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Standardization and Estimation of the Number of
Factors for Panel Data∗
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Abstract Practitioners often standardize panel data before estimating a fac-
tor model. In this paper we show an example that the standardization leads to
inconsistent estimation of the factor number. When the common component
exhibits strong heteroskedasticity, the conventional eigenvalue-based decompo-
sitions are consistent but standardization does not necessarily result in consistent
estimation. To overcome this issue, we recommend using a “minimum-rule”
whereby the minimum factor-number estimated from both the conventional and
standardized panel is used. Monte Carlo studies and an empirical application are
provided.
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1. INTRODUCTION

Factor models are increasingly being used in empirical economics. They are
used in forecasting (Stock and Watson, 2002), macroeconomic modelling and
policy analysis (Bernanke and Boivin, 2003; Bernanke et al., 2005), and more
recently in price index construction (Bajari and Benkard, 2005; Oulton, 2008).

Approximate factor models permit weak heteroskedasticity (e.g. Chamber-
lain and Rothschild, 1983; Bai and Ng, 2002a). Under weak heteroskedasticity
the principal component (PC) decomposition can be used to consistently esti-
mate the factor-number and factor structure as N (cross sections) and T (time
series) grow large (e.g. Bai, 2003; Bai and Ng, 2002a). In practice however
the heteroskedasticity may be so prominent that the assumption of weak het-
eroskedasticity is inappropriate. Conventional solution to this problem is stan-
dardization: Standardize the data by dividing each time-series in the panel by
its sample standard deviation. For example, Stock and Watson (2002), Bai and
Ng (2006, 2008), Boivin and Ng (2006), and Kapetanios and Pesaran (2007)
standardize the data in their respective empirical sections prior to running a PC
decomposition. (In addition, statistical packages such as Stata and EViews offer
principal component decompositions based on standardized data.) Standardiza-
tion ensures that each re-scaled series has unit sample variance, such that by
construction no heteroskedasticity (in terms of within-group sample variance)
remains in the observed series. Greenaway-McGrevy et al. (2012b) show that
the factor number estimators based on the PC decomposition of standardized data
are consistent when the source of heteroskedasticity is the idiosynratic compo-
nent.

The main purpose of the present paper is to examine a potential problem
of standardization with regard to the estimation of the number of the common
factors. We find that the validity of standardization is dependent on whether the
main source of heteroskedasticity is the idiosyncratic component or the common
component. When heteroskedasticity mostly comes from the idiosyncratic error,
the PC estimation of the factor model would be consistent when applied to the
standardized panel. But if the panel has excessive heteroskedasticity due to un-
bounded factor loadings, then standardization may create heteroskedasticity in
the re-scaled idiosyncratic error and lead to inconsistency. In particular, the IC
criteria (Bai and Ng, 2002a) applied to the standardized panel may over-estimate
the factor number.

Yet in practice the source of the heteroskedasticity is not known, so the
econometrician may not be able to tell whether standardization will help or hin-
der identification of the factor model. Our findings do however provide some
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advice for practitioners to overcome this problem. Noting that estimators over-
estimate the factor-number when inconsistent, we use a minimum rule (as done
by Greenaway-McGrevy et al., 2012a, for panels with strong serial correlation),
whereby the minimum factor-number estimated from both the conventional and
standardized panel is used as a final estimate. This minimum rule would restore
consistency of the factor number estimation in many cases when the source of
heteroskedasticity is unclear.

The remainder of the paper is organized as follows. In the next section we
discuss the cases where the standardization method fails. Section 3 reports re-
sults of Monte-Carlo studies. Section 4 presents an empirical example, in which
the Bai-Ng ICp2 criterion gives a reasonable factor number without standardiza-
tion but standardization yields unreasonable estimates. Section 5 concludes.

2. FAILURE OF STANDARDIZATION

Consider the factor model X = FΛ′ + e in matrix notation, where X and
e are the T ×N matrices of Xit and eit respectively, F is the T × r matrix of
common factors, and Λ is the N× r matrix of factor loadings. We are interested
in determining the rank r of important common shocks F using the data X .

Let kmax be given. The IC criteria of Bai and Ng (2002a) are defined by
IC(k) = lnV (k)+kg(N,T ) for some g(N,T ), where V (k) is the minimum value
of ∑

N
i=1 ∑

T
t=1(Xit−λ k′

i Fk
t )

2 that can be attained by adjusting λ k
i ∈Rk and Fk

t ∈Rk

for i = 1, . . . ,N and t = 1, . . . ,T . Then the minimizer k̂ of IC(k) over k =
0,1, . . . ,kmax is consistent under weak heteroskedasticity and serial correlation
for idiosyncratic errors and other regularity conditions (Bai and Ng, 2002a).
Greenaway et al. (2012b) provide a more flexible proof of consistency which
can be extended to the case of standardization. The part of their results rele-
vant to the current subject is rephrased below as Theorem 1. Let eigval j(·) stand
for the jth largest eigenvalue of the argument. The minimal eigenvalue is also
denoted by eigvalmin(·). We denote by ‖A‖ the square-root of the largest eigen-
value of A′A, i.e., the largest singular value of A, which is also called the matrix
2-norm of A.

Theorem 1 (from Greenaway-McGrevy et al., 2012b, Theorem 1). Suppose
that T−1F ′F converges to a finite nonsingular matrix. If (i) eigvalmin(N

−1Λ′Λ)≥
m> 0 for all N, (ii) ‖ 1

NT ee′‖=Op(C−2
NT ), where CNT =min(N1/2,T 1/2), and (iii)

eigval1(
1

NT ee′)/eigvalL(
1

NT ee′) = Op(1) for some L such that Lg(N,T )→ ∞,
then P(k̂ = r)→ 1 as N,T → ∞.
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In the above result, the maintained supposition that T−1F ′F converges to a
finite nonsingular matrix is standard in the literature, but it is notable that inte-
grated factors are not allowed. Extension to I(1) factors would be straightforward
if wanted. Condition (i) is introduced to exclude the case of zero or very weak
factor loadings. Condition (ii) loosely means that heteroskedasticity in the id-
iosyncratic error is limited within a sufficiently small boundary for the given
factor loadings. For example, if eit is iid over i and t, then this condition is sat-
isfied and conditions for more general cases with weak heteroskedasticity and
serial correlation can be derived using the results of Yin et al. (1988). (See Bai
and Ng, 2002b.) Condition (iii) is important but has been overlooked in the lit-
erature, and states that a sufficiently large number of cross sectional units have
sufficiently homoskedastic idiosyncratic errors relative to other idiosyncratic er-
ror series. As a counter example, if Ee2

it = 1 for i = 1,2 and Ee2
it = 0 for all other

i, then Condition (ii) is satisfied but Condition (iii) is violated. More detailed
remarks are found in Greenaway-McGrevy et al. (2012b).

It is notable that Theorem 1 allows for large heteroskedasticity in the com-
mon component due to large λi and, loosely speaking, requires that there are
no relatively prominent idiosyncratic errors which can be mistaken for common
factors.

Theorem 1 is more flexible than the usual proofs in the literature as the con-
ditions contain no population expectations, and is useful for investigating the
asymptotic behavior of factor number estimates after standardization (c.f., Bai
and Ng, 2002a). In particular, Theorem 1 allows us to check the consistency
of factor number estimates based on standardized data Xit/σ̂Xi, where σ̂2

Xi =
1

T−1 ∑
T
t=1(Xit − X̄i)

2 and X̄i =
1
T ∑

T
t=1 Xit . Specifically, as σ̂

−1
Xi Xit = (σ̂−1

Xi λi)
′Ft +

σ̂
−1
Xi eit , we can see that if the rescaled factor loadings σ̂

−1
Xi λi and the rescaled

idiosyncratic errors σ̂
−1
Xi eit satisfy the conditions for Theorem 1, then the factor

number estimator k̂std after standardization is consistent.
With regard to heteroskedasticity, we pay attention to Condition (iii) of The-

orem 1. Especially, if σ̂2
Xi is large due to large λi for some i and Ee2

it is not
proportionally large, then the volatility of σ̂

−1
Xi eit will be small relative to other

cross sectional units. This can lead to the violation of Condition (iii) of Theorem
1, and k̂std may be larger than the true factor number with nontrivial probabilities.
The following example illustrates this possibility.

Example 1. Let Xit = ciλ̃iFt + eit , where the scalar λ̃i are bounded, λ̃ 2
i are uni-

formly sufficiently bounded away from zero, N−1
∑

N
i=1 λ̃ 2

i → 1, eit ∼ iid N(0,1),
Ft ∼ iid N(0, Ir), and eit , Ft , and λ̃i are mutually independent. In short, λ̃i, Ft and
eit behave regularly. Now let ci = 1 for i = 1, and ci =

√
N for i ≥ 1. The true
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factor number is 1. All the conditions for consistent estimation (Theorem 1) are
satisfied in this setting, and the usual factor number estimator is consistent.

Standardization, on the other hand, leads to a different result. We have σ̂2
Xi =

(c2
i λ̃ 2

i +1)[1+op(1)], and the standardized data are

Xit

σ̂Xi
=

(
ciλ̃i

σ̂Xi

)
Ft +

eit

σ̂Xi
.

Because σ̂Xi/ci is stochastically bounded asymptotically, the rescaled factor load-
ings (ci/σ̂Xi)λ̃i do not shrink to zero, and Condition (i) of Theorem 1 would be
satisfied by the standardized factor loadings. Condition (ii) of Theorem 1 is also
satisfied because 1/σ̂Xi is bounded (asymptotically). However, the standardized
idiosyncratic errors σ̂

−1
Xi eit show more temporal variability for i = 1 than for all

other i, because σ̂
−1
X1 = Op(1) and σ̂

−1
Xi = Op(N−1/2) for i > 1. That is, the first

cross-sectional unit shows a relatively larger idiosyncratic variation compared to
the rest, and Condition (iii) of Theorem 1 is violated by σ̂

−1
Xi eit and the factor

number estimator after standardization is inconsistent.1 This is illustrated by a
Monte Carlo study in the following section.

Example 1 shows that heterogeneity in factor loadings can be converted to
heteroskedasticity in idiosyncratic errors by standardization. In this example,
heteroskedasticity is present due to the factor loadings, so the usual PC estima-
tion (without standardization) is consistent as shown by Theorem 1, but stan-
dardization may lead to inconsistency. Table 1 summarizes the relationship be-
tween the source of heteroskedasticity and the result of standardization. Note
that standardization always works if there are no common factors in the panel
data because then the source of heteroskedasticity is always the idiosyncratic
errors.

Table 1: Source of heteroskedasticity and effect of standardization

Source of heteroskedasticity
λi eit

No standardization Consistent Possible over-estimation
Standardization Possible over-estimation Consistent

1As the conditions in Theorem 1 are sufficient but not necessary, the violation of Condition
(iii) in Example 1 does not necessarily imply inconsistency of k̂std . But we can show that the
factor number is over-estimated for this example.
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Because the components λ ′i Ft and eit of Xit are not separately observed, it
is hard to identify the source of excess heteroskedasticity. Also standardization
does not always give a satisfactory solution to the over-estimation problem as Ex-
ample 1 and Table 1 show. To make things worse, if the sources of heteroskedas-
ticity are different across i, then it would be even harder (if even possible) to tell
whether an estimate is consistent or not.

However, regardless of whether the excessive volatility is resultant from
either the factor loading or the idiosyncratic error, heteroskedasticity usually
(though not always) results in overestimation rather than underestimation. Thus,
as in Greenaway-McGrevy et al. (2012a), we may apply a minimum rule given
by

k̂min = min
[
k̂std, k̂no-std

]
(1)

to estimate the factor number. Here k̂std and k̂no-std are the factor number es-
timate with and without standardization, respectively. If k̂std < k̂no-std, it would
imply that the source of heteroskedasticity is idiosyncratic errors, and vice versa.
Common factors may be estimated using the standardized data or the raw data
in accordance if the raw data or the standardized data gives a consistent factor
number estimator.

3. MONTE CARLO STUDIES

In this section, we verify our theoretical claim by means of Monte Carlo
experiments based on two simple data generating processes. We generate Xit

according to Xit = λ ′i Ft +eit for the single factor (r = 1). We consider two cases:

Case 1: σ2
ei =

{
N1/2 for i = 1

1 for i≥ 2
λi ∼ iid N (0,1) for all i

Case 2: σ2
ei = 1 for all i λi =

{
0 for i = 1

N1/2−1 for i≥ 2.

and where eit ∼ iid N
(
0,σ2

ei
)

and Ft ∼ iid N (0,1). Case 1 investigates het-
eroskedasticity in the idiosyncratic component. The true number of common fac-
tor r is equal to one, and eigenvalue-based criteria will asymptotically select two
factors when applied directly to Xit . Case 2 investigates heteroskedasticity in the
factor loading coefficients. We consider T,N = 25, 50, 100,. We use the ICp2 cri-
terion of Bai and Ng (2002a), which is ICp2(k) = lnV (k)+k(N−1+T−1) lnC2

NT .
Simulations are replicated 10,000 times, and we set kmax to 3.

Table 2 shows the selection percentage before and after standardization for
Case 1. (Reported figures are rounded to the nearest percent.) As expected,
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Table 2: Heteroskedastic idiosyncratic errors (Case 1) with r = 1 (percentage of
selection).

Without standardization With standardization Minimum rule
T N k=0 k=1 k=2 k=3 k=0 k=1 k=2 k=3 k=0 k=1 k=2 k=3

25 25 0 63 37 0 1 99 0 0 1 99 0 0
50 25 0 27 72 0 0 100 0 0 0 100 0 0

100 25 0 5 95 0 0 100 0 0 0 100 0 0
25 50 0 61 39 0 0 100 0 0 0 100 0 0
50 50 0 48 52 0 0 100 0 0 0 100 0 0

100 50 0 5 95 0 0 100 0 0 0 100 0 0
25 100 0 75 25 0 0 100 0 0 0 100 0 0
50 100 0 49 51 0 0 100 0 0 0 100 0 0

100 100 0 12 88 0 0 100 0 0 0 100 0 0

the ICp2 (k) selection criterion without standardization ove-restimates the factor
number. As N and T increase ICp2 (k) consistently selects two common factors
rather than the true r = 1. However after standardization the ICp2 (k) criteria is
consistent.

Table 3 reports the results for Case 2, where heteroskedasticity originates
from factor loadings and standardization fails asymptotically. (Reported figures
are rounded to the nearest percent.) However, without standardization the factor
number is consistently estimated.

In both Case 1 and Case 2, the minimum rule provides a consistent estimator
for the factor number.

4. EMPIRICAL EXAMPLE

We have discussed that standardization can lead to over-estimation of the true
factor number when strong heteroskedasticity is driven by the common compo-
nent. We now consider an empirical example in which standardization indeed
leads to a larger factor number estimate than that obtained without standard-
ization. We estimate the number of common factors to annual growth rates in
US value-added by industry. We use the Bureau of Economic Analysis’ (BEA)
annual quantity indices of NAICS value added for 55 industries that together
comprise GDP. We focus on the 1984 to 2007 period so that our sample spans
the so-called “Great Moderation” time period. Thus we have 26 time series
observations. The data is logged and first differenced to ensure the series are
stationary. The maximum number of factors permitted is 8, and as before we use
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Table 3: Unbounded factor loadings (Case 2) with r = 1 (percentage of selec-
tion).

Without standardization With standardization Minimum rule
T N k=0 k=1 k=2 k=3 k=0 k=1 k=2 k=3 k=0 k=1 k=2 k=3

25 25 0 100 0 0 0 58 42 0 0 100 0 0
50 25 0 100 0 0 0 17 83 0 0 100 0 0

100 25 0 100 0 0 0 1 99 0 0 100 0 0
25 50 0 100 0 0 0 60 40 0 0 100 0 0
50 50 0 100 0 0 0 45 55 0 0 100 0 0

100 50 0 100 0 0 0 2 98 0 0 100 0 0
25 100 0 100 0 0 0 75 25 0 0 100 0 0
50 100 0 100 0 0 0 45 55 0 0 100 0 0

100 100 0 100 0 0 0 7 93 0 0 100 0 0

the ICp2 (k) criterion. Evidently, standardization increases the estimated factor
number in all sub-samples considered.

Table 4: Estimated Factor Number to Industry Value Added using ICp2(k)

Sample: 1984–2007 1985–2007 1984–2006

No standardization

1 1 1

Standardization

4 5 3

5. CONCLUSION

Excessive heteroskedasticity in the finite sample can hamper factor model
decompositions (such as PC) as well as associated factor-dimension selection
criteria. Standardization is a common treatment for this problem. In this paper,
we find that heteroskedasticity due to large factor loadings does not cause in-
consistency in PC estimation as long as the signal is sufficient in the common
component. In contrast, heteroskedasticity in the idiosyncratic errors may cause
over-estimation of the factor number. We demonstrate that standardization can
solve the over-estimation problem due to idiosyncratic heteroskedasticity, but it
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can create a new source of inconsistency if the factor loadings are the source
of the heteroskedasticity. This means that standardization does not necessarily
result in consistent estimation, especially because the components are not sep-
arately observed so we cannot tell what is the source of heteroskedasticity. We
suggest a minimum rule that can provide a simple method to make a better choice
between whether or not to standardize the panel.

Although our examples and theorems specifically focus on the IC criteria and
the standard principal component estimator, the proofs rely on expressions for
the eigenvalues of the variance covariance matrix of the treated panels. Hence the
main results are likely to be equally applicable to other eigenvalue decomposition
estimation and model selection methods.
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