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Abstract

We develop a novel forecast combination based on the order statistics of individual pre-

dictability from panel data forecasts. To this end, we define the notion of forecast depth,

which provides a ranking among different forecasts based on their normalized forecast errors

during the training period. The forecast combination is in the form of a depth-weighted

trimmed mean. We derive the limiting distribution of the depth-weighted forecast combina-

tion, based on which we can readily construct prediction intervals. Using this novel forecast

combination, we predict the national level of new COVID-19 cases in the U.S. and compare it

with other approaches including the ensemble forecast from the Centers for Disease Control

and Prevention. We find that the depth-weighted forecast combination yields more accurate

and robust predictions compared with other popular forecast combinations and reports much

narrower prediction intervals.
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1 Introduction

Since the seminal work by Bates and Granger (1969), forecast combinations have been success-

fully used in many empirical studies when multiple forecasts of the same variable are available.

The forecast combination becomes one of the core methods of forecasting practice, as the cost of

collecting real-time forecasts has been dropped significantly. It is also known that combined fore-

casts often produce better forecasts than the ex ante best single forecasting model. See Clemen

(1989), Stock and Watson (2001, 2006), and Timmermann (2006), for instance, for survey of

this literature.

When we know the individual forecasting models and their information sets (i.e., the pre-

dictors), we can readily find the optimal weights by minimizing the forecast mean squared error

loss. We can also apply ensemble methods in machine learning such as bagging and boosting

to combine forecasts. Such approaches, however, typically require a long training period but a

small number of forecasting models, so that the weights can be properly estimated. In practice,

it is often the case that the individual forecasting models are not fully known and only the

forecast reports are available from the forecasting agents. Even when the individual forecasting

models and the information sets are known, it is either impossible or very much costly to pool

the information sets particularly in real-time practice (e.g., Diebold and Pauly, 1990). In such

cases, it is common to use the equally weighted average of forecasts or the weighted average

based on the inversed forecast mean squared errors (e.g., Stock and Watson, 2001). The equal

weight approach is the most popular because it is simple but outperforms the estimated optimal

weights, which is often called the “forecast combination puzzle”.

In this paper, we propose a forecast combination based on the order statistics of individual

predictability when many forecasts are available. We assume (cross-sectional) data rich envi-

ronment of the forecasts but we do not require the knowledge of each forecasting model nor its

information set. The weights can be obtained using the cross-sectional information and hence

we do not need a long training period to estimate the weights. For this reason, we can apply

this novel method to a very short panel forecast data set, which is not typically the case for

the inversed forecast mean squared error combination. This feature is very useful in practice

especially when the time series of interest highly fluctuates and hence the forecasting accuracy

from each forecasting agent is not consistent over time.

More precisely, we develop the forecast depth, by modifying the notion of data depth (e.g.,

Zuo and Serfling, 2000; Lee and Sul, 2019) in the context of forecast combination, which measures

the nearness of each vector of forecasts toward the vector of observed values over the training

period. The weights for forecast combination are proportional to the forecast depth. Rather

than deriving the optimal forecasting weights, we seek for a robust forecast combination against

erroneous forecasts (i.e., outliers). Note that the forecast depth naturally provides a ranking

among the forecasting agents. To design a more robust forecast combination toward extremely
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poor forecasts during the training period, we trim out the forecasts by the agents who belong to

the lowest ranking group. In this sense, this novel weighting scheme shares the idea of the rank-

based approach (e.g., Aiolfi and Timmermann, 2006) and the idea of trimming (e.g., Granger

and Jeon, 2004) in forecast combination. The depth-weighted forecast combination is in the

form of the L-statistic, and thus it is more robust toward very bad forecasts than the popular

combination methods, including the equal weight combination and the inversed forecast mean

squared error combination.

The main contribution of this paper can be summarized in three folds. First, we develop the

forecast depth, based on which we can readily rank the forecasting performance over multiple

periods and construct a robust forecast combination in the form of the depth-weighted trimmed

mean. This approach only requires the forecast values and does not need to know each forecasting

model. The number of forecasts can be large and the training period can be very short. Second,

we derive the limiting distribution of the depth-weighted forecast combination with trimming,

which can be used to construct a prediction interval of forecast combination without relying on

subsampling or bootstrap. Both the weight and the trimming scheme depend on the forecast

depths in the sample, and hence they are treated stochastic in deriving the limiting distribution.

Since the proposed form of forecast combination encompasses popular ones as its special cases,

such as the equally-weighted forecast combination, the trimmed forecast combination, and the

median forecast, this result also provides prediction intervals of those forecast combinations as

well. Third, we apply the depth-weighted forecast combination to predict the national level of

new COVID-19 cases in the United States. The new forecast combination yields lower forecast

mean squared errors than the ensemble forecast reported by the Centers for Disease Control

and Prevention (CDC) as well as other popular forecast combination approaches including the

equally-weighted combination and inversed forecast mean squared error combination. It provides

forecast that is very robust to any erroneous or extremely bad predictions in the pool. In

addition, it reports much narrower prediction intervals.

It is worthy noting that the depth-weighted forecast combination uses cross-sectional dis-

tribution information in prediction, which can be time-varying. In the recent works, Joon Y.

Park has developed novel approaches to estimate distributional dynamics and unknown trends

in time series distribution. For example, see Chang, Kim, and Park (2016), Hu, Park, and

Qian (2017), and Chang, Kaufmann, Kim, Miller, Park, and Park (2020). Once the unknown

stochastic trend in the distribution of many forecasts is estimated, this information can be used

to model the dynamics of forecast depth and to reinforce forecast combination especially in long

horizon forecasting when a long panel forecast data set is available. We do not consider this

method here, but it will be a very promising and interesting topic for future research.

The rest of the paper is organized as follows. Section 2 defines the forecast depth and

develops the depth-weighted forecast combination. Section 3 compares the forecast depth with

the projection depth in statistics literature and with the popular forecast combination method

2



based on the inversed forecast mean squared errors. Section 4 derives the limiting distribution

of the depth-weighted forecast combination and provides the prediction interval. Using the

panel of forecasts on new COVID-19 cases in the U.S., Section 5 examines the performance of

the proposed forecast combination and compares it with other popular forecast combination

approaches. Section 6 concludes with some remarks. The proof of the main theorem is in the

Appendix.

2 Forecast Depth and Forecast Combination

We denote 0 be the observed true value of interest at time  and {} be the multiple competing
forecasts for 0 from different forecasting agents or different forecasting models  = 1     . For

the simplicity, we let 0 and  be scalar values, though the idea below can be extended to the

vector case when we jointly predict multiple variables. We suppose there are  different -step

ahead forecasts + for 
0
+. We consider the -step ahead forecast combination in the form

of a linear combination of the forecasts:

b+ = X
=1

+ (1)

for some potentially time-varying weights , which is obtained using the information available

at time . Popular choices of the weights  include the equal weight (i.e.,  = 1) and

the inversed forecast mean squared error (e.g.,  = d−1 
P

=1 d−1 , where d is the

sample forecast mean squared error of agent  using information at time ). In this paper, we

define the weights  based on a novel idea, forecast depth.

To define the forecast depth, we first let the  × 1 vector of forecasts during the training
period from −  + 1 to ,1

 = (−+1     −1 )0 for  = 1     ,

which is the most recent  observations at time , and the  × 1 vector of the observed true
values during this period,

 0 = (
0
−+1     

0
−1 

0
 )
0.

1When the data set consists of -step ahead forecasts for multiple values of , we can use the -step ahead

forecasts  during the traning period for the -step ahead forecast of +. In this cases, the weights  can

be different across , say . But the weights still use the information available at  and we omit the index  in

 for the sake of notational simplicity.
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We denote the  × 1 forecast error vector of the agent  during the training period as

 =  −  0 for  = 1     .

We let  = (1    )
0 be a non-random  × 1 discount vector with P

=1 = 1, whose

examples are to be discussed later. Given , we define the normalized forecast error of  (or

the forecast outlyingness) as

O =
|0|


=

¯̄
0( −  0 )

¯̄


, (2)

where  ∈ (0∞) is some dispersion measure of 0 that is affine invariant and measurable to
the information set at , say I = (∪=1{}≤).2 For instance, if {} is a random sample

from a common distribution across , we can consider the conditional root mean squared error

(RMSE),

 = (E[(0)2|I])12 (3)

when the conditional mean of 0 is assumed to be zero; or the conditional median absolute
deviation (MAD),

 = inf
©
 : P

¡¯̄
0

¯̄
≤ |I

¢ ≥ 12ª (4)

when the conditional median of 0 is assumed to be zero.3 We define the forecast depth of
agent  at time  as

D =
1

1 +O
, (5)

where it is obtained using the data set in the  training period from  −  + 1 to  and hence

D ∈ I. By construction, the forecast depth D takes values between zero and one; it is one

when the agent  shows perfect forecasts during the training period and hence yields  = 0.

Several examples of the discount vector  can be considered. In the forecast error vector

 = ((−+1 − 0−+1)     (−1 − 0−1) ( − 0 ))
0,

as we consider that the forecast performance for the most recent observations are more (or

2When 0 =  = 0, we define O = 0.
3 If the distribution of {} is heterogeneous across , we can consider O = |0

| , where  =

(1    )
0 be a  × 1 vector with 

=1 = 1 for each . In such cases,  can be alternatively defined as

(lim→∞ −1


=1 E

(0

)
2|I


)12 and lim→∞med1≤≤ inf { : P (|0

| ≤ |I) ≥ 12}, respectively.
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equally) important than the distant ones, we can let the th element of  = (1    )
0 as

 =
()P
=1()

for  = 1     , (6)

where (·) is some non-decreasing one-side kernel function. Examples include:

• the polynomial kernel, () = () for some  ≥ 1;

• the discount factor approach by Bates and Granger (1969), () = − for some   1;

• the Box—Cox transform weights by Diebold and Pauly (1987).

We can also let  be the normalized inverse of cross-sectional MSE, (1)
P

=1(−+1 −
0−+1)

2, at each time during the  training period. If we treat all the forecast errors dur-

ing the training period equally important, then we simply set  = 1 for all  = 1     .

Note that such choices of  do not require a balanced panel data structure in , that is

all forecasts are not necessarily available over the given training period. Therefore, for each

, we can even define a  × 1 heterogeneous discount vector  = (1    )
0 by letting

 = ()
P

=1() for  = 1      with  ≤ .

We propose to define the weights  for the forecast combination in (1) that is proportional

to the individual forecast depth (5). The forecast depth D naturally provides a ranking of

predictability through the entire training period among the forecasting models or agents, since

the better performing models have higher levels of forecast depth. Therefore, we can also use the

forecast depth as a tool to detect the under-performed forecasting models or agents. To design

a more robust forecast combination toward extremely poor forecasts, we trim out the forecasts

by the agents who belong to the low ranking group. More precisely, we set some trimming

parameter  ∈ (0 1) and let

 =
1{ bD ≥ } ( bD)P
=1 1{ bD ≥ } ( bD)

, (7)

where 1{·} is the binary indicator and  (·) is some scalar weight function  : [0 1] → [0 1].4

4For most of the cases, we can simply choose  () = . Instead of the hard-threshold trimming, we could

consider a smooth transition function such as
exp

− (1− ())2 − exp ()
1− exp () if   

1 if  ≥ 

for some smoothing parameter   0. As →∞, it approaches to a binary indicator function 1{ ≥ }.
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bD is the forecast depth estimator that is defined as

bD =
1

1 + bO

with bO =

¯̄
0

( −  0 )
¯̄

b (8)

for some consistent estimator b. For each of the aforementioned examples in (3) and (4), we
can use

b = Ã 1


X
=1

0( −  0 )( −  0 )
0

!12
(9)

and b = med1≤≤ ¯̄0( −  0 )
¯̄
, (10)

respectively. Since we define the training period over a rolling window of the most recent 

periods, the weight in (7) is naturally time-varying.

Using the novel weight (7) for forecast combination (1), we define the depth-weighted forecast

combination as a form of the trimmed depth-weighted mean given as

b+ = X
=1

+ =

P
=1 1{ bD ≥ } ( bD)+P

=1 1{ bD ≥ } ( bD)
, (11)

where {+}=1 are the individual -step ahead forecasts for 0+ at the current time .
The forecast combination in (11) assigns the weight on + based on its forecast depth

during the  training period. For this reason, we choose a small  when the time series of

interest 0 is very volatile and hence the forecasting performance of each agent varies over time.

If the th agent’s forecast error 0 is near zero and hence the forecast depth estimator bD

is near maximum (i.e., near unity), then its forecast + gets a high weight; if its forecast

error is too large, on the other hand, it gets a low weight or even a zero weight by being

trimmed. In this sense, unlike the forecast combination based on the equal weights or forecast

mean squared errors, the depth-weighted forecast combination b+ in (11) is robust toward
very under-performed (or outlying) forecasts over the training period. Note that the trimming

scheme is random as it depends on bD, so b+ is a randomly trimmed forecast combination.
Based on the choice of  and (·), b+ in (11) becomes other popular forecast combinations.

For instance, when  (·) = 1, b+ is the equally-weighed combined forecast with trimming,
which converges to the trimmed mean of + as  → ∞ if it exists; when  = 0 in addition,

it is simply the equally-weighed combined forecast. When  = max1≤≤ bD, b+ is the same
as + whose forecast depth is the maximal; with  = 1, this maximal depth forecast

corresponds to the forecast of agent  whose forecasts has been the most accurate during the

training period (i.e., ex ante the best single forecast). When + has a density function
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that is elliptically symmetric about its mode, this maximal depth forecast becomes the median

combination forecast.

3 Comparisons and Discussions

3.1 Projection Depth

The forecast depth D developed in the previous section is in a similar form as one of the popular

data depths: the projection depth (e.g., Liu, 1992; Zuo and Serfling, 2000). The data depth

measures the outlyingness of a given multivariate sample point with respect to its underlying

joint distribution, which is formulated as an index between 0 and 1. If the data point is at

the center of the distribution, then the depth value of the data point becomes unity. If a data

point locates very far from the center, then the depth value of the point becomes near zero.

Recall that, for a -dimensional random sample {}, the projection depth of  is given as

 = 1[1 + ], where the projection-based outlyingness is defined as

 = sup
∈R:kk=1

|0 − (0)|
(0)

(12)

for some univariate location and dispersion parameters, (0) and (0), of the distribution

of 0.  is defined to be zero when 0 − (0) = (0) = 0.

Comparing the forecast depth D (or forecast outlyingness in (2)) and the projection depth

 (or projection-based outlyingness in (12)), we can point two important differences. First,

the forecast depth considers the distance from each forecast 0 toward the observed true
0 0 (i.e., the forecast error 0 = 0( −  0 )), whereas the projection depth considers

the distance toward a central location parameter (0) of the distribution of 
0, such as the

mean or the median. Since the true 0 0 is not necessarily the center of the distribution of

the forecasts 0, the forecast depth has different implications from the projection depth. It

should be emphasized that the original notion of depth is mainly motivated to define a robust

central location of multi-dimensional variables. On the other hand, for the forecasting problem,

the target location is not the centrality of the distribution of the forecasts ; instead, the target

is already given as the observed true value vector  0 . The forecast depth provides a normalized

distance from a vector of forecasts  toward the vector of observed values 
0
 .

Second, we preset the discount vector in defining the forecast depth that can be potentially

heterogeneous, whereas the projection depth needs to search for the  vector as defined in (12) so

that the outlyingness is maximized to the particular direction. This is possible in the forecasting

problem because the researcher often has ordering of the importance among the forecast errors

during the training period as we see several examples in the previous section. Though it seems
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unnecessary, one could find  in defining the forecast depth as  in the projection depth. It

should be noted that, however, searching for such an  vector is computationally very costly

when the dimension of  (i.e., the length of training period ) exceeds 2, which is also a well-

known limitation of the projection depth.

Though the forecast depth is different from the standard data depths, it still satisfies the

typical properties of the data depth (e.g., Zuo and Serfling, 2000). In particular, for a given ,

D does not change from any rescaling of the forecast error vector  (Affine Invariance); D

reaches the maximal value 1 if the model  makes perfect prediction (Maximality at Center);

D decreases monotonically as it moves away from the maximal depth location, the deepest

point (Monotonicity Relative to the Deepest Point); and D reaches to the minimal value 0

as the forecast error diverges (Vanishing at Infinity). The monotonicity yields a well-defined

quantile function of 0 since it excludes any quantile-crossing problem, which is to be the key
to construct a depth-based trimming in the weight . The last property is important for the

forecast robustness against very under-performed forecasting agents or, in other words, outliers.

The depth-weighted forecast combination in (11) is in the form of the depth-weighted

trimmed mean (e.g., Zuo, 2006), and hence it shares the same robustness properties toward

outliers (i.e., the very poor forecasts during the training period). In particular, unlike the equal

weight combination or inversed forecast mean squared error combination, the depth-weighted

forecast combination does not swing much or even stays unchanged, when some agents in the

sample yield extremely poor performance during the training period. For instance, when we use

the MAD for  as in (4), it can be shown that the breakdown point (i.e., the smallest fraction

of contaminants in a sample that causes the forecast combination to break down) can reach to

the maximal level. For more discussions of the depths and applications in panel data, see Lee

and Sul (2019, 2021).

3.2 Inversed MSE

Forecast combination based on the inversed forecast mean squared errors (iMSE hereafter; e.g.,

Stock and Watson, 2001) is a popular approach in practice. For the  × 1 forecast error vector
, the sample iMSE is obtained as [

0
]

−1 and the iMSE combination defines the weight
 in (1) as

[0]
−1P

=1[
0
]

−1 =

h
(1)

P
=1

¡
−+1 − 0−+1

¢2i−1
P

=1

h
(1)

P
=1

¡
−+1 − 0−+1

¢2i−1 . (13)

However, one limitation of this weight is that it could overly praise the perfect forecast during

the training period, especially when the training period is short. As an extreme example, when

8



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

‐2.5 ‐2 ‐1.5 ‐1 ‐0.5 0 0.5 1 1.5 2 2.5

weight(iMSE)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

‐2.5 ‐2 ‐1.5 ‐1 ‐0.5 0 0.5 1 1.5 2 2.5

weight(FD_mse)

weight(FD_mad)

weight(MD)

Figure 1: Comparison of weights

we only have one training period (i.e.,  = 1), if one agent  yields the perfect forecast and hence

 = 0 or (
2
)
−1 is unbounded, then her weight  in (13) for the forecast combination becomes

1 even when there are other agents who produce reasonable or even near perfect forecasts. In

comparison, the forecast depth is always bounded by unity by construction and it will distribute

proper weights both to the agent with perfect forecast and to the other agents who produce near

perfect forecasts. The forecast-depth weight is a more sensible choice in this case, because the

single best performer now is not necessarily the best performer in the next periods.

It is also worthy to note that iMSE [0]
−1 can be compared with the forecast depth

based on the Mahalanobis distance of :

1

1 + 0bΣ−1 
, (14)

where 0  bΣ  ∞ is the  ×  sample variance matrix of . If we ignore the variance and

simply let bΣ be the identify matrix multiplied by , then it becomes (1 + [0])
−1. It

uses the -dimensional vector of the forecast error  without any discount vector , but it

counts the forecast performance of a specific time during the training period more heavily if the

cross-sectional variance of  (i.e., MSE at the specific time) is small.

As an illustration, we compare iMSE with the following three forecast depths with  = 1,

using 150 simulated forecasts generated from the standard normal when the true value is zero:

FD, the sample forecast depth in (8) using RMSE b in (9); FD, the sample forecast

depth in (8) using MAD b in (10); MD, the sample forecast depth based on the Mahalanobis
forecast distance in (14). The graph on the left in Figure 1 shows the weights  based on iMSE

given in (13). We can see that the weight based on the iMSE assigns a huge weight only on a
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particular agent, whose forecast error during the training period is near zero. In comparison,

the graph on the right in Figure 1 shows the weights based on three forecast depths. Unlike

iMSE, we can see that the forecast depths well distribute the weights. This difference can be

understood from the fact that the forecast depth in (8) considers the historic absolute deviations

of each forecasting agent, whereas the iMSE considers each historic squared errors. Compared

with MD, the weights based on the forecast depths FD and FD are sharply concentrated

at zero but levy less penalties on outliers. It hence advocates the usefulness of trimming on the

forecast-depth based weights.

4 Limiting Distribution of Combined Forecast

We now derive limiting distribution of the depth-weighted forecast combination (11), from which

we can better understand the factors that affect the robustness of the depth-weighted forecast

combination. We can also conduct further inferences using the limiting distribution result, such

as constructing the prediction intervals, which is presented at the end of this section.

At time , for the -step ahead forecast, we define the bivariate forecast error vector as

: =

Ã
0

+ − 0+

!
∈ R2, (15)

which is assumed to be a random sample from an underlying joint distribution  for all . We

denote the marginal distributions as 1 and 2.
5 The depth estimator bD is only based on

the forecast errors in the training set  through the form of 0 = 0( −  0 ), and hence

we write bD = D(0 b1) and D = D(0 1), where b and ( b1 b2) respectively
denote the joint and marginal empirical distributions of :.

6 Similarly, we denote bO =

O(0 b1), O = O(0 1),  = (1), and b = ( b1).
Using these notations, we can rewrite the sample forecast error of the depth-weighted forecast

combination b+ in (11) as
( b) ≡ b+ − 0+

=
(1)

P
=1

¡
+ − 0+

¢
1{D(0 b1) ≥ } (D(0 b1))

(1)
P

=1 1{D(0 b1) ≥ } (D(0 b1))
5 If we further suppose that, for each , the forecast error −0 is stationary over , we can drop the subscript

 in the distribution notations. However, it is not required to derived the results below. It is important to note

that, however, imposing stationarity of the forecast error does not exclude the potential nonstationarity of the

observed series 0 itself and the forecast series  for each .
6By the affine invariance property of the forecast depth, we have D(0 1) = D(  1), where  1 is

the joint distribution of  ∈ R.
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=

R
21{D(1 b1) ≥ } (D(1 b1)) b ()R
1{D(1 b1) ≥ } (D(1 b1)) b1 (1) (16)

for given , where  = (1 2)
0 ∈ R2. As the number of forecasts  increases, ( b) will converge

to a depth-weighted mean forecast error given by

() =

R
21{D(1 1) ≥ } (D(1 1)) ()R
1{D(1 1) ≥ } (D(1 1))1 (1) (17)

provided sup∈R |b − | = (1) and sup∈R2 | b() − ()| = (1), which holds in general

from the standard results. We can rewrite the numerator of () in (17) as

Z ½Z
22|1 (2)

¾
1 {D(1 1) ≥ } (D(1 1))1 (1) , (18)

where
R
22|1 (2) = E

£
+ − 0+|0

¤
. This expression implies that the depth-weighted

mean forecast error () in (17) is a weighted average of the projection of + − 0+ on a

linear combination of the past forecast errors  during the training period, where the weights

are given by 1{D(· 1) ≥ } (D(· 1)).
To obtain the asymptotic representation of the depth-weighted forecast combination, we

define the influence function of () in (17). We let  be the point-mass distribution at

 ∈ R2 and ( ) = (1− ) +  be a version of  that is contaminated by an  amount

of an arbitrary point-mass distribution at , where 0 ≤  ≤ 1. Then, the influence function of
() is defined as

(; ()) = lim
→0+

1



n
(( ))− ()

o
and the limiting distribution of ( b) can be obtained from

√

³
( b)− ()

´
=

1√


X
=1

(:; 
()) +  (1) (19)

for given . To this end, we first assume the following conditions, similarly as Wu and Zuo (2009)

and Lee and Sul (2019). We let  (·) = −((1− ))(·) and  (·) = ((1− ))(·).

Assumption 1 (i) (·) is continuously differentiable with a bounded derivative ̇ (·). For each
, it holds that (ii)

R
1{D(1 1) ≥ } (D(1 1))1 (1)  0 and

R |2|1{D(1 1) ≥
} (D(1 1)) ()  ∞; (iii) ( b1) (1) ∈ (0∞) with satisfying sup∈R |( b1) −
(1)| = (1); (iv) sup∈R2 | b()− ()| = (1); (v) the joint density function (1 2) of
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: exists and satisfies
R
(2 − ())(1 2)2 ∞ at 1 = (1) (1).

The following theorem summarizes the asymptotic properties of ( b) in (16). The proof is
in the Appendix.

Theorem 1 Suppose Assumption 1 holds. Then, for given , , , and , ( b)→ 
() as

→∞. Furthermore, (19) holds, where

(:; 
()) =

1() + 2() + 3()R
1 {(1) ≤ 1 ≤ (1)} (D(1 1))1 (1)

with

1() = (+ − 0+ − ())1
©
(1) ≤ 0 ≤ (1)

ª
 (D(0 1)),

2() =

Z
(2 − ())1 {(1) ≤ 1 ≤ (1)} ̇ (D(1 1))(0;D(1 1)) () ,

3() =
1− 


 ()(

0;  (1))
Z
(2 − ()) {((1) 2)− ((1) 2)} 2,

and

(·;D(1 1)) =
O(1 1)(·;  (1))
 (1) (1 +O(1 1))2

,

and (·;  (1)) is the influence function of  (1). Consequently,

√
(( b)− ())→ N (0 2:)

as →∞, where 2: = E
£
(:; 

())
2
¤
.

One important finding is that the specific form of the asymptotic variance 2: depends on

the the influence function of  =  (1). Therefore, the choice of  heavily affect the robustness

property of the depth-weighted forecast combination b+. For instance, for the RMSE  in (3),

we can derive the influence function of  as

(1;  (1)) =
21 − E[(0)2|I]
2(E[(0)2|I])12

when 0  E[(0)2|I] ∞ using influence function of the mean. For the MAD  in (4), we

let sgn() = 1 if   0; 0 if  = 0; −1 if   0. Then, using the influence functions of the median,

12



we can derive

(1;  (1)) =
sgn (1 −  (0))
21 ( (0))

,

where  (0) = inf { : P (|0| ≤ |I) ≥ 12} is the conditional median of 0, provided
that the marginal density function 1 (·) of 0 at  satisfies 0  1 ( (

0)) ∞. Recall
that the mean has an unbounded influence function when the support of 1 is not bounded,

whereas the median has a bounded influence function. It yields that the influence function of

the RMSE is not necessarily bounded, whereas that of the MAD is bounded. For this reason,

the forecast combination using the MAD is more robust towards outliers or extremely under-

performed forecasts.

From Theorem 1, we can conclude that the depth-weighted forecast combination b+ satisfiesb+ → 
0
+ + () and

√
(b+ − ©0+ + ()

ª
) → N (0 2:) as  → ∞. Apparently,

when () = 0, b+ becomes a consistent forecast. A sufficient condition for () = 0 is

that the forecasts {+} are distributed symmetrically about the true value 0+ once extreme
forecasts are trimmed out. In this case, the 100(1 − )% prediction interval of 0+ can be

obtained as ∙b+ ± 2
b:√


¸
, (20)

where 2 is the (1−(2))th quantile of the standard normal distribution and b: is a consistent
estimator of 2:. Knowing that the weighted average of the individual interval forecasts does

not necessarily provide a correct coverage rate (e.g., Timmermann, 2006), the prediction interval

in (20) can be alternatively used, which does not rely on subsampling or bootstrap. Note that,

though the analytical form of 2: is complicated, it can be readily estimated as

b2: = X
=1

£√
 (+ − b+)¤2 =

P
=1

h√
1{ bD ≥ } ( bD) (+ − b+)i2hP

=1 1{ bD ≥ } ( bD)
i2

in this case, because b+ is the form of a cross-sectional weighted average.

5 Forecasting New COVID-19 Cases

We apply the depth-weighted forecast combination (11) to predict weekly COVID-19 cases in

the United States. The data set is collected from the Centers for Disease Control and Prevention

(CDC) COVID Data Tracker (https://covid.cdc.gov/covid-data-tracker/#forecasting_weekly-

deaths) as of August 7, 2021, which is update on August 11, 2021. The data set consists of

13



-step ahead weekly forecast history from 40 individual modeling groups for  = 1 2 3 4.7 It

also includes the -step ahead ensemble forecast that is reported in the weekly forecast digest

by the CDC.8 We use the past 50 weekly forecasts from the week ending on August 29, 2020

(when all the -step ahead forecasts became available) to the week ending on August 7, 2021.

We compare different forecast combination approaches, including the equally-weighted aver-

age of all the available forecasts at each , ensemble forecast reported by the CDC (“Ensem”);

inverse MSE based forecast combination (“iMSE”) as in (13); and the forecast-depth based com-

bination (FD) developed in this paper. For the forecast-depth based combination, for a given

training period size  = 2 3 4 5, we consider two types of the discount vector = (1    )
0:

• Type 1 (FD1):  = (02)
−

P
=1(02)

− for  = 1     ;
• Type 2 (FD2):  = ()

4
P

=1()
4 for  = 1     .

Both discount vectors have similar magnitudes. But Type 1 discounts the past information more

heavily with large ; Type 2 discounts the past information more heavily with small . For each

type, two forms of b are considered:
• Sample RMSE in (9): “FD1” and “FD2”;

• Sample MAE in (10): “FD1” and “FD2”.

For  (·), we simply let  () = . For the trimming parameter  , we consider the thresholds

at the 0% (no trimming), 10%, 20%, 30%, 40%, and 50% levels of the lowest estimated forecast

depth in the sample. For instance, at the 20% threshold, we set  such that (1)
P

=1 1{ bD 

} = 02. We also report the trimmed iMSE forecast combinations, where the trimming thresh-
olds are determined similarly as the forecast depth: 0% (no trimming), 10%, 20%, 30%, 40%,

and 50% levels of the lowest estimated iMSE in the sample. For each horizons , we obtain the

weights  based on the performance of the -step ahead forecasts during the training period.

Tables 1 to 4 report the out-of-sample forecast mean squared error (FMSE) comparisons

among different forecast combinations for -step ahead forecasting for  = 1     4, respectively.

For each , the values in the tables are the ratio of the FMSE of each combined forecast to

that of the equally-weighted forecast combination over the past (50 − ) weeks of forecasting,

where the weights for the forecast combinations of the iMSE and the forecast-depth at  are

7The list of the agents and details of the forecasting models can be found at

https://www.cdc.gov/coronavirus/2019-ncov/covid-data/mathematical-modeling.html.
8From April 13 to July 21, 2020, the ensemble was created by the arithmetic average of each prediction quantile

for all eligible models for a given location. The confidence interval at each prediction point is also calculated from

the corresponding quantile ensembles. (Busetti, 2017). However, starting on the week of July 28, 2020, which is

the sample period of our analysis here, the median prediction was instead used across all eligible models at each

quantile level. As of August 7, 2021, 23 models are included for the ensemble forecast. For further details about

the ensemble forecast, see https://covid19forecasthub.org/doc/ensemble/ for further details.
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obtained using the training period of ( − 1      − ). So, values less than 1 implies that the

FMSE is smaller than that of the equally-weighted forecast combination; smaller values implies

better performance.9 In each table,  is the training period size and “trim” is the trimming

proportion as we described above. The relative performance of different agents can change over

time, and we compute the weights over short rolling windows. For a given target forecasting

week , any agent  is dropped if it does not have at least  most recent forecasts to form the

training period. We hence do not need a balanced panel over the entire period; we only use a

short balanced panel of length +1 at each target forecasting week , whose individual members

can be different over . In each table of the -step ahead forecast,  reports the average of the

cross-sectional sample size  over the past (50 − ) weeks (i.e.,  = (50 − )−1
P50

=+1 ),

where  is the number of individuals who report the -step ahead forecast at  with  training

periods and hence used for forecast combination.

The main point of interest is how the forecast-depth based method performs even with a very

short training period. It is evident that the forecast combinations based on the forecast-depth

and the iMSE stand out; the forecast-depth based combination shows the best performance in

general. It does not show the typical “forecast combination puzzle”, where the equal weight

outperforms the estimated weights in forecast combination. For some cases, the iMSE combi-

nation outperforms the forecast-depth based method, but it is mostly for the cases when we do

not employ (enough) trimming. The trimming generally improves the FMSE though the change

is not strictly monotonic to the trimming proportion. However, the benefit from trimming is

much larger in FD than iMSE, and all the FD approaches eventually perform better than iMSE

with proper trimming for all the cases. Since we compare the FMSE, we expected that the

iMSE should perform better than FD as  increases, but the current results do not support it.

This seems because the weekly COVID-19 cases fluctuates much and the forecasting agents can

hardly provide good predictions over an extended period consistently. For the choice of b in
FD, it does not make big difference, but MAE outperforms RMSE in general.

Table 5 compares the forecast combinations based on the forecast-depth and the iMSE in

more details. In particular, it summarizes the bias ratios and the variance ratios between FD2

and iMSE for 2-step ahead forecasts in Table 2 above. It shows that the FMSE improvement of

FD2 mostly comes from the bias reduction.

In Figure 2, instead of averaging over the entire period as in the Tables 1 to 4, we depict the

weekly 1-step ahead forecast error ratio paths of Ensem, iMSE, FD1, and FD1 for  = 1

9Note that we drop one agent in the forecast pool, who repoted very erronuous forecasts between 3/13/2021

and 4/17/2021. If we compare the FMSE of the equally-weighted forecast combinations with (“EQ−1”) and
without (“EQ”) dropping this agent, we have

 1 2 3 4
−1 173.19 194.49 229.15 245.05

which shows that the equally-weighted forecast combination is prone to swing much by only one outlier.
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Table 1: 1-step ahead FMSE ratio to the equal-weight forecast combination

 trim  Ensem iMSE FD1 FD1 FD2 FD2

2 0.0 24.3 0.931 0.863 0.941 0.938 0.941 0.938

0.1 0.866 0.871 0.873 0.873 0.873

0.2 0.857 0.881 0.882 0.855 0.857

0.3 0.880 0.902 0.901 0.884 0.885

0.4 0.886 0.892 0.888 0.877 0.879

0.5 0.899 0.855 0.854 0.861 0.864

3 0.0 23.9 0.931 0.895 0.945 0.942 0.950 0.946

0.1 0.900 0.872 0.873 0.895 0.894

0.2 0.887 0.908 0.906 0.870 0.872

0.3 0.912 0.897 0.895 0.894 0.894

0.4 0.926 0.882 0.877 0.887 0.888

0.5 0.945 0.889 0.884 0.895 0.896

4 0.0 23.5 0.931 0.872 0.945 0.942 0.952 0.949

0.1 0.863 0.875 0.876 0.900 0.900

0.2 0.869 0.913 0.911 0.907 0.908

0.3 0.894 0.896 0.895 0.902 0.902

0.4 0.913 0.889 0.885 0.903 0.903

0.5 0.953 0.897 0.893 0.915 0.916

5 0.0 23.1 0.931 0.851 0.944 0.942 0.949 0.946

0.1 0.844 0.874 0.876 0.885 0.886

0.2 0.852 0.912 0.912 0.916 0.916

0.3 0.880 0.895 0.895 0.915 0.915

0.4 0.897 0.903 0.900 0.919 0.919

0.5 0.933 0.917 0.914 0.928 0.929

Note: Values in the table are the ratio of the forecast mean square error of each combined forecast to that of the

equally-weighted forecast combination, that are averaged over the past 50 weeks of forecasting, 8/29/2020 -

8/7/2021. Ensem is ensemble forecast by CDC; iMSE is inverse MSE forecast combination; FD1 is the

forecast-depth combination with type-1  and RMSE  ; FD1 is the forecast-depth combination with

type-1  and MAD  ; FD2 is the forecast-depth combination with type-2  and RMSE  ; FD2 is the

forecast-depth combination with type-2  and MAE .
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Table 2: 2-step ahead FMSE ratio to the equal-weight forecast combination

 trim  Ensem iMSE FD1 FD1 FD2 FD2

2 0.0 22.8 0.943 1.120 0.962 0.963 0.940 0.933

0.1 1.110 0.916 0.916 0.888 0.881

0.2 1.100 0.891 0.893 0.875 0.865

0.3 1.100 0.874 0.877 0.831 0.826

0.4 1.090 0.866 0.869 0.834 0.829

0.5 1.080 0.824 0.828 0.761 0.759

3 0.0 22.4 0.943 0.949 0.971 0.973 0.950 0.943

0.1 0.934 0.923 0.925 0.896 0.889

0.2 0.944 0.897 0.900 0.884 0.875

0.3 0.953 0.882 0.887 0.845 0.841

0.4 0.971 0.867 0.872 0.848 0.844

0.5 0.976 0.861 0.866 0.787 0.785

4 0.0 22.0 0.943 0.934 0.978 0.981 0.959 0.954

0.1 0.911 0.934 0.935 0.910 0.904

0.2 0.905 0.908 0.911 0.903 0.896

0.3 0.917 0.893 0.898 0.856 0.852

0.4 0.959 0.882 0.887 0.855 0.852

0.5 0.952 0.862 0.868 0.826 0.823

5 0.0 21.6 0.944 0.945 0.985 0.987 0.969 0.965

0.1 0.941 0.944 0.944 0.923 0.918

0.2 0.908 0.915 0.918 0.914 0.909

0.3 0.943 0.907 0.911 0.874 0.871

0.4 0.950 0.899 0.902 0.888 0.885

0.5 0.937 0.904 0.908 0.839 0.837

Note: Values in the table are the ratio of the forecast mean square error of each combined forecast to that of the

equally-weighted forecast combination, that are averaged over the past 50 weeks of forecasting, 8/29/2020 -

8/7/2021. (Because of a number of missing forecast reports, the forecasts included in the equal-weight forecast

combination can be slightly different across . This results in slight variations of the FMSE ratio of the

ensemble forecast to the equal-weight forecast combination over .)
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Table 3: 3-step ahead FMSE ratio to the equal-weight forecast combination

 trim  Ensem iMSE FD1 FD1 FD2 FD2

2 0.0 21.0 0.989 0.832 0.924 0.915 0.920 0.911

0.1 0.819 0.853 0.848 0.825 0.823

0.2 0.792 0.791 0.789 0.796 0.794

0.3 0.789 0.794 0.791 0.773 0.771

0.4 0.769 0.764 0.761 0.731 0.730

0.5 0.789 0.744 0.739 0.710 0.709

3 0.0 20.6 0.989 0.869 0.932 0.923 0.925 0.916

0.1 0.855 0.863 0.858 0.827 0.825

0.2 0.835 0.788 0.787 0.801 0.800

0.3 0.831 0.802 0.799 0.784 0.782

0.4 0.826 0.782 0.777 0.734 0.734

0.5 0.805 0.748 0.744 0.695 0.696

4 0.0 20.1 0.989 0.853 0.940 0.931 0.934 0.924

0.1 0.832 0.867 0.862 0.832 0.830

0.2 0.815 0.790 0.789 0.809 0.807

0.3 0.799 0.801 0.798 0.785 0.783

0.4 0.795 0.791 0.786 0.744 0.744

0.5 0.787 0.747 0.744 0.723 0.722

5 0.0 19.6 0.990 0.857 0.944 0.934 0.938 0.929

0.1 0.832 0.866 0.860 0.841 0.839

0.2 0.820 0.788 0.786 0.813 0.811

0.3 0.777 0.803 0.799 0.769 0.768

0.4 0.766 0.785 0.780 0.742 0.741

0.5 0.739 0.739 0.736 0.721 0.720

Note: Values in the table are the ratio of the forecast mean square error of each combined forecast to that of the

equally-weighted forecast combination, that are averaged over the past 50 weeks of forecasting, 8/29/2020 -

8/7/2021.
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Table 4: 4-step ahead FMSE ratio to the equal-weight forecast combination

 trim  Ensem iMSE FD1 FD1 FD2 FD2

2 0.0 17.6 0.949 0.923 0.948 0.937 0.943 0.930

0.1 0.900 0.876 0.871 0.876 0.870

0.2 0.894 0.822 0.820 0.819 0.817

0.3 0.893 0.793 0.789 0.780 0.776

0.4 0.873 0.765 0.765 0.744 0.741

0.5 0.888 0.784 0.783 0.772 0.770

3 0.0 17.0 0.949 0.911 0.959 0.947 0.951 0.937

0.1 0.897 0.880 0.875 0.879 0.873

0.2 0.873 0.843 0.839 0.832 0.828

0.3 0.875 0.796 0.792 0.772 0.768

0.4 0.845 0.778 0.778 0.775 0.771

0.5 0.886 0.779 0.778 0.792 0.789

4 0.0 16.4 0.948 0.928 0.966 0.954 0.959 0.943

0.1 0.905 0.883 0.878 0.881 0.875

0.2 0.912 0.843 0.839 0.827 0.823

0.3 0.908 0.792 0.789 0.761 0.758

0.4 0.853 0.776 0.776 0.787 0.781

0.5 0.858 0.732 0.733 0.727 0.727

5 0.0 15.8 0.948 0.906 0.962 0.948 0.955 0.939

0.1 0.885 0.878 0.871 0.876 0.869

0.2 0.901 0.838 0.831 0.830 0.824

0.3 0.930 0.757 0.757 0.734 0.734

0.4 0.837 0.764 0.764 0.744 0.743

0.5 0.792 0.792 0.794 0.705 0.708

Note: Values in the table are the ratio of the forecast mean square error of each combined forecast to that of the

equally-weighted forecast combination, that are averaged over the past 50 weeks of forecasting, 8/29/2020 -

8/7/2021.
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Table 5: Comparison between FD and iMSE

 trim FD2 iMSE Ratio (FD/iMSE)

bias stdv bias stdv bias stdv mse

2 0.0 -2497 204259 7520 223608 -0.332 0.913 0.834

0.1 -1230 198483 8547 222433 -0.144 0.892 0.795

0.2 -310 196746 8123 221738 -0.038 0.887 0.786

0.3 714 192212 9046 221677 0.079 0.867 0.751

0.4 4313 192573 10507 220445 0.410 0.874 0.762

0.5 3492 184243 11998 219330 0.291 0.840 0.704

3 0.0 -2759 207473 3970 208199 -0.695 0.997 0.993

0.1 -1538 201465 4979 206508 -0.309 0.976 0.951

0.2 -902 199823 5240 207571 -0.172 0.963 0.926

0.3 391 195373 6891 208545 0.057 0.937 0.877

0.4 3754 196203 8156 210470 0.460 0.932 0.868

0.5 3162 189271 11974 210770 0.264 0.898 0.804

4 0.0 -2675 210510 6363 208627 -0.420 1.009 1.020

0.1 -1658 204900 6790 206073 -0.244 0.994 0.988

0.2 -1165 203155 6180 205332 -0.189 0.989 0.978

0.3 -12 198436 8219 206671 -0.001 0.960 0.920

0.4 2985 198852 11271 211167 0.265 0.942 0.884

0.5 4292 191383 16111 210139 0.266 0.911 0.825

5 0.0 -954 213058 10026 211705 -0.095 1.006 1.010

0.1 -87 207665 11954 211112 -0.007 0.984 0.965

0.2 635 206144 9686 207524 0.066 0.993 0.985

0.3 1351 201824 11094 211446 0.122 0.954 0.909

0.4 4839 202139 15899 211872 0.304 0.954 0.906

0.5 6598 194893 20289 210096 0.325 0.928 0.854

Note: “bias” is the average forecast bias; “stdv” is the average standard deviation of the forecast error; and

“mse” is the average forecast mean squared error. Values in the table are based on the 2-step ahead forecasts

using the same data set as in Table 2.
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Figure 2: Forecast error ratio to the equal-weight forecast combination

and with 30% trim. Since we consider the case with  = 1 period of training, FD1 = FD2,

and FD1 = FD2. We can see that iMSE is quite volatile and some error ratios (to the

error of equally-weighted forecast combination) are even off the boundary. Ensem is still volatile

though at a much smaller scale than iMSE. In comparison, the forecast error ratio paths of

FD1 and FD1 show very little fluctuations and they mostly lie below 1, which implies

that their forecast errors are smaller than that of the equally-weighted forecast combination.

Figure 3 depicts the weights based on FD1, FD1, and iMSE on a random date, October

10, 2020, with  = 1 and the 1-step ahead forecasts. Unlike the forecast-depth based forecast

combinations, it shows that the weight based on iMSE assigns 99% of the total weight only on

three agents, which are 0.072, 0.171, 0.745, where the weight 0.745 is out of the chart.

Finally, based on the available forecasts up to the week ending September 4, 2021, we report

predictions for the next 4 weeks (ending on 8/14/2021, 8/21/2021, 8/28/2021, 9/4/2021) as of

August 7, 2021. For each -week ahead prediction ( = 1 2 3 4), we consider 25 different cases of

 = 1     5 and  = 01     05 for each of the four forecast combinations, FD1, FD1,

FD2, and FD2. (Hence, 100 different forecast combinations for each .) Figure 4 reports

the predictions of the average of these depth-weighted forecast combinations in black circle

line (FD) and the ensemble forecast reported by the CDC in red triangle line (Ensemble). The

predictions between these two methods are quite similar. However, the noticeable difference is in

their prediction intervals. The pointwise 95% prediction interval of the FD forecast combination

point is depicted by the shaded area, which is obtained as the maximum of the upper bound
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Figure 3: Weights of forecastg combinations

and the minimum of the lower bound points of the 95% prediction intervals of all the 100 depth-

weighted forecast combinations using the normal approximation based on (20). Compared with

the prediction interval of the ensemble forecast reported by CDC (in the dashed vertical lines),

it shows much narrower bounds.

6 Concluding Remarks

In this paper, we develop the forecast depth and a depth-weighted forecast combination with

trimming. Since the weights are not obtained by minimizing a loss function, we do not discuss

any optimality properties. However, the weights can be calculated even when we have many

forecasts but the training period is as short as just one, and hence it has much potential in

practice as complementing other forecast combinations. In comparison, when long training

period is available, we can apply LASSO in estimating time-invariant weights by minimizing a

2 loss function with 1 penalty terms (e.g., Diebold and Shin, 2019), from which we can obtain

weights on each forecasting individual with selection (i.e., trimming).

We can extend the forecast combination idea to multivariate forecasting. Since we can

construct depth-based contour (i.e., multivariate quantile), it can provide a ranking among

different models based on their forecast performance for multiple economic variables together.

In addition, depending on the choice of the dispersion term , the depth-weighted forecast

combination does not necessarily require existence of the moments of the forecasts. Therefore,

it can be applied for financial data with fat-tailed distributions.

22



0

5

10

15

20

25
x 100000

95% C.I. of FD

Ensemble

FD

95% C.I. of Ensemble

Figure 4: COVID-19 New Cases Forecast (US National)

Appendix: Proof of Theorem 1

To simplify the notations, we drop the subscript “” in the distribution notations in the proof.

So, we simply denote the joint distribution and density of : in (15) as  and  respectively;

the marginal distributions as 1 and 2. The corresponding empirical distributions are denoted

as b , b1, and b2, respectively. Over the proof,  = (1 2)0 ∈ R2 are used as generic variables
of functions and in the integrals. We also define

b(·) =
√
( b1(·)− 1(·)),b(·) =
√
(D(· b1)−D(· 1)).

The consistency follows from Lemma A.5 and Theorem 6 of Zuo (2006) because we have

sup
1∈R

|D(1 b1)−D(1 1)| = sup
∈R

¯̄̄̄
¯ 1

1 + |1| ( b1) − 1

1 + |1| (1)

¯̄̄̄
¯

≤ sup
∈R

⎧⎨⎩
¯̄̄
( b1)− (1)

¯̄̄
( b1) O(1 1)

1 +O(1 1)

⎫⎬⎭ = (1)

as we assume sup∈R |( b1) − (1)| = (1) and (·) ∈ (0∞). Note that O(1 1) =
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|1| (1) and O(1 1)(1 + O(1 1)) ∈ [0 1] by construction. The asymptotic normal-
ity follows similarly as the proof of Theorem 4.1 in Wu and Zuo (2009), so we sketch the proof

here. Recall that we define  (·) = −((1− ))(·) and  (·) = ((1− ))(·), where  ∈ (0 1)
is the trimming parameter introduced in (7). Since  (·)   (·) by construction, we write

√

³
( b )− ( )

´
=

√

R
∗21{D(1 b1) ≥ } (D(1 b1)) b ()R
1{D(1 b1) ≥ } (D(1 b1)) b1 (1)

=

√

R ( 1)
( 1)

nR
∗2 b2|1 (2|1)o (D(1 b1)) b1 (1)R ( 1)
( 1)  (D(1 b1)) b1 (1) ,

where ∗2 = 2 − ( ). We decompose the numerator into

1 =
√


Z (1)

(1)

b(1) (D(1 1)) b1(1),
2 =

Z (1)

(1)

b(1)√n (D(1 b1))− (D(1 1))
o
 b1(1),

2 =
√


(Z ( 1)
( 1) −

Z (1)

(1)

)b(1) (D(1 b1)) b1(1),
where b(1) = R ∗2 b2|1 (2|1).

For 1, we immediately have

1 =
√


Z
∗21{D(1 1) ≥ } (D(1 1)) b () = 1√



X
=1

1,

where

1 = (+ − 0+ − ( ))1
©
(1) ≤ 0 ≤ (1)

ª
 (D(0 1)).

For 2, we note that sup1∈R |b(1) − (1)| = (1) with (1) =
R
∗22|1 (2|1) from the

standard results of nonparametric conditional expectation estimators. We thus have

2 =

Z (1)

(1)

(1)̇ (b∆(1)) b(1) b1(1) +  (1)

for some b∆(1) between D(1 b1) and D(1 1), where sup1∈[(1)(1)] |b∆(1)−D(1 1)| ≤
sup1∈[(1)(1)] |D(1 b1)−D(1 1)| ≤  sup∈R |( b1)− (1)| =  (1) for some positive

 ∞. By Lemma A.3 of Wu and Zuo (2009), sup1∈[(1)(1)](1+ |1|)| b(1)| = (1) and
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there exists (1;D(1 1)) for 1 ∈ R such that b(1) = R (1;D(1 1))b(1) + (1)

uniformly over 1 ∈ [(1) (1)]. Similarly as the proof of Theorem 2 in Lee and Sul (2019),

therefore, we can verify that

2 =

Z (1)

(1)

(1)̇ (D(1 1))
µZ

(1;D(1 1))b (1)¶ 1(1) +  (1)

=

ZZ
∗21 {(1) ≤ 1 ≤ (1)} ̇ (D(1 1))(1;D(1 1)) ()b (1) +  (1)

=
1√


X
=1

2 +  (1) ,

where

2 =

Z
∗21 {(1) ≤ 1 ≤ (1)} ̇ (D(1 1))(0;D(1 1)) ()

and (·;D(1 1)) is the influence function of D(· 1) given by

(1;D(1 1)) =
O(1 1)(1;  (1))
 (1) (1 +O(1 1))2

with (·;  (1)) being the influence function of (1). For 3, we similarly have

3 =
√


Z ( 1)
(1)

(1) (D(1 1))1(1)

−√
Z ( 1)
(1)

(1) (D(1 1))1(1) +  (1)

=
√


ZZ ( 1)
(1)

∗2 (D(1 1))(1 2)12

−√
ZZ ( 1)

(1)

∗2 (D(1 1))(1 2)12 +  (1)

=

Z
∗2
√

n
( b1)− (1)

o
 (D((1) 1))((1) 2)2

−
Z

∗2
√

n
( b1)− (1)

o
 (D((1) 1))((1) 2)2 +  (1)

=
1√


X
=1

3 +  (1) ,
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where

3 =  () (
0;(1))

Z
∗2((1) 2)2

− ()(
0;(1))

Z
∗2((1) 2)2

since D((1) 1) = D((1) 1) =  . Note that the influence functions of (1) and (1)

are given as

 (1;(1)) = ((1− ))(1;  (1)),

(1;(1)) = −((1− ))(1;  (1)).

We can similarly verify
R ( 1)
( 1)  (D(1 b1)) b1 (1) = R (1)(1)

 (D(1 1))1 (1) +  (1) in

the denominator, and the desired result follows by combining the expressions 1, 2, and 3

above. Q.E.D.
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