemu, perform panel generalized least squares as in (9) and obtain the PFGLS
estimate ofρ defined by

ρ̂pfgls =

∑T
t=1 ŷ′

t−1V̂−1
pemûyt∑T

t=1 ŷ′

t−1V̂−1
pemûyt−1

. (10)

Step 3: The PFGMU estimator is now calculated asρ̂pfgmu = m−1(ρ̂pfgls) just as in (3) but using
the median functionm(ρ) = mT,N(ρ) of the estimator̂ρpfgls.

Step 4: Repeat steps 1–3 (using updated estimates ofρ in the first stage rather than̂ρpemu) until
ρ̂pfgmu converges.

Figure 1 displays a kernel estimate of the distribution of POLS based on 100,000 replications
with N = 20, T = 100,ρ = 0.9 when there is no cross sectional dependence. Apparently, the
POLS estimator̂ρpols is more concentrated than single equation OLS (which does not use the
additional cross section data) but is badly biased downwards. The bias is sufficiently serious that
almost the entire distribution of̂ρpols lies below the true value ofρ.

Figure 2 shows the distributions of the POLS and PMU estimators for the same parameter
configuration as Figure 1 and based on the same number of replications, but with high cross
sectional correlation.4 As shown in Phillips and Sul (2002), the POLS bias in the case of cross
section dependence is the same to first order as the bias in the cross section independent case, and
this bias equivalence between the two cases is born out by the simulation results. As is apparent

4Whenδi ∈ (1, 4) in (6), the average cross sectional correlation is around 0.82.
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Figure 2. Empirical distributions of POLS, PFGLS and PFGMU under high cross section dependence
(T = 100, N = 20, ρ = 0.9).
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Figure 3. Same as in Figure 2 with the addition of POLS with a CTE under high cross section dependence
(T = 100, N = 20, ρ = 0.9).

from Figure 2, the main effect of the cross sectional dependence is to increase the variation of
both the POLS and PMU estimators. In fact, in the displayed case (where the average cross sec-
tion correlation is around 0.82) the POLS and PMU estimators show only a slight gain in concen-
tration over single equation OLS. In other words, if there is high cross sectional correlation, there
is not much efficiency gain from pooling in the POLS estimator. Figure 3 shows the distribution
of the POLS estimator in which a CTE has been estimated. While this estimator is obviously
inappropriate under the general form of cross section dependence considered in (6), it is a com-
monly used procedure in practice and is applicable when the elements ofδ all take on a common
value. As is apparent from Figure 3, this estimator successfully reduces variance even though the
presence of a CTE in estimation provides only a crude approximation to the error structure (6).

Figures 2 and 3 show that the PMU estimator is still quite effective in removing the bias of
POLS even under cross section dependence. However, its high variance makes it a less appealing
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Figure 4. Extended comparison of PMU with common panel IV estimators under high cross section
dependence (T = 100, N = 20, ρ = 0.9).

estimator for applications than our PFGMU estimator, which reduces variance and removes bias,
as we now discuss. Figures 2 and 3 show the distributions of both the feasible GLS procedures,
PFGLS and PFGMU. Evidently, the PFGLS estimatorρ̂pfgls does restore much of the original
gains from pooling in terms of variance reduction that were apparent in Figure 1 forρ̂pols. But,
as is also apparent from Figure 2, the distribution ofρ̂pfgls is seriously downward biased. Use of
the PFGMU median unbiased procedure corrects for this bias while retaining the concentration
gains of the GLS estimator. In particular, the distribution ofρ̂pfgmu is well centered about the true
value and has concentration close to that of the MUEρ̂pemuunder cross sectional independence
(Figure 1).

Figure 4 shows some comparisons of POLS and PMU in the cross section dependent case
against some alternative procedures that have been suggested for dynamic panel regression. The
first of these is the crude first difference instrumental variable (FD-IV) estimator which uses
yi t−2 as an instrument in a first differenced form of the model. Apparently, FD-IV has variation
substantially in excess of all the other estimators. The commonly used GMM estimator which
uses the full set of instruments{yis : s = 0, 1, . . . , t − 2} shows downward bias, although not
as severely as POLS, and it seems to have comparable variance. HK is the bias corrected GMM
estimator suggested in Hahn and Kuersteiner (2002) and Hahnet al. (2001) and this estimator
apparently has performance closest to that of the PMU estimator. All these procedures clearly
show inferior performance to thêρpfgmu estimator under high cross section dependence.

3.3. Seemingly unrelated median unbiased estimation

The results above indicate that, if we are to gain from panel estimation by pooling cross section
and time series information when there is cross section dependence, we need to take account
of the dependence in estimation. In contrast, most empirical studies that utilize dynamic panels
in the international finance and the macroeconomic growth literatures tend to ignore issues of
cross sectional dependence when pooling. Our results indicate that there is information in cross
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sectional correlation that is valuable in pooled estimation and that it can be accounted for, at least
in situations where the cross section sample sizeN is not too large. Moreover, one can utilize
this information and at the same time deal with SSB bias problems in dynamic panel estimation.

Notwithstanding these potential advantages of pooling dependent data and adjusting for
bias in dynamic panels, perhaps the most important issue in pooled regressions relates to the
justification of the homogeneity restriction on the autoregressive coefficientρ. In the absence
of this restriction, it might be thought that there would be little gain from pooling time series
and cross section data. However, because of cross section dependence, there are advantages to
pooling panel data even in the estimation of heterogeneous coefficients. The reasoning is the
same as that of a conventional seemingly unrelated regression (SUR) system. But in a dynamic
panel context there are still SSB bias problems that need attention. This section shows that these
can be addressed using a SUR version of the panel median unbiased procedure.

An additional advantage to performing heterogenous coefficient estimation is that it facili-
tates testing of the homogeneity restriction. Therefore, this section also proposes a test for homo-
geneity that is based on the seemingly unrelated panel median-unbiased (SUR-MU) estimator.

We start the discussion by combining models M1, M2 and M3 with the following heteroge-
nous autoregressive panel model for the latent panel variabley∗

i t :

y∗

i t = ρi y
∗

i t−1 + ui t , for t = 1, . . . , T, andi = 1, . . . , N, (11)

in which the regression errors

ut ∼ i .i .d. N(0, Vu), for t = 1, . . . , T, (12)

whereut = (ui t , . . . , uNt)
′. This formulation allows for a general form of cross section error

correlation as well as the more specific set up (6). The same range ofρ values as before is
permitted for each of the models.

When|ρi | < 1 for all i , the cross section error correlations are higher than the cross section
correlations among the regressorsyi t−1. To see this, note that the correlation betweenyi t andy j t

is given by

γ
y

i, j =
E(yi t y j t )

{E(y2
i t )E(y2

j t )}
1
2

= γi j

√
1 − ρi

2
√

1 − ρ j
2

1 − ρi ρ j
< γi j , (13)

whereγi j = E(ui t u j t )/{E(u2
i t )E(u2

j t )}
1
2 . We might therefore anticipate the potential gains

from SUR estimation to be substantial—the regressors are different and less correlated across
individual equations in the panel for which the errors are more correlated. In consequence, we
propose a SUR-MU estimator based on the following iteration.

Step 1: Obtain the time series panel median unbiased estimatesρ̂iemu for each seriesi =

1, . . . , N (and the appropriate model) and use the regression residuals to construct the
error covariance matrix estimatêVE MU as explained in Section 4.2.

Step 2: Using V̂E MU perform a conventional SUR on the panel and obtain the SUR estimates
of theρi , ρ̂isur.

Step 3: The panel SUR-MU estimator is now calculated asρ̂isurmu = m−1(ρ̂isur) just as in (3)
but using the median functionm(ρ) = mT,N(ρ) of the estimator̂ρisur for eachi .

Step 4: Repeat steps 1–3 untilρ̂isurmu converges.

The limit theory for this estimator and some associated tests of homogeneity are derived in
Appendix B and are discussed in the following section. Finite sample performance is considered
in Section 5.
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4. TESTING HOMOGENEITY RESTRICTIONS

Using unrestricted estimates of the coefficientsρi in the heterogeneous dynamic panel model
(11), Wald tests can be constructed to test the homogeneity restrictionH0 : ρi = ρ for all i .
It is well known that in finite samples, Wald tests suffer from size distortion that is sometimes
serious even in simple univariate regressions. For the panel regression case here we have found
that the size distortion of Wald tests becomes even more serious as the cross section sample
sizeN increases. This section first investigates the asymptotic properties of Wald tests based on
the SUR approach in both the stationary and non-stationary cases and shows how cross section
dependencies affect the asymptotic theory under non-stationarity. We then propose an alternative
Hausman-type procedure for testing homogeneity that utilizes the structure of the cross section
dependence. Again this approach is affected by nuisance parameters in the non-stationary case.
To address these difficulties with conventional approaches, we propose an orthogonalization
process that enables panel unit root testing under cross section dependence. These issues are
considered sequentially in the following sections. Derivations are given in Appendix B.

4.1. The Wald test and its asymptotic properties

The stationary case. Using the unrestricted estimatesρ̂isurmu of the coefficientsρi in the
heterogeneous dynamic panel model (11), Wald tests can be constructed to test the homogeneity
restriction H0 : ρi = ρ for all i . More specifically, letρ̂surmu = (ρ̂isurmu) be the SUR-MU
estimate of the vectorρ= (ρ1, . . . , ρN)′ and write the restrictions inH0 as Dρ = 0 where
D = [ιN−1, −I N−1] and ιA has A unit elements. Under Gaussianity and in the stationary
case where|ρi | < 1 for all i , the SUR-MU estimator̂ρsurmu is asymptotically (T → ∞, N

fixed) equivalent to the unconstrained maximum likelihood estimate ofρ.5 In that case, standard
stationary asymptotics and some algebraic manipulations (outlined in Appendix B) lead to the
limit theory

√
T
(
ρ̂

surmu
− ρ

)
→d N(0, VSUR), (14)

where
V−1

SUR = [(v
i j
u E(yi t y j t ))i j ] = V−1

u � E(yty′
t ). (15)

In (15) the operator� is the Hadamard product,vi j
u is the i j th element ofV−1

u , whereVu =

E(utu′
t ) = 6 + δδ′ as in (8), and

E(yi t y j t ) =


δi δ j

1−ρi ρ j
i 6= j

σ2
i +δ2

i

1−ρ2
i

i = j,

so that

E(yty′
t ) = (6 + δδ′) � R, whereR = (r i j ) andr i j =

1

1 − ρi ρ j
. (16)

5Note that the median functionm(·) is asymptotically (T → ∞, N fixed) the identity function and the SUR estimator
of ρ is the vector of Gaussian maximum likelihood estimators of the autoregressive coefficients in the unconstrained
models.
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From (15) and (16) it is apparent that the covariance matrixVSUR depends on bothρ andδ as

well as6. WhenH0 holds,E(yty′
t ) = (6 + δδ′)/(1−ρ2) andVSUR has a simpler form in which

V−1
SUR =

1

1 − ρ2
V−1

u � Vu, (17)

which depends on the commonρ and again on the cross section dependence parameterδ.
The Wald statistic for testingH0 is

Wsurmu= ρ̂
′

surmu
D′

[DV̂SU RMUD′
]
−1Dρ̂

surmu
,

where

V̂SU RMU =

[
T∑

t=1

Z′
t V̂

−1
u Zt

]−1

,

in which Zt = diag(y1t−1, . . . , yNt−1) and V̂u is an estimate of the error covariance matrix
Vu computed from the SUR-MU regression residuals. UnderH0 and in the stationary case, the
traditional chi-squared limit theory holds forWsurmu, i.e.Wsurmu→d χ2

N .

The unit root case. In the non-stationaryρ = 1 case, the asymptotic results depend, as might
be expected, on whether M1, M2 or M3 is employed in estimation and also on the boundary
condition that arises in the transition from the SUR estimator to SUR-MU—cf. (3). In addition,
the asymptotic theory for the SUR estimator is more complex than that of a traditional unit root
model when there is cross section dependence. For instance, when model M1 is used and the null
hypothesisH0 : ρi = 1 ∀i holds, derivations (outlined in Appendix B) using standard unit root
limit theory deliver the limit distribution of the SUR estimatorρ̂sur. This estimator is defined as

ρ̂
sur

=

(
T∑

t=1

Z′
t V̂

−1
u Zt

)−1( T∑
t=1

Z′
t V̂

−1
u yt

)
,

whereV̂u is an estimate ofVu based on residuals from a first stage regression. Appendix B gives
the following asymptotic distribution for̂ρ

sur

T
(
ρ̂

sur
− ιN

) d
→

[
V−1

u �

∫ 1

0
BB′

]−1[∫ 1

0
B � (V−1

u dB)

]
= ξ , (18)

whereB is vector Brownian motion with covariance matrixVu. It is clear from (18) that the limit
distribution ofT(ρ̂

SUR
− ιN) depends on the cross section dependence parameterδ even in the

homogeneous case whereρi = 1∀i . Correspondingly, the asymptotic distribution ofρ̂surmuin the
unit root case also depends on cross section dependence and error variance nuisance parameters.
The Wald statistic,Wsur, for testingH0 is given by

Wsur = ρ̂
′

SUR
D′

[DV̂SURD′
]
−1Dρ̂

SUR

d
→ ξ ′D′

D

(
V−1

u �

∫ 1

0
BB′

)−1

D′

−1

Dξ , (19)
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whereV̂SUR = (
∑T

t=1 Z′
t V̂

−1
u Zt )

−1, and again the limit distribution (19) depends on nuisance
parameters.

In contrast, in the unit root case where homogeneity ofρ acrossi is imposed, the pooled GLS
estimator ofρ is

ρ̂ =

(
T∑

t=1

y′

t−1V−1
u yt−1

)−1( T∑
t=1

y′

t−1V−1
u yt

)
,

with a corresponding feasible SUR version. By straightforward derivation detailed in Appendix B,
we find that

T(ρ̂ − 1)
d
→

∫ 1
0 W′dW∫ 1
0 W′W

=

∑N
i =1

∫ 1
0 Wi dWi∑N

i =1

∫ 1
0 W2

i

, (20)

whereW = (Wi ) is standard Brownian motion with covariance matrixI N . The limit (20) here
depends only on the cross section sample sizeN.

4.2. Hausman and modified Hausman tests under cross section dependence

The stationary panel case: H0 : ρi = ρ. The main problem with the conventional Wald test, as
mentioned earlier, is that size distortion can be serious and it typically increases with the number
of restrictions. Also, the Wald test based on SUR or SUR-MU estimation requiresN < T , and is
heavily influenced by the nuisance parameters of cross section correlation. This section proposes
an alternative procedure for dealing with cross section dependence that takes into account the
structure of the dependence.

Start by writing the model M1 (with suitable adjustments for models M2 and M3) in vector
form as

yt = Ztρ + ut , Zt = diag(y1t−1, . . . , yNt−1), ρ = (ρ1, . . . , ρN)′. (21)

Let ρ̂i (resp.ρ̂) be the OLS estimate ofρi (ρ) Then

ρ̂ =

(
T∑

t=1

Z′
tZt

)−1( T∑
t=1

Z′
tyt

)
.

Let ρ̂
emu

be the corresponding vector of median unbiased estimates ofρi . Under the null
hypothesis of homogenous autoregressive coefficientsρi = ρ ∀i , and asT → ∞, we have√

T(ρ̂i − ρ) →d N(0, 1 − ρ2) for models M1, M2 and M3, with the same result for the MUEs
ρ̂iemu. Under cross section independence and asT → ∞ for finite N, we have

N∑
i =1

√
T(ρ̂i − ρ)√

1 − ρ2
→d N(0, N).

On the other hand, if there is cross section dependence of the form implied by (6), then in the
stationary case for model M1 we have

yi t =

∞∑
j =0

ρ j (δi θt− j + εi t− j
)

= δi

∞∑
j =0

ρ j θt− j +

∞∑
j =0

ρ j εi t− j = δi µt + ηi t , say.
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It follows that the asymptotic covariance betweenρ̂i andρ̂ j is given by

acov(ρ̂i , ρ̂ j ) =
1

T

(δi δ j )
2(1 − ρ2)

(δ2
i + σ 2

i )(δ2
j + σ 2

j )
=

1

T

v2
i j

vi i v j j
(1 − ρ2),

wherevi j is thei j th element ofVu = 6 + δδ′. Settingρ̂ = (ρ̂1, . . . , ρ̂N)′ and lettingi N be an
N-vector with unit elements, we find that standard derivations lead to the following limit theory:

√
T(ρ̂ − ριN) =

(
1

T

T∑
t=1

Z′
tZt

)−1(
1

√
T

T∑
t=1

Z′
tut

)
→d N

(
0, D−1

y [Vu � E(yty′
t )]D

−1
y

)
= N(0, (1 − ρ2)RV � RV ), (22)

whereDy = diag(E(y2
1t ), . . . , E(y2

Nt)) and the matrixRV hasi j th elementvi j /{vi i v j j }
1/2. It

follows that
N∑

i =1

√
T(ρ̂i − ρ)√

1 − ρ2
→d N(0, ι′N(RV � RV )ιN).

The same result applies when the median unbiased estimatesρ̂iemu are used in place of̂ρi .
We propose to construct an estimate of the matrixRV that appears in the asymptotic

covariance matrix of (22) and use this estimate to develop an alternative test ofH0. The following
moment based procedure may be used.6

Moment based estimation of (δ, 6).

Step 1: Estimate theρi by using OLS or EMU and obtain the regression residualsûi t =

yi t − ρ̂i yi t−1, which are asymptotically equivalent to OLS residuals and consistent (as
T → ∞, N fixed) forui t . In particular,

ûi t = ui t + (ρi − ρ̂i )yi t−1 = ui t + op(1)

in both stationary and non-stationary cases.
Step 2: Construct the moment matrix of residualsM T =

1
T

∑T
t=1 ût û

′

t , which is a consistent
(asT → ∞, N fixed) estimate ofVu. Let mT i j be thei j th element ofM T .

Step 3: Estimate the cross section coefficientsδ and the diagonal elements of6 using the
following moment procedure that finds the least squares best fit to the matrixM T , that
is

(δ̂, 6̂) = arg min
δ,6

tr[(M T − 6 − δδ′)(M T − 6 − δδ′)′]. (23)

The solution of (23) satisfies the system of equations

δ̂ = (M T δ̂ − 6δ̂)/δ̂
′

δ̂, σ̂ 2
i = MT ii − δ̂2

i , i = 1, . . . , N

6Appendix C gives an explicit algorithm for Gaussian maximum likelihood estimation of the cross section coefficients.
Simulation results indicate that the moment based method described here gave superior results, especially for largeN.
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and this can be solved using the iteration

δ(r )
= (M Tδ(r −1)

− 6δ(r −1))/δ(r −1)′δ(r −1),

σ
(r )2
i = MT ii − δ

(r )2
i , (24)

starting from some initializationδ(0) (such as the largest eigenvector ofMT ) until
convergence. SinceM T →p Vu = 6 + δδ′ asT → ∞, it follows that(δ̂, 6̂) →p (δ, 6)

asT → ∞, with N fixed. Since6̂ →p 6 > 0 asT → ∞, 6̂ will be positive definite for
large enoughT .

Step 4: Construct the variance matrix estimateV̂u = 6̂ + δ̂δ̂
′

. Let v̂i j be thei j th element ofV̂u

and construct the estimatêRV whosei j th element iŝvi j /{v̂i i v̂ j j }
1/2.

SinceV̂u →p Vu, we haveR̂V →p RV asT → ∞. Now let ρ̃ be the PFMGU estimate
of ρ under the assumption of homogeneity. UnderH0, the pooled estimatẽρ is asymptotically
equivalent to GLS and then by standard limit theory

√
T(ρ̃ − ρ) =

(
1

T

T∑
t=1

y′

t−1V−1
u yt−1

)−1(
1

√
T

T∑
t=1

y′

t−1V−1
u ut

)
→d N(0, {trace[V−1

u E(yty′
t )]}

−1).

Since

E(yty′
t ) = (6 + σ 2δδ′) � R = Vu � R =

1

1 − ρ2
Vu,

underH0, we end up with the simple result

√
T(ρ̃ − ρ) →d N

(
0,

1 − ρ2

N

)
.

Next consider the asymptotic covariance

acov

(
1

√
T

T∑
t=1

Z′
tut ,

1
√

T

T∑
t=1

y′

t−1V−1
u ut

)

=
1

T

T∑
t=1

Z′
t E(utu′

t )V
−1
u yt−1 =

1

T

T∑
t=1

Z′
tyt−1 →


E(y2

1t )

E(y2
2t )

...

E(y2
Nt)

 = DyιN,

asT → ∞, from which we deduce that

acov (
√

T(ρ̂ − ριN),
√

T(ρ̃ − ρ))

= D−1
y [DyιN]{trace[V−1

u E(yty′
t )]}

−1

= ιN(1 − ρ2). (25)

Our test statistic forH0 is based on the difference between the estimates
√

T(ρ̂
emu

− ρ̃ιN) =
√

T(ρ̂
emu

− ριN) −
√

T(ρ̃ − ρ)ιN,
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and from (22), (25) and joint convergence we find that
√

T(ρ̂
emu

− ρ̃ιN)√
1 − ρ̃2

=

√
T(ρ̂

emu
− ριN)√

1 − ρ̃2
−

√
T(ρ̃ − ρ)√
1 − ρ̃2

ιN →d N

(
0, RV � RV −

1

N
ιNι′N

)
.

(26)
It follows that we may construct the Hausman-type test statistic

G =
T

1 − ρ̃2
(ρ̂

emu
− ρ̃ιN)′

{
[R̂V � R̂V ]

−1
−

1

N
ιNι′N

}
(ρ̂

emu
− ρ̃ιN), (27)

which is based on the difference between the robust-to-heterogeneity estimateρ̂
emu

of ρ and the
efficient estimateρ̃ of ρ under the null, and which uses the moment based procedure outlined
above to construct estimates ofVu and RV . We use the notationGpfmgu to indicate that the
pooled estimatẽρ in (27) is the PFMGU estimate of the (common)ρ. Then, in view of (26) and
the consistency of̂RV , we have

Gpfmgu → χ2
N, asT → ∞. (28)

One practical difficulty that can arise with (27) is that the variance matrix[R̂V �R̂V ]
−1

−
1
N ιNι′N

is not necessarily positive definite and, in our simulations negative values ofG have occasionally
occurred whenN andT are small (N = 10,T = 50).

The panel unit root case (Ho : ρi = 1, ∀i ) and orthogonalization. As shown in Appendix B,
the Hausman test has a limit distribution in the unit root (ρi = 1,∀i ) case that is dependent on the
cross section nuisance parameters. It is therefore unsuitable for testing homogeneity. However,
there is a simple way of constructing a modified test that is free of nuisance parameters, which
we now describe.

Under the null hypothesis, we have as in (B.6)

1
√

T
y[Tr] =

1
√

T

[Tr]∑
t=1

ut →d B(r ) = BM(Vu). (29)

Note that we can decomposeB into component Brownian motions as follows:

B(r )= δBθ (r )+Bε(r ), (30)

where

1
√

T

[Tr]∑
t=1

θt →d Bθ (r ) = BM(σ 2), and
1

√
T

[Tr]∑
t=1

εt →d Bε(r ) = BM(6).

Let δ⊥ be anN × (N − 1) matrix that spans the orthogonal complement of the vectorδ. Then

[(δ′

⊥
6δ⊥)−1/2δ′

⊥
]

1
√

T
y[Tr] →d (δ′

⊥
6δ⊥)−1/2δ′

⊥
B(r ) = (δ′

⊥
6δ⊥)−1/2δ′

⊥
Bε(r ) = W⊥(r ),

(31)
whereW⊥(r ) = BM(I N−1), or (N −1) – vector standard Brownian motion. The transformation
matrix that appears in (31) can be estimated by implementing the following modification of our
earlier procedure.
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Orthogonalization procedure (OP).

Step 1: Construct the moment matrix of differences (for models M1 and M2) or demeaned
differences (for model M3) which we write asM T =

1
T

∑T
t=1 ût û

′

t . As in the stationary
case,M T is a consistent (asT → ∞, N fixed) estimate ofVu. Again, letmT i j be thei j th
element ofM T .

Step 2: Estimate the cross section coefficientsδ and6 by moment based optimization as in
(23) leading to(δ̂, 6̂). As before,(δ̂, 6̂) →p (δ, 6) asT → ∞, with N fixed, and6̂ is
positive definite for large enoughT .

Step 3: Using6̂ andδ̂, construct7 δ̂⊥ andF̂δ = (δ̂
′

⊥6̂δ̂⊥)−1/2δ̂
′

⊥. Clearly,

F̂δ = (δ̂
′

⊥6̂δ̂⊥)−1/2δ̂
′

⊥ →p (δ′

⊥
6δ⊥)−1/2δ′

⊥
, (32)

asT → ∞.

UsingF̂δ we transform the datayt (or demeaned/detrended data in the case of models M2 and
M3) giving y+

t = F̂δyt . As is apparent from (31), the transformationF̂δ asymptotically removes
cross section dependence in the panel andy+

t is asymptotically cross section independent as
T → ∞. Usingy+

t we may now construct estimates of the autoregressive coefficients. Letρ̂+

i
(resp.ρ̂+) be the OLS estimate ofρi = 1 (ρ = ιN−1). Then, in an obvious notation,

ρ̂
+

=

(
T∑

t=1

Z+′
t Z+

t

)−1( T∑
t=1

Z+′
t y+

t

)
.

Let ρ̂
+

emu
be the corresponding vector of median unbiased estimates ofρi . Similarly, let ρ̃+

be the PFMGU estimate ofρ obtained from the transformed datay+
t under the assumption of

homogeneous unit roots. The modified Hausman statistic is defined as

G+

H = T2(ρ̂
+

emu
− ρ̃+ιN−1)

′(ρ̂
+

emu
− ρ̃+ιN−1). (33)

As shown in Appendix B

G+

H →d 4′

N−14N−1, (34)

where

4N−1 =


[∫ 1

0 W2
⊥,1

]−1[∫ 1
0 W⊥,1dW⊥,1

]
−
[∫ 1

0 W′

⊥
W⊥

]−1[∫ 1
0 W′

⊥
dW⊥

]
...[∫ 1

0 W2
⊥,N−1

]−1[∫ 1
0 W⊥,N−1dW⊥,N−1

]
−
[∫ 1

0 W′

⊥
W⊥

]−1[∫ 1
0 W′

⊥
dW⊥

]
 , (35)

and where{W⊥,i : i = 1, . . . , N −1} are the components of theN −1 vector standard Brownian
motionW⊥ Clearly,G∗

H is free of nuisance parameters in the limit and is suitable for testing the
null H0 : ρi = 1 ∀i .

7The orthogonal complement matrix̂δ⊥ can be constructed by taking the eigenvectors of the projection matrix

P
δ̂

= I − δ̂(δ̂
′
δ̂)

−1
δ̂
′
corresponding to unit eigenvalues.
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An alternative approach is to construct panel unit root test statistics directly by taking the
sum of the differences between the estimatesρ̂+

i , ρ̂+

i,emu and their limits under the null, viz.

G+

ols =

N−1∑
i =1

ρ̂+

i − 1

σ̂ρ̂+

(36)

G+
emu=

N−1∑
i =1

ρ̂+

i,emu− 1

σ̂ρ̂+

i,emu

. (37)

In contrast to (33), the test statistics (36) and (37) do not involve a pooled estimate of the
homogenous unit root parameter. As shown in Appendix B, for fixedN we have the following
limit theory for these statistics asT → ∞

G+

ols, →d

N−1∑
i =1

ξi , G+
emu →d

N−1∑
i =1

ξ−

i , (38)

whereξi = (
∫ 1

0 W2
i )−1(

∫ 1
0 Wi dWi ) and

ξ−

i =

{
ξi ξi < 0
0 ξi ≥ 0.

The limits in (38) depend only onN. Both G+

ols, G+
emu are therefore suitable for testing the null

H0.
Note that there are onlyN − 1 elements in (36)–(38). This is because the panel system has

been transformed to dimensionN − 1 in Step 4 above in order to remove the effects of cross
section dependence in the limit.

The tests (36) and (37) have the advantage that they lend themselves to simple largeN
asymptotics. In particular, the means and variances

E(ξi ), E(ξ−

i ) = µξ , µξ− Var(ξi ), Var(ξ−

i ) = σ 2
ξ , σ 2

ξ−

can be computed and, noting thatξi , ξ
−

i arei.i.d. over i , we have the largeN limit theory

1
√

N

N−1∑
i =1

(ξi − µξ ) →d N(0, σ 2
ξ ),

1
√

N

N−1∑
i =1

(ξ−

i − µξ−) →d N(0, σ 2
ξ−).

It follows that in sequential asymptotics (see Phillips and Moon (1999)) as(T, N → ∞)seq

G++

ols =
1

√
Nσξ

∑N−1
i =1

[
ρ̂+

i −1
σ̂ρ̂+

− µξ

]
G++

emu =
1

√
Nσξ−

∑N−1
i =1

[
ρ̂+

i,emu−1
σ̂

ρ̂
+

i,emu

− µξ−

]
 →d N(0, 1).

All of these procedures are easy to implement. Their finite sample performance is assessed in
Section 6 below. As shown in the next section, once the OP procedure has been applied to the
data, a wide class of panel unit root and stationarity tests become applicable.
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4.3. Dynamic AR(p) panels with cross section dependence

The procedures outlined above for panel unit root testing under cross section dependence may be
applied to cases of higher order panel dynamics and cases where the common factor component
θt is weakly dependent. Specifically, consider a panel of dynamic panel autoregressions with
(possibly) heterogenous lag orders`i for eachi and allow for cross section dependence of the
same form as (6) above. The model is written in augmented format as

1yi t = µ
i
+ β

i
t + (ρ − 1)yi t−1 +

`i∑
j =1

φi j 1yi t− j + ui t . (39)

The OP procedure leading to (32) above is the same as that laid out above except for the first step.
Here, instead of using the moment matrix of differences or demeaned differences, one simply
uses the moment matrix of the regression residualsûi t obtained under the (null hypothesis)
restrictionρ = 1 in (39).

Since the transformed datay+

i t are asymptotically uncorrelated acrossi , regressions like (39)
of y+

i t on y+

i t−1 and the lagged differences1y+

i t− j do not suffer (asymptotically) from cross
section dependence. Importantly, this will be so even when the common time series factorθt

is weakly dependent rather than uncorrelated over time. This is because the transformation
procedure leading to (32) continues to eliminate the contribution of the common factor
componentθt to the limit Brownian motion in (30). It follows that several existing panel unit
root tests that were designed to work with data that are independent across section can now
be applied to test for panel unit roots when there is cross section dependence. Accordingly, we
consider here two broad types of panel unit root tests.

Meta-analysis tests for panel unit roots and stationarity under cross section dependence.The
first type of test is based on meta-analysis, wherein theP-values of tests for each cross section
individual i are combined to construct a new test. Tests of this type were suggested in Choi
(2001a) and Maddala and Wu (1999) for use in testing unit roots with panel data under cross
section independence.8 These tests apply here under cross section dependence after our OP
orthogonalization procedure has been implemented. Choi (2001a) provides a full discussion of
tests of this type and his simulation results suggest use of the three tests that we concentrate on
here.

Let pi be theP-value of a unit root test associated with cross section elementi . Define

P = −2
N−1∑
i =1

ln(pi ), (40)

Pm = −
1

√
N

N−1∑
i =1

[ln(pi ) + 1], (41)

and

Z =
1

√
N

N−1∑
i =1

8−1(pi ). (42)

8Choi (2001b) considers several statistics based on meta-analysis with random individual and time effects in (1).
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The P test is called the inverse chi-square test or Fisher test after Fisher (1932). ThePm test
statistic is a centred and normalized version ofP that is useful for largeN. The Z test is called
the inverse normal test, following Stoufferet al. (1949). As discussed in Choi (2001a), we have
the following limit distributions forP andZ asT → ∞

P →d χ2
2(N−1), Z →d N(0, 1) for fixed N, (43)

leading to the following sequential limit theory as(T, N → ∞)seq

Pm, Z →d N(0, 1). (44)

Each of these tests and the limit theory applies under the null hypothesis to dynamic panel
autoregressions like (39) with cross section dependence after the OP procedure has been
implemented.

Other tests for panel unit roots. In fact, after transforming the data using the OP procedure,
we can apply most other methods for testing panel unit roots that are valid under cross section
independence. Baltagi (2001) provides a recent discussion and overview of these tests, which
generally take the form of cross section averages of time series test statistics and have the generic
form

Gτ =
1

N − 1

N−1∑
i =1

τi ,

whereτi stands for an individual unit root test statistic. This class of tests can also be extended by
using the bias reduction techniques discussed earlier in this paper. For instance, we could use an
ADF-t statistic based not on OLS estimation but instead on EMU estimation as explained earlier
(cf. Andrews and Chen (1994)).

Im et al.(1997) use two cross sectional average tests constructed likeGτ and study their small
sample properties using simulations. Without modification, this type of test typically suffers from
serious size distortion in small samples due to SSB bias. IPS use simulation to calculate the mean
and variance of theGτ statistics and they employ bias correction in the implementation of these
procedures. However, in the dynamic panel AR(p) case, the means and variances of theGτ

statistics heavily depend on the nuisance parameters that arise in the augmented dynamic terms.
Tanaka (1984) and Shaman and Stine (1988) provide formulae for the mean bias for cases up to
an AR(6) for models 1 and 2. For example, for an AR(2), the OLS estimator ofρi in (39) will be
biased downward when the true coefficient ony+

i t−2 is negative, while it will be biased upward
when the true coefficient ony+

i t−2 is large and positive. IPS also found that the size distortion
problem of theirGτ tests relies heavily on the sign of the true coefficient ony+

i t−2. Since their
Monte Carlo studies are based on AR(2) process, their size distortion corrections are based on
the sign and magnitude of the coefficient ony+

i t−2. For general dynamic panel AR(p) processes,
the size of theGτ test will depend on all the nuisance parameters arising in the augmented
terms and, in the absence of analytic formulae, extensive simulations are needed to make the
appropriate corrections in such cases.

The finite sample performance of these panel unit root tests and, more generally, tests of
homogeneity are considered in the simulation experiments reported in Section 5 below.
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5. SIMULATION EXPERIMENTS

This section consists of three parts. First, we report the finite sample performance of the three
panel median unbiased estimators. Second, we show the finite sample performance of the Wald
statisticWsurmuand theGpfmgu statistic. Finally, we examine the small sample performance of the
panel unit root testsG++

emu, G++

ols , Pm andZ and show how well the orthogonalization procedure
for handling cross sectional dependence works.

5.1. Design of data generating process

The data generating process for the first two parts is given by

yi t = ρi yi t−1 + ui t , (45)

ui t = δi θt + εi t , (46)

whereεi t ∼ i .i .d. N(0, 1) over i and t , θt ∼ i .i .d. N(0, 1) over t , and for (ρi , δi ) parameter
selections are used that are detailed below. The primary distinction is between the homogenous
case whereρi = ρ for all i and the heterogenous case where theρi differ across individualsi .
We also distinguish cases of high and low cross section dependence according to the value ofδi .
Estimation is based on the following two regression models that involve a fitted mean and trend:

yi t = ai + ρi yi t−1 + ui t for model M2
yi t = ai + bi t + ρi yi t−1 + ui t for model M3.

Panel data are generated under four specifications which differ according to the degree of the
cross sectional dependence and whether or not the homogeneity restriction is imposed onρ.
These specifications are as follows:

Case I (Homogeneity and Low Cross sectional Dependence).The homogeneity restriction is
imposed and we setρ1 = ρ2 = · · · = ρN = 0.9, and allow low cross sectional dependence by
settingδi ∼ U [0, 0.2], whereU [a, b] represents the uniform distribution over the interval[a, b].
In this experiment, the average error (ui t ) cross sectional dependence has correlation coefficient
around 0.03.

Case II (Homogeneity and High Cross sectional Dependence).Again, we setρi = 0.9 for all
i andδi ∼ U [1, 4]. Here, the lowest error (ui t ) cross sectional correlation is around 0.52, the
median is around 0.82 and the highest is around 0.94.

Case III (Heterogeneity and Low Cross sectional Dependence).Here, ρi ∼ U [0.7, 0.9], and
δi ∼ U [0, 0.2].

Case IV (Heterogeneity and High Cross sectional Dependence).Here ρi ∼ U [0.7, 0.9] and
δi ∼ U [1, 4].

Case V (Testing Homogeneity under Stationarity).Under the null hypothesis of homogeneity of
ρ, we setρi = 0.8 for all i to investigate test size. Under the alternative, we setρi ∼ U [0.7, 0.9]

and consider test power.
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Each experiment involves 5,000 replications of panel samples of (N, T) observations. We
useN = 10, 20, 30 andT = 50, 100, 200.

The third part of the simulation has two sections. In the first section the fitted models have
intercepts and trends (as in M2 and M3) and the DGP is based on (45) and (46) with the following
parameter settings:

Case VI (Testing Panel Unit Roots under Cross sectional Dependence).Here,ρi = 1.0 for all
i under the null, and we setδi ∼ U [1, 4] for high cross sectional dependence. We use
ρi ∼ U [0.8, 1.0] as the alternative hypothesis to calculate the power of the tests.

In the second section, the fitted models again have intercepts and trends (as in M2 and M3)
and the DGP is based on

yi,t = ρi yi,t−1 + vi,t ,

vi t = φi vi t−1 + ui t AR(1) errors, (47)

vi t = κi ui t−1 + ui t MA(1) errors, (48)

ui t = δi θt + εi t ,

with the following parameter settings:

Case VII (Testing Panel Unit Roots under Cross sectional Dependence and Weak Dependence).
As in Case VI,ρi = 1.0 for all i under the null,δi ∼ U [1, 4] for high cross sectional dependence
andρi ∼ U [0.8, 1.0] is used as the alternative hypothesis. In addition the parameters of the time
series models in (47) and (48) are set as follows:

φi ∼ U [0, 0.4] AR(1) errors,
κi ∼ U [0, 0.4] MA(1) errors,κi > 0,

κi ∼ U [−0.4, 0] MA(1) errors,κi < 0.

5.2. Finite sample properties

Table 2 reports mean square errors (MSE’s) of the POLS, PFGLS and PFGMU estimators. The
first column shows the MSE× 102 of the POLS estimator, and the second and third columns
show the ratios of the MSE of the other estimators to that of the POLS estimator. When the
degree of cross sectional dependence is low, the PFGLS estimator becomes less efficient than the
POLS since the MSE ratio is greater than one in all these cases. Surprisingly, two panel median
unbiased estimators have much better MSEs than POLS even for low degrees of cross sectional
dependence. The ordering among the estimators in terms of MSE performance (higher is better)
is PFGLS< POLS< PFGMU for both models M2 and M3. When there are high degrees of
cross sectional dependence, the performance ordering changes to POLS< PFGLS< PFGMU.
The performance of the PFGMU estimator is substantially better than POLS in all cases, yielding
MSEs that are 5–20 times better than POLS.

Table 3 shows the average MSE of the OLS, EMU, SUR and SUR-MU estimators overN.
When the degree of cross sectional dependence is low (Case III), the order among the estimators
in terms of MSE performance (again, higher is better in what follows) is SUR< OLS < SUR-
MU < EMU. When there are high degrees of cross sectional dependence, this ordering changes
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Table 2. Monte Carlo performance of POLS, PFGLS and panel FGMU estimators under homogenousρ

(cases I & II): MSE and MSE ratios.

Sample size Only constant Constant and trend

MSE MSE ratio MSE MSE ratio

POLS PFGLS PFGMU POLS PFGLS PFGMU

Low cross sectional dependence: Case I

N = 10, T = 50 0.372 1.294 0.331 1.282 1.336 0.183

N = 20, T = 50 0.306 1.725 0.208 1.174 1.719 0.137

N = 30, T = 50 0.279 2.136 0.177 1.140 2.017 0.168

N = 10, T = 100 0.082 1.161 0.401 0.269 1.189 0.189

N = 20, T = 100 0.067 1.360 0.261 0.247 1.414 0.106

N = 30, T = 100 0.060 1.581 0.208 0.233 1.636 0.081

N = 10, T = 200 0.025 1.070 0.544 0.063 1.086 0.252

N = 20, T = 200 0.016 1.182 0.393 0.052 1.208 0.151

N = 30, T = 200 0.016 1.261 0.302 0.052 1.309 0.110

High cross sectional dependence: Case II

N = 10, T = 50 1.210 0.515 0.139 2.585 0.779 0.113

N = 20, T = 50 1.224 0.730 0.188 2.654 1.033 0.143

N = 30, T = 50 1.172 1.013 0.318 2.583 1.299 0.238

N = 10, T = 100 0.368 0.324 0.108 0.668 0.544 0.085

N = 20, T = 100 0.327 0.379 0.092 0.626 0.648 0.070

N = 30, T = 100 0.340 0.465 0.121 0.623 0.790 0.090

N = 10, T = 200 0.124 0.216 0.103 0.192 0.370 0.081

N = 20, T = 200 0.120 0.202 0.066 0.191 0.381 0.050

N = 30, T = 200 0.118 0.214 0.059 0.180 0.437 0.048

to OLS< EMU < SUR< SUR-MU. Overall, the SUR-MU estimator has MSE performance that
is 5 times better than that of the OLS estimator and twice as good as that of the SUR estimator.

Table 4 displays finite sample properties of the Wald test for dynamic homogeneity, i.e.
H0 : ρi = ρ for all i with ρ = 0.7 (Case V). As mentioned earlier, the size distortion of the Wald
test is substantial and the distortion gets larger and becomes very serious as the number of cross
sectional units increases. Even for large values ofT the size distortion is considerable. It is also
worse for the fitted trend case. Interestingly, the size distortion is worse under low cross sectional
dependence than it is under high dependence. We deduce that the Wald test for homogeneity in
dynamic panels is very unreliable and not to be recommended.

In contrast, Table 5 shows much more reasonable finite sample performance of theG statistic
in the stationary case. AsN becomes large for smallT , the size of theG test increases, due to
reduced degrees of freedom. But for moderateT , theG test suffers only mild size distortion and
the size is conservative for largerT . Moreover, the size adjusted power of theG test is nearly
unity in all the cases considered.
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Table 3. Monte Carlo performance of OLS, MU, SUR and SUR-MU estimators under heterogeneousρi
(cases III & IV): MSE and MSE ratios.

Sample size Constant Constant and trend

MSE MSE ratio MSE MSE ratio

OLS MU SUR SUR-MU OLS MU SUR SUR-MU

Low cross sectional dependence: Case III

N = 10, T = 50 1.691 0.812 1.134 1.028 2.827 0.660 1.108 0.846

N = 20, T = 50 1.740 0.807 1.212 1.351 2.923 0.654 1.153 1.114

N = 30, T = 50 1.727 0.806 1.222 1.827 2.876 0.650 1.130 1.453

N = 10, T = 100 0.610 0.856 1.066 0.936 0.858 0.717 1.057 0.796

N = 20, T = 100 0.603 0.856 1.144 1.079 0.870 0.715 1.121 0.930

N = 30, T = 100 0.601 0.859 1.195 1.217 0.863 0.717 1.168 1.062

N = 10, T = 200 0.242 0.921 1.044 0.966 0.302 0.803 1.039 0.845

N = 20, T = 200 0.241 0.919 1.079 1.002 0.302 0.800 1.070 0.878

N = 30, T = 200 0.239 0.922 1.117 1.048 0.299 0.806 1.106 0.925

High cross sectional dependence: Case IV

N = 10, T = 50 1.734 0.815 0.484 0.308 2.856 0.658 0.584 0.355

N = 20, T = 50 1.736 0.801 0.530 0.353 2.916 0.642 0.599 0.506

N = 30, T = 50 1.732 0.813 0.617 0.616 2.913 0.656 0.632 0.793

N = 10, T = 100 0.633 0.863 0.383 0.265 0.900 0.726 0.458 0.229

N = 20, T = 100 0.613 0.866 0.381 0.248 0.861 0.730 0.462 0.221

N = 30, T = 100 0.606 0.873 0.413 0.259 0.853 0.729 0.488 0.242

N = 10, T = 200 0.241 0.925 0.349 0.284 0.302 0.813 0.400 0.246

N = 20, T = 200 0.242 0.915 0.317 0.244 0.303 0.798 0.373 0.213

N = 30, T = 200 0.249 0.922 0.305 0.228 0.311 0.805 0.361 0.202

Table 6 deals with the panel unit root case and shows the size and size adjusted power of the
IPS,G++

ols , G++
emu, P andZ tests in respective columns. Overall,G++

emu shows better performance
thanG++

ols in terms of both size and power comparisons. TheP andZ tests are in turn superior
to theG tests and have considerably greater power. All of these tests outrank the IPS test, which
shows considerable size distortion as well as lower power. Generally, the power of the tests for
model M2 (the fitted intercept case) is higher than that for model M3 (fitted constant and linear
trend). The results for thePand Z tests are particularly good and indicate that these panel unit
root tests work well in the presence of cross section dependence.

Tables 7 and 8 report further results for theP, Z and IPS tests in the case where the model
has AR(1) and MA(1) errors, respectively. Apparently, bothP and Z tests work very well in
terms of size and power for AR(1) errors. This is not unexpected given that the ADF procedure
is used to obtain estimates of the errors in the first stage of the procedure leading to these
tests. On the other hand, neither theP nor Z tests work well for MA(1) errors, both tests
showing size distortion in this case. Similar results were obtained for the case of MA(1) errors

c© Royal Economic Society 2003



Dynamic panel estimation 245

Table 4.Wald test for homogeneity (case V).H0 : ρi = ρ = 0.7. Cross sectional correlation (min= 0.52,
med= 0.82, max= 0.94).

Sample size Constant Constant and trend

Size (5%) Size (2.5%) Size (5%) Size (2.5%)

Low cross sectional dependence

N = 10, T = 50 0.466 0.369 0.571 0.474

N = 10, T = 100 0.185 0.123 0.225 0.153

N = 10, T = 200 0.103 0.051 0.115 0.059

N = 20, T = 50 0.983 0.973 0.982 0.971

N = 20, T = 100 0.584 0.488 0.653 0.555

N = 20, T = 200 0.253 0.174 0.285 0.198

N = 30, T = 50 1.000 1.000 0.998 0.996

N = 30, T = 100 0.906 0.781 0.937 0.855

N = 30, T = 200 0.433 0.207 0.478 0.251

High cross sectional dependence

N = 10, T = 50 0.351 0.263 0.522 0.440

N = 10, T = 100 0.155 0.107 0.176 0.120

N = 10, T = 200 0.096 0.059 0.101 0.063

N = 20, T = 50 0.873 0.820 0.959 0.938

N = 20, T = 100 0.421 0.341 0.464 0.377

N = 20, T = 200 0.226 0.153 0.236 0.163

N = 30, T = 50 1.000 0.995 0.979 0.968

N = 30, T = 100 0.703 0.503 0.742 0.558

N = 30, T = 200 0.337 0.159 0.341 0.162

with negative coefficients but these are not reported here. An alternative approach to removing
serial dependence, such as the non-parametric adjustments used in Phillips (1987), may be more
successful in this case, although we have not implemented that procedure in the present work.
The IPS test shows substantially greater size distortion in all cases and generally seems to be
inferior to the other tests.

6. CONCLUDING REMARKS

Panel models with dynamic autoregressive components are now extensively used in empirical
research in growth economics and international finance, both areas where cross section depen-
dence is likely to be important. In the absence of alternative approaches, it is often convenient
in such studies to deal with cross section dependence by means of a CTE, to ignore issues of
bias and to presume the validity of homogeneity restrictions. The bias problem in dynamic panel
regressions with fixed effects is shown here to persist and be compounded by high variance when
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Table 5.G-test for homogeneity (case V)H0 : ρi = ρ = 0.8 with cross sectional correlation (min= 0.52,
med= 0.82, max= 0.94).

Model 2 Model 3

Sample 1% 2.5% 5% 10% 1% 2.5% 5% 10%

Size

N = 10, T = 50 0.028 0.043 0.065 0.092 0.027 0.046 0.068 0.089

N = 20, T = 50 0.051 0.075 0.100 0.136 0.047 0.069 0.094 0.126

N = 30, T = 50 0.082 0.110 0.136 0.172 0.071 0.092 0.114 0.140

N = 10, T = 100 0.017 0.032 0.050 0.080 0.019 0.030 0.052 0.077

N = 20, T = 100 0.015 0.027 0.045 0.069 0.017 0.035 0.048 0.076

N = 30, T = 100 0.025 0.039 0.056 0.085 0.028 0.043 0.055 0.086

N = 10, T = 200 0.003 0.014 0.024 0.043 0.004 0.014 0.024 0.043

N = 20, T = 200 0.008 0.015 0.028 0.044 0.008 0.016 0.028 0.051

N = 30, T = 200 0.008 0.016 0.024 0.046 0.008 0.016 0.027 0.046

Size adjusted power

N = 10, T = 50 0.981 0.972 0.959 0.920 0.972 0.959 0.944 0.906

N = 20, T = 50 0.990 0.984 0.978 0.968 0.991 0.985 0.980 0.964

N = 30, T = 50 0.999 0.998 0.997 0.995 0.999 0.997 0.996 0.996

N = 10, T = 100 0.988 0.979 0.961 0.941 0.984 0.972 0.952 0.924

N = 20, T = 100 0.994 0.987 0.979 0.968 0.995 0.989 0.978 0.969

N = 30, T = 100 0.999 0.999 0.998 0.998 0.999 0.999 0.999 0.998

N = 10, T = 200 0.997 0.993 0.987 0.978 0.978 0.966 0.957 0.932

N = 20, T = 200 0.995 0.992 0.989 0.981 0.995 0.992 0.988 0.982

N = 30, T = 200 0.999 0.998 0.997 0.996 0.999 0.999 0.997 0.996

there is cross section dependence. Tests for homogeneity are also affected by cross section depen-
dence, including the case of homogenous unit roots. These are issues that need corrective action
in applied work.

The solutions offered in this paper to address these issues start with the use of median
unbiased estimation procedures for estimation, testing and confidence interval construction.
On the whole, the new estimation methods work well to correct for bias and reduce variance,
accounting for cross section dependence in conditions (viz. correct specification, no additional
regressors, and Gaussianity) that might be described as ‘ideal’ for these methods. When
conditions are not ‘ideal’, for example when the distributional assumptions underlying the
median function are incorrect, other bias correction methods such as those based on higher order
expansions (e.g Hahn and Kuersteiner (2002)) may be useful. The present analysis is useful in
calibrating how well such methods can work in relation to the median unbiased approach.

On the other hand, the present paper shows that Wald tests for homogeneity suffer from
unacceptable size distortions even under ideal conditions, including stationarity. We have
therefore proposed a modified Hausman test for homogeneity that utilizes a pooled panel MUE
estimator that is asymptotically efficient under the null, in conjunction with MUE estimates
that are robust to heterogeneity and moment based estimates of the cross section dependence
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Table 6. Tests for homogenous panel unit roots under cross section dependence (case VI): cross sectional
correlation (min= 0.52, med= 0.82, max= 0.94).

Sample IPS G++

ols G++
emu P Z

Panel A: model M2—fitted intercept case

Size: 5%

N = 10, T = 50 0.257 0.052 0.052 0.044 0.046

N = 20, T = 50 0.353 0.061 0.046 0.044 0.050

N = 30, T = 50 0.367 0.061 0.041 0.044 0.049

N = 10, T = 100 0.263 0.047 0.063 0.045 0.047

N = 20, T = 100 0.333 0.051 0.055 0.044 0.049

N = 30, T = 100 0.376 0.054 0.057 0.039 0.048

N = 10, T = 200 0.242 0.046 0.054 0.041 0.047

N = 20, T = 200 0.337 0.043 0.049 0.044 0.044

N = 30, T = 200 0.391 0.049 0.047 0.046 0.049

Size adjusted power

N = 10, T = 50 0.247 0.252 0.270 0.997 0.996

N = 20, T = 50 0.223 0.329 0.330 0.988 0.974

N = 30, T = 50 0.256 0.519 0.532 0.978 0.969

N = 10, T = 100 0.646 0.687 0.739 1.000 1.000

N = 20, T = 100 0.627 0.692 0.779 0.997 0.993

N = 30, T = 100 0.587 0.811 0.866 0.991 0.987

N = 10, T = 200 0.991 0.970 0.983 1.000 1.000

N = 20, T = 200 0.989 0.934 0.968 0.999 0.998

N = 30, T = 200 0.986 0.975 0.988 1.000 0.999

Panel B: model M3—fitted intercept and trend

Size: 5%

N = 10, T = 50 0.278 0.077 0.072 0.043 0.048

N = 20, T = 50 0.366 0.086 0.073 0.044 0.049

N = 30, T = 50 0.390 0.098 0.067 0.046 0.052

N = 10, T = 100 0.280 0.062 0.073 0.049 0.052

N = 20, T = 100 0.357 0.064 0.063 0.044 0.047

N = 30, T = 100 0.379 0.078 0.068 0.049 0.053

N = 10, T = 200 0.260 0.049 0.062 0.046 0.049

N = 20, T = 200 0.313 0.044 0.056 0.042 0.045

N = 30, T = 200 0.363 0.047 0.055 0.042 0.046

Size adjusted power

N = 10, T = 50 0.122 0.086 0.088 0.985 0.983

N = 20, T = 50 0.142 0.097 0.095 0.969 0.947
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Table 6.Continued.

Sample IPS G++

ols G++
emu P Z

Size adjusted power

N = 30, T = 50 0.133 0.158 0.160 0.960 0.943

N = 10, T = 100 0.349 0.342 0.380 0.998 0.996

N = 20, T = 100 0.350 0.413 0.435 0.990 0.975

N = 30, T = 100 0.344 0.558 0.609 0.981 0.971

N = 10, T = 200 0.885 0.853 0.890 1.000 1.000

N = 20, T = 200 0.881 0.815 0.878 0.999 0.994

N = 30, T = 200 0.886 0.892 0.938 0.998 0.993

Table 7.Tests for homogenous panel unit roots under cross section dependence & AR(1) errors (case VII).
Cross sectional correlation (min= 0.52, med= 0.82, max= 0.94).

Sample IPS P Z

5% 10% 5% 10% 5% 10%

Panel A: fitted intercept

Size

N = 10, T = 50 0.202 0.272 0.056 0.112 0.057 0.111

N = 20, T = 50 0.329 0.381 0.057 0.110 0.055 0.113

N = 30, T = 50 0.374 0.412 0.066 0.117 0.064 0.115

N = 10, T = 100 0.188 0.256 0.047 0.094 0.046 0.099

N = 20, T = 100 0.315 0.364 0.047 0.099 0.049 0.100

N = 30, T = 100 0.363 0.402 0.047 0.094 0.048 0.095

N = 10, T = 200 0.198 0.261 0.042 0.093 0.047 0.095

N = 20, T = 200 0.330 0.382 0.040 0.091 0.049 0.100

N = 30, T = 200 0.373 0.412 0.043 0.088 0.046 0.092

Power

N = 10, T = 50 0.294 0.415 0.993 0.997 0.992 0.998

N = 20, T = 50 0.225 0.343 0.984 0.991 0.979 0.986

N = 30, T = 50 0.199 0.325 0.981 0.989 0.981 0.988

N = 10, T = 100 0.632 0.763 1.000 1.000 0.999 1.000

N = 20, T = 100 0.592 0.706 0.998 0.999 0.995 0.997

N = 30, T = 100 0.539 0.689 0.997 0.999 0.995 0.997

N = 10, T = 200 0.984 0.994 1.000 1.000 1.000 1.000

N = 20, T = 200 0.967 0.987 1.000 1.000 1.000 1.000

N = 30, T = 200 0.967 0.987 1.000 1.000 1.000 1.000
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Table 7.Continued.

Sample IPS P Z

5% 10% 5% 10% 5% 10%

Panel B: fitted intercept and trend

Size

N = 10, T = 50 0.218 0.279 0.051 0.100 0.050 0.096

N = 20, T = 50 0.327 0.372 0.049 0.096 0.049 0.098

N = 30, T = 50 0.382 0.414 0.054 0.107 0.056 0.104

N = 10, T = 100 0.205 0.259 0.047 0.091 0.050 0.098

N = 20, T = 100 0.319 0.366 0.049 0.092 0.051 0.100

N = 30, T = 100 0.360 0.393 0.048 0.094 0.053 0.100

N = 10, T = 200 0.193 0.254 0.039 0.084 0.042 0.085

N = 20, T = 200 0.312 0.355 0.037 0.083 0.044 0.093

N = 30, T = 200 0.365 0.402 0.040 0.086 0.045 0.091

Power

N = 10, T = 50 0.168 0.259 0.976 0.987 0.973 0.985

Power

N = 20, T = 50 0.143 0.229 0.953 0.978 0.938 0.960

N = 30, T = 50 0.116 0.206 0.955 0.973 0.938 0.961

N = 10, T = 100 0.400 0.535 0.993 0.997 0.988 0.995

N = 20, T = 100 0.353 0.477 0.986 0.991 0.970 0.984

N = 30, T = 100 0.334 0.467 0.988 0.993 0.974 0.983

N = 10, T = 200 0.890 0.940 1.000 1.000 1.000 1.000

N = 20, T = 200 0.831 0.903 1.000 1.000 0.997 0.998

N = 30, T = 200 0.813 0.895 1.000 1.000 0.998 0.999

parameters. Simulations indicate that this homogeneity test, whose limit distribution is chi-
squared, works well except in cases whereN andT are both small.

In the important case of tests for homogenous panel unit roots, we utilize the same moment
based approach to estimation of the cross section dependence parametersδ and use these
estimates to project on the space orthogonal to the common time effect in the panel. After this
data transformation, it becomes possible to employ conventional panel unit root tests that have
been developed under the assumption of independence. Simulations reveal that there are major
differences between test procedures in practice, with some procedures (like the IPS test of Imet
al. (1997)) suffering serious size distortion. TheP-value based metaZ test of Choi (2001a) is
found to work particularly well with stable size and good power and is easy to compute and apply
in practice. Moon and Perron (2002) have independently suggested a related procedure for panel
unit root testing that involves principal components estimation. They show that the approach may
be used in dynamic panels with multiple factors in which the rank of the factor space itself has
to be estimated.
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Table 8.Tests for homogenous panel unit roots under cross section dependence & MA(1) errors (case VII).
Cross sectional correlation (min= 0.52, med= 0.82, max= 0.94).

Sample IPS P Z

5% 10% 5% 10% 5% 10%

Panel A: fitted intercept

Size

N = 10, T = 50 0.247 0.323 0.083 0.150 0.084 0.151

N = 20, T = 50 0.371 0.421 0.090 0.173 0.089 0.163

N = 30, T = 50 0.421 0.466 0.108 0.192 0.110 0.193

N = 10, T = 100 0.235 0.315 0.072 0.131 0.071 0.137

N = 20, T = 100 0.344 0.404 0.083 0.159 0.086 0.161

N = 30, T = 100 0.430 0.467 0.100 0.173 0.101 0.169

N = 10, T = 200 0.242 0.305 0.066 0.131 0.073 0.134

N = 20, T = 200 0.366 0.414 0.081 0.153 0.090 0.161

N = 30, T = 200 0.409 0.450 0.092 0.170 0.103 0.177

Power

N = 10, T = 50 0.284 0.433 0.998 1.000 0.998 0.999

N = 20, T = 50 0.233 0.367 0.988 0.993 0.982 0.987

N = 30, T = 50 0.246 0.359 0.993 0.997 0.987 0.992

N = 10, T = 100 0.695 0.821 1.000 1.000 1.000 1.000

N = 20, T = 100 0.639 0.773 0.999 1.000 0.997 0.998

N = 30, T = 100 0.590 0.723 1.000 1.000 0.997 0.999

N = 10, T = 200 0.998 1.000 1.000 1.000 1.000 1.000

N = 20, T = 200 0.987 0.996 1.000 1.000 1.000 1.000

N = 30, T = 200 0.986 0.996 1.000 1.000 1.000 1.000

Panel B: fitted intercept and trend

Size

N = 10, T = 50 0.290 0.358 0.087 0.164 0.088 0.158

N = 20, T = 50 0.387 0.431 0.111 0.206 0.107 0.198

N = 30, T = 50 0.458 0.492 0.155 0.253 0.152 0.250

N = 10, T = 100 0.280 0.336 0.087 0.164 0.090 0.165

N = 20, T = 100 0.390 0.434 0.111 0.201 0.121 0.207

N = 30, T = 100 0.460 0.495 0.143 0.234 0.155 0.248

N = 10, T = 200 0.257 0.325 0.082 0.150 0.086 0.163

N = 20, T = 200 0.384 0.430 0.099 0.189 0.111 0.197

N = 30, T = 200 0.438 0.474 0.131 0.225 0.142 0.239

Power

N = 10, T = 50 0.131 0.225 0.990 0.996 0.990 0.994

N = 20, T = 50 0.123 0.217 0.958 0.976 0.939 0.959
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Table 8.Continued.

Sample IPS P Z

5% 10% 5% 10% 5% 10%

N = 30, T = 50 0.130 0.215 0.969 0.984 0.952 0.971

N = 10, T = 100 0.406 0.528 1.000 1.000 1.000 1.000

Power

N = 20, T = 100 0.361 0.506 0.985 0.990 0.970 0.978

N = 30, T = 100 0.349 0.481 0.992 0.996 0.980 0.986

N = 10, T = 200 0.934 0.974 1.000 1.000 1.000 1.000

N = 20, T = 200 0.853 0.928 0.999 1.000 0.995 0.997

N = 30, T = 200 0.849 0.931 1.000 1.000 0.999 0.999
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APPENDIX A

Proof of Property IP1. For model M1, the result follows directly by scaling. For model M2, we have

ρ̂pols2 =

∑N
i =1

∑T
t=1(yi t−1 − yi .−1)(yi t − yi .)∑N

i =1
∑T

t=1(yi t−1 − yi .−1)2
. (A.1)

Now, yi t = µi + y∗
i t = µi +

∑
∞
j =0 ρ j ui,t− j and soyi t − yi . = y∗

i t − y∗
i . andyi t−1− yi .−1 = y∗

i t−1− y∗
i .−1

are both invariant toµi . Also
yi t−1 − yi .−1

σ
=

yi t−1 − yi .−1

σi

σi

σ
,

whose factors are invariant toµi , σi andσ . For model M3, we have in the stationary case

yi t = µi + βi t + y∗
i t = µi + βi t +

∞∑
j =0

ρ j ui,t− j .
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When we regressyi t and yi t−1 on x′
t = (1, t) for t = 1, . . . , T , the residuals are linear functions of

the y∗
i t and are invariant to(µi , βi ). Let Qt be the orthogonal projection matrix onto the orthogonal

complement of the space spanned by the matrixX = [x1, . . . , xT ]
′ and let yi = (yi 1, . . . , yiT )′,

yi,−1 = (yi 0, . . . , yiT−1)′, with a corresponding notation fory∗
i and y∗

i,−1. The residual vectors from
these detrending regressions are

ŷi = Qt yi = Qt y∗
i = ŷ∗

i ,

and
ŷi,−1 = Qt yi,−1 = Qt y∗

i,−1 = ŷ∗
i,−1.

The POLS estimator in model M3 is

ρ̂pols3 =

∑N
i =1

∑T
t=1 ŷi t−1ŷi t∑N

i =1
∑T

t=1 ŷ2
i t−1

=

∑N
i =1

∑T
t=1 ŷ∗

i t−1ŷ∗
i t∑N

i =1
∑T

t=1 ŷ∗2
i t−1

(A.2)

=

∑N
i =1

∑T
t=1

ŷ∗

i t−1 ŷ∗
i t

σ2
i

σ2
i

σ2∑N
i =1

∑T
t=1

ŷ∗2
i t−1

σ2
i

σ2
i

σ2

,

and invariance to(µi , βi , σ
2) is clear. Proofs for the non-stationary case(ρ = 1) for models 2 and 3 carry

over in a similar fashion usingy∗
i t − y∗

i 0 =
∑t−1

j =0 ui,t− j and the fact thaty∗
i 0 is removed by the demeaning

and detrending filters.

Proof of Property IP2. Invariance to(µi , βi ) follows precisely as in the proof of Property IP1. Let
y∗

t = (y∗
1t , . . . , y∗

Nt)
′, and ŷ∗

t = (ŷ∗
1t , . . . , ŷ∗

Nt)
′ where ŷ∗

i t denotesy∗
1t or demeaned or detrendedy∗

i t ,
respectively for models M1, M2 and M3, with corresponding notation foryt and ŷt . Let � be the matrix

whosei j th element isρ|i − j |/(1 − ρ2). In the stationary case,y∗
t ∼ N

(
0, 1

1−ρ2 Vu

)
, and, vectorizing

[y∗
1, . . . , y∗

T ] into the columny∗
∼ N(0, � ⊗ Vu), we have(I N ⊗ V

−
1
2

u )y∗
∼ N(0, � ⊗ I N), which

depends only onρ. A similar result holds for the vectorized columny∗
−1 of lagged variables[y∗

0, . . . , y∗
T−1].

Next, using the notation̂y∗
= (Qt ⊗ I N)y∗ andŷ∗

−1 = (Qt ⊗ I N)y∗
−1, we have

(I N ⊗ V
−

1
2

u )ŷ∗, (I N ⊗ V
−

1
2

u )ŷ∗
−1 ∼ N(0, Qt�Qt ⊗ In),

and the GLS estimator

ρ̂pgls =

∑T
t=1 ŷ′

t−1V−1
u ŷt∑T

t=1 ŷ′
t−1V−1

u ŷt−1
=

∑T
t=1 ŷ∗′

t−1V−1
u ŷ∗

t∑T
t=1 ŷ∗′

t−1V−1
u ŷ∗

t−1

=
ŷ∗′
−1(I T ⊗ V−1

u ) ŷ∗

ŷ∗′
−1(I T ⊗ V−1

u ) ŷ∗
−1

,

is seen to depend only onρ.
Again, proofs in the non-stationary case(ρ = 1) for models 2 and 3 carry over in a similar fashion

usingy∗
i t − y∗

i 0 =
∑t−1

j =0 ui,t− j and the fact thaty∗
i 0 is removed by the demeaning and detrending filters.

APPENDIX B

Derivation of SUR limit theory

Stationary case. We use the heterogenous model for SUR estimation withyi t = y∗
i t (i.e. model M1)

y∗
i t = ρi y∗

i t−1 + ui t , for t = 1, . . . , T, andi = 1, . . . , N, (B.1)
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in which the regression errors are from (6)

ui t = δi θt + εi t , θt ∼ i .i .d. N(0, 1) overt, (B.2)

and

εi,t ∼ i .i .d. N(0, σ2
i ) overt, andεi,t is independent ofε j,s andθs for all i 6= j and for alls, t. (B.3)

The proof in the case of models M2 and M3 is a straightforward extension. From (B.2) and (B.3)

ut ∼ i .i .d. N(0, Vu), for t = 1, . . . , T,

where, as in (8), we have

Vu = E(ut u′
t | σ2

1 , . . . , σ2
N) = 6 + δδ′, 6 = diag(σ2

1 , . . . , σ2
N).

Now write (B.1) in vector form as

yt = Ztρ + ut , Zt = diag(y1t−1, . . . , yNt−1), ρ = (ρ1, . . . , ρN)′. (B.4)

Then the GLS estimate is

ρ̂ =

 T∑
t=1

Z′
t V

−1
u Zt

−1 T∑
t=1

Z′
t V

−1
u yt

 ,

and the SUR estimate is simply a feasible version of this estimate withVu estimated by a consistent estimate.
GLS and SUR are obviously asymptotically equivalent.

Under stationarity|ρi | < 1 for all i we have by standard theory that
√

T(ρ̂ − ρ) →d N(0, VSUR), (B.5)

with

VSUR = plimT→∞

 1

T

T∑
t=1

Z′
t V

−1
u Zt

−1

.

We can calculate the inverse of this matrix as follows. Note that

plimT→∞

 1

T

T∑
t=1

Z′
t V

−1
u Zt

 = [(v
i j
u E(yi t y j t ))i j ],

wherev
i j
u is thei j th element ofVu, so that

V−1
SUR = [(v

i j
u E(yi t y j t ))i j ] = V−1

u � E(yt y′
t ).

Next note that

E(yi t y j t ) = E

 ∞∑
s=0

ρs
i ui t−s

∞∑
p=0

ρ
p
j u j t−p


=

E(ui t u j t )

1 − ρi ρ j
=


σ2

i +δ2
i

1−ρ2
i

i = j

δi δ j
1−ρi ρ j

i 6= j ,

so that
E(yt y′

t ) = (6 + δδ′) � R,

with R = [(r i j )] andr i j =
1

1−ρi ρ j
. Note thatV−1

u = 6−1
−

6−1δδ′6−1

1+δ′6−1δ
. The same result (B.5) holds for

models M2 and M3 in the stationary case as trend elimination does not affect the limit theory.
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Unit root case. Whenρi = 1 for all i , we have the functional law

1
√

T
y[Tr] =

1
√

T

[Tr]∑
t=1

ut →d B(r ) = BM(Vu). (B.6)

SettingιN to be vector withN unit components, the centred GLS and feasible SUR estimates have the form

ρ̂
sur

− ιN =

 T∑
t=1

Z′
t V

−1
u Zt

−1 T∑
t=1

Z′
t V

−1
u ut

 .

Now

1

T2

T∑
t=1

Z′
t V

−1
u Zt =


v

i j
u

1

T2

T∑
t=1

yi t−1y j t−1


i j

 →d

(v
i j
u

∫ 1

0
Bi B j

)
i j


= V−1

u �

∫ 1

0
BB′,

and

1

T

 T∑
t=1

Z′
t V

−1
u ut

 =

 N∑
j =1

v
i j
u

1

T

T∑
t=1

yi t−1u j t


i

 →d

 N∑
j =1

v
i j
u

∫ 1

0
Bi d Bj


i


=

∫ 1

0
B � V−1

u dB.

This gives the stated limit result

T(ρ̂
sur

− ιN) →d

[
V−1

u �

∫ 1

0
BB′

]−1[∫ 1

0
B � V−1

u dB

]
= ξ .

Note that the quadratic variation process of the stochastic integral
∫ r
0 B � V−1

u dB is[∫ r

0
B � V−1

u dB
]

r
= V−1

u �

∫ r

0
BB′,

so the matrixV−1
u �

∫ 1
0 BB′ is a suitable metric for

∫ 1
0 B � V−1

u dB. The joint Wald test for unit roots is

WSUR = (ρ̂
sur

− ιN)′

 T∑
t=1

Z′
t V

−1
u Zt

 (ρ̂
sur

− ιN)

→d

[∫ 1

0
B � V−1

u dB

]′ [
V−1

u �

∫ 1

0
BB′

]−1[∫ 1

0
B � V−1

u dB

]
,

which is dependent on nuisance parameters. Also, if we were to test homogeneity using the SUR estimate
ρ̂, then noting that

D(ρ̂
sur

− ιN) = Dρ̂
sur

,
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we would have the statistic

W Dsur = ρ̂′

sur
D′

[DV̂SURD′
]
−1Dρ̂

sur

→d ξ ′D′

D

(
V−1

u �

∫ 1

0
BB′

)−1

D′

−1

Dξ .

Next consider the pooled estimate ofρ whenH0 holds. In this case, we have

ρ̂ =

 T∑
t=1

y′
t−1V−1

u yt−1

−1 T∑
t=1

y′
t−1V−1

u yt


and by straightforward derivation

1

T2

T∑
t=1

y′
t−1V−1

u yt−1 →d

∫ 1

0
B′V−1

u B =d

∫ 1

0
W′W =

N∑
i =1

∫ 1

0
W2

i ,

1

T

T∑
t=1

y′
t−1V−1

u ut →d

∫ 1

0
B′V−1

u dB =d

∫ 1

0
W′dW =

N∑
i =1

∫ 1

0
Wi dWi ,

and so

T
(
ρ̂ − 1

)
→d

∫ 1
0 W′dW∫ 1
0 W′W

=

∑N
i =1

∫ 1
0 Wi dWi∑N

i =1
∫ 1
0 W2

i

, (B.7)

whereW = (Wi ) is standard Brownian motion with covariance matrixI N . Hence, the limit distribution of
T
(
ρ̂ − 1

)
is free of nuisance parameters.

Hausman Test Limit Theory (Unit Root Case)

The Hausman statistic relies on the difference
√

T(ρ̂
emu

− ιN) =
√

T(ρ̂
emu

− ιN). From (B.7) we have

T(ρ̃ − 1) →d

∫ 1
0 W′dW∫ 1
0 W′W

,

and

T
(
ρ̂

emu
− ιN

)
= T(ρ̂ − ιN) + op(1)

=

 1

T2

T∑
t=1

Z′
t Zt

−1 1

T

T∑
t=1

Z′
t ut


→d

[∫ 1

0
DB2

]−1[∫ 1

0
DBdB

]

=


[∫ 1

0 B2
1

]−1 [∫ 1
0 B1d B1

]
...[∫ 1

0 B2
N

]−1 [∫ 1
0 BNd BN

]
 , (B.8)
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where we use the notationDA = diag(A1(r ), . . . , AN(r )). In view of the correlation between the Brownian
motions{Bi : i = 1, . . . , N} the limit distribution (B.8) is dependent on nuisance parameters arising from
the cross section dependence.

We also have the joint convergence

[
T(ρ̂

emu
− ιN)

T(ρ̃ − 1)

]
→d


[∫ 1

0 DB2

]−1 [∫ 1
0 DBdB

]
[∫ 1

0 B′B
]−1 [∫ 1

0 B′dB
]
 ,

and then

T(ρ̂
emu

− ιN)
d
→


[∫ 1

0 B′B
]−1 [∫ 1

0 B′dB
]

...[∫ 1
0 B′B

]−1 [∫ 1
0 B′dB

]
 .

Again, this limit distribution is dependent on nuisance parameters arising from cross section dependence.
Thus, the Hausman statistic does not produce an asymptotically similar test in the unit root case.

Modified Hausman and Panel Unit Root Tests Limit Theory

First note that we have the joint convergence

[
T(ρ̂+

emu
− ιN−1)

T(ρ̃+
− 1)

]
→d


[∫ 1

0 DW2
⊥

]−1 [∫ 1
0 DW⊥

dW⊥

]
[∫ 1

0 W′
⊥

W⊥

]−1 [∫ 1
0 W⊥

′dW⊥

]
 ,

which is free of nuisance parameters. Then

T(ρ̂+

emu
− ρ̃+ιN−1) →d

[∫ 1

0
DW2

⊥

]−1[∫ 1

0
DW⊥

dW⊥

]
−

[∫ 1

0
W′

⊥
W⊥

]−1[∫ 1

0
W⊥

′dW⊥

]
ιN−1

=


[∫ 1

0 W2
⊥,1

]−1 [∫ 1
0 W⊥,1dW⊥,1

]
−

[∫ 1
0 W′

⊥
W⊥

]−1 [∫ 1
0 W⊥

′dW⊥

]
.
.
.[∫ 1

0 W2
⊥,N−1

]−1 [∫ 1
0 W⊥,N−1dW⊥,N−1

]
−

[∫ 1
0 W′

⊥
W⊥

]−1 [∫ 1
0 W⊥

′dW⊥

]


:= 4N−1, (B.9)

and it follows that the modified Hausman test has the following limit:

G+

H = T2(ρ̂+

emu
− ρ̃+ιN−1)′(ρ̂+

emu
− ρ̃+ιN−1) →d 4′

N−14N−1.

Similarly, the modified unit root tests have the limit

G+

ols, G+
emu →d

N−1∑
i =1

[∫ 1

0
W2

i

]−1/2[∫ 1

0
Wi dWi

]
, for fixed N.
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APPENDIX C

Algorithm for MLE Estimation of Cross Section Dependence Coefficients

We develop here an iterative procedure for estimating the cross section dependence coefficient vectorδ

using maximum likelihood. As above, we work with model M1 and make suitable adjustments in the case
of models M2 and M3. Write the model in vector form as in (21) above, viz.

yt = Ztρ + ut , Zt = diag(y1t−1, . . . , yNt−1), ρ = (ρ1, . . . , ρN)′,

with errorsut that arei .i .d. N(0, Vu) whereVu = 6 + δδ′ and6 = diag(σ2
1 , . . . , σ2

N). The log likelihood
function has the form

`N T(ρ, 6, δ) = −
N T

2
log 2π −

T

2
logVu −

1

2

T∑
t=1

(yt − Ztρ)′V−1
u (yt − Ztρ)

= −
N T

2
log 2π −

T

2
logVu −

T

2
tr[V−1

u M T ],

whereM T (ρ) =
1
T
∑T

t=1(yt − Ztρ)(yt − Ztρ)′. First-order conditions for maximization of`N T(ρ, 6, δ)

lead to

ρ̂ =

 T∑
t=1

Z
′

t V̂
−1
u Zt

−1 T∑
t=1

Z
′

t V̂
−1
u yt

 , (C.1)

and

tr
[(

V̂
−1
u − V̂

−1
u M T V̂

−1
u

)
dVu

]
= 0, (C.2)

whereV̂u = 6̂ + δ̂δ̂
′
, 6̂ = diag(σ̂2

1 , . . . , σ̂2
N) anddVu = d6 + dδδ′

+ δdδ′. Expanding (C.2) leads to the
following system of equations:

σ̂2
i

[
1 −

δ̂2
i /σ̂2

i

1 + δ̂
′
6̂

−1
δ̂

]
=

e′
i −

δ̂i δ̂
′
6̂

−1

1 + δ̂
′
6̂

−1
δ̂

MT (ρ̂)

ei −
6̂

−1
δ̂δ̂i

1 + δ̂
′
6̂

−1
δ̂

 , i = 1, . . . , N (C.3)

δ̂ =
M T (ρ̂)6̂

−1
δ̂

1 + δ̂
′
6̂

−1
δ̂

, (C.4)

which we may solve by the following iteration:

σ̂
2( j )
2

1 −
(δ̂

( j −1)
i )2/σ̂

2( j −1)
i

1 + δ̂
( j −1)′

(
6̂

( j −1)
)−1

δ̂
( j −1)



=

e′
i −

δ̂
( j −1)
j δ̂

( j −1)′
(
6̂

( j −1)
)−1

1 + δ̂
( j −1)′

(
6̂

( j −1)
)−1

δ̂
( j −1)

M T (ρ̂)

ei −

(
6̂

( j −1)
)−1

δ̂
( j −1)

δ̂
( j −1)
i

1 + δ̂
( j −1)′

(
6̂

( j −1)
)−1

δ̂
( j −1)

 ,

δ̂
( j )

=

M T (ρ̂)
(
6̂

( j −1)
)−1

δ̂
( j −1)

1 + δ̂
( j −1)′

(
6̂

( j −1)
)−1

δ̂
( j −1)

,
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which is continued until convergence. For starting values we may choose6̂
(0)

= σ̂2I N where σ̂2
=

1
N tr [M T ] andδ̂

(0)
is the largest eigenvector ofM T . In place of the the residual moment matrix,M T (ρ̂),

from maximum likelihood estimation that appears in (C.3) and (C.4), we propose that the matrixM T (ρ̂
emu

)

corresponding to the median unbiased estimatesρ̂
emu

be used.

Note that in the special case where6 = σ2I N , the first-order equations lead to the following system
simplifying (C.3) and (C.4):

σ̂2

[
N −

δ̂
′
δ̂

σ̂2 + δ̂
′
δ̂

]
= tr

[(
I N −

δ̂δ̂
′

σ̂2 + δ̂
′
δ̂

)
M T

(
ρ̂
)(

I N −
δ̂δ̂

′

σ̂2 + δ̂
′
δ̂

)]
,

and

δ̂ =
M T δ̂

σ̂2 + δ̂
′
δ̂
.
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