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Scalar Fields and Vector Fields 
In many of your electrical engineering experiences to date, you have looked at the temporal, or time 

varying, behavior of properties, or signals, of interest. For example, a voltage as a function of time may 

be written as  tV , or a current as a function of time may be written as  tI . These are examples of 

functions of one variable. In electromagnetics these (as well as many other quantities of interest) are also 
functions of space. Here we review how to handle functions of three dimensional space.  

Once we define a convention consisting of a coordinate system and an origin, three numbers are 
needed to determine a point in space. For example, a longitude, a latitude, and an altitude will give the 
position of an airplane in flight. These three numbers may be three distances, two distances and an 
angle, one distance and two angles, or three angles. In this course we will mostly consider the simplest 
coordinate system – the Cartesian coordinate system – for keeping track of where a point in space is. A 
simple coordinate system is most appropriate for the study of complicated geometries which 
characterize many modern devices.  

Thus, we may write for a voltage “field,” 

 

   tzyxVtV ,,,                                                              (1)    

 

The fact that this quantity is now a function of three dimensional space makes this a field.1 The fact that 
this quantity is a scalar as opposed to a vector, makes this a scalar field. To begin to visualize an 
example of a voltage field, think about constructing a large three dimensional circuit. In describing the 

operation of this system, it might prove convenient to keep track of the voltage at different  zyx ,,  

positions in space relative to some ground point (origin). I have seen a large room full of large suitcase-
sized capacitors wired together for high voltage switching applications. In such a structure these 
capacitors were wired together for high voltage switching applications. In such a structure, these 

capacitors were indexed by an  zyx ,,  code which suggested their location in the room. This indexing 

scheme was also used in modeling the changing voltage in space and time which occurred when a 
switch was closed.  

Other examples of scalar fields include the temperature at different locations in the atmosphere. A 
hot air balloonist traveling from Plano, Texas to Rockwall, Texas, might care about temperatures at 

different altitudes  z , at different points,  yx,  along his route. While we are dangling up in the air, we 
can also think a bit about lightning. Caused by air breakdown (ionization) due to voltage differentials 
between clouds and the ground, the fact that lightning occurs in some places and not others suggests that 

voltage in the atmosphere also varies with  zyx ,,  space. 

So far, we have tried to motivate why we might want to keep track of a quantity as a function of 
three dimensional space. Since vector quantities are often of interest (force, velocity, momentum...), it is 
reasonable to want to consider vector fields,  

                                                 
1 My “definition” here is rather mathematical and pragmatic, and inherently ignores the philosophical view that a field 
implies some sort of intermediary which replaces the doctrine of “action-at-a-distance.” 
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J  t  J  tzyx ,,,                                                              (2) 

  

We have picked the symbol J because we are thinking about the electromagnetic quantity, current 
density. Current is a vector quantity because it is the flow of charged particles and both the magnitute 
(number) and the direction of the current is important. In Cartesian coordinates, the vector field 
decomposition becomes2, 

 

J    tzyxJtzyx x ,,,,,,  a  tzyxJ yx ,,, a  tzyxJ zy ,,, a z                             (4) 

 

The three components of J, zyx JJJ ,,  are themselves, scalar fields, and so we can say that to describe 

the information in a vector field we need to keep track of three scalar fields. a x , a y , and a z  are unit 

vectors (vectors of length one) and balance the vector nature of the left hand side of Eq. (4) to the vector 
of the right hand side of Eq. (4). 

Taking derivatives of fields: The del operator, the gradient, the divergence and the curl. 
You are all well familiar with manipulating functions of one variable, and hardly need to be 

reminded of the utility of their calculus. Derivatives, for example, lead to optimizations which in turn 
may lead to improved design. The laws of nature are often cast in differential equations, whose solution 
may yield a quantitative understanding of the physical nature of the system or device under study. Here 
we look at differentiating scalar and vector fields. 

The rules for taking the time derivative of a scalar or a vector field are straight forward examples of 
partial differentiation: 

 

    
t

tzyxV
tzyxV

dt

d





,,,

,,,                                                        (5) 

 

dt

d
[J  tzyx ,,, ] = 

 
t

tzyxJ x


 ,,,

a
 

t

tzyxJ y
x 




,,,
a

 
t

tzyxJ z
y 




,,,
a z                          (6) 

 

                                                 
2 Your choice of coordinate system for the vector decomposition may be different from your choice of coordinates to 
describe the field’s extent. For example, in writing, 
 

J    tzyxJtzyx r ,,,,,,  a  tzyxJr ,,, a  tzyxJ z ,,, a z                                       (3) 

 

we have used cylindrical coordinates  zr ,,  for the vector decomposition, but Cartesian coordinates   zyx ,,  for the 

dependence of the scalar field. 
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Similarly, taking the derivative with respect to a particular direction in space is also straight forward: 
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tzyxV
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dx
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,,,                                                        (7) 
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[J  tzyx ,,, ] = 
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tzyxJ z
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,,,
a z                          (8) 

 

As a practical matter, when taking the partial derivative with respect to one variable, pretend – for the 
moment – that the other parameters are constants.  

We would really like to take some sort of first derivative with respect to space, and have this 

derivative be independent with respect to the particular  zyx ,,  coordinate system used. In constructing 

such a derivative it makes some sense to mix together equal parts of derivatives in each direction, 

 

     
z

tzyxV

y

tzyxV

x

tzyxV








 ,,,

,
,,,

,
,,,

                                         (11) 

 

The easiest way to combine these three terms is to add them together in some way. (Multiplying them 
together might occur to us but, among other objections, the dimensions of the final quantity would be 
out of line with a derivative.) If we add these three terms together in a scalar manner, we might lose 
track of which term came from which derivative. Therefore, it makes the most sense to add them up 
vectorially: 

 

     
zyx aaa

z

tzyxV

y

tzyxV

x

tzyxV











 ,,,,,,,,,

                                     (12) 

  

It is a comforting consequence of the deep significance of our mathematics that this quantity has a real 
physical meaning: The direction of this vector field points in the direction of the largest slope. The 
magnitude of this vector field is the magnitude of this slope. This vector field, therefore, is called the 
gradient of the scalar field. 

 

       
zyx aaa

z

tzyxV

y

tzyxV

x

tzyxV
tzyxgradV














,,,,,,,,,

,,,                        (13) 

 

Consider for a second the elevation of a mountain in Colorado. This scalar field is a function of  yx,  

(or longitude and latitude, or by USGS convention, “Northing and Easting”). If you are hiking at any 



 

 5

point on this mountain and pour a little water out from your canteen, the water will flow in the direction3 
of the gradient of the elevation field evaluated at that point and its initial acceleration will be related to 
the magnitude of the gradient of the elevation field evaluated at that point. 

One of your difficult tasks in electromagnetics is to try to visualize the various fields in space. It is 
sometimes convenient to think about the surfaces formed by a constant field values. To be specific, there 
will be surfaces upon which the voltage will be constant. To be confusing we’ll call these 
“isopotentials”. A surface of metal would be an isopotential, since, in steady state, we would expect the 
charges and thus the voltage to equalize out upon the surface. It is an interesting and important 
characteristic of the gradient that is always perpendicular to the surfaces of constant value. Returning to 
our mountain hike, we pull out of our contour map and find the location where we are spilling water 
from our canteen. The direction where the water is flowing is perpendicular to the contour which runs 
through our location. This gives us a convenient way to calculate the unit vector which is normal to a 
surface: 

 

 
 Vgrad

Vgrad
n̂                                                                       (14) 

 

It is well worth our time to introduce the del operator: 

 

zyx aaa
zyx 










                                                          (15) 

 

We will routinely use the del operator to signify some sort of first derivative with respect to space. For 
example, the gradient of a scalar field V may be written, 

 

 

 

 tzyxV
zyx

,,,


















 zyx aaa                                                   (16) 

     
zyx aaa
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,,,,,,,,,

 

 

We now turn to taking spatial derivatives of vector fields, and we will make considerable use of . 

Notice that  is a vector. Counting  and a vector field  x,y,z,tJ , we realize that we are working with 

two vectors. Two vectors may interact together by either the dot product or the cross product. Therefore, 
first spatial derivatives of vector fields come in two flavors: “del dotted with J”, 
                                                 
3 Exact opposite, actually. 

   tzyxVtzyxgradV ,,,,,, 



 

 6

 

 tzyx ,,,J                                                                  (18) 

 

And “del crossed with J”, 

 

 tzyx ,,,J                                                                  (19) 

 

Both of these have useful physical meanings, and are important in our study of electromagnetics. 
Therefore let’s learn the mechanics of evaluating them.  

 tzyx ,,,J  is called the divergence, or “div” for short. Evaluating the dot product shows us the 

mathematical meaning, 

 

   tzyxtzyx ,,,,,, JJ div   
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,,,,,,,,,

 

 

Notice that  x,y,z,tJ  returns a scalar field. Notice that this new scalar field includes the “diagonal” 

terms – the x derivative of the x component, the y derivative of the y component, and the z derivative of 
the z component. 

 x,y,z,tJ  is called the curl. Evaluating the cross product shows us the mathematical meaning of 
the curl. 

 

   tzyxtzyxcurl ,,,,,, JJ   

 

      zyxzyx aaaaaa tzyxJtzyxJtzyxJ
zyx zyx ,,,,,,,,, 
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      zyxzyx aaaaaa tzyxJtzyxJtzyxJ
zyx zyx ,,,,,,,,, 



















  

 

 

                                                        (21) 
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Perhaps the use of a 3x3 matrix for taking the cross product of two vectors is familiar to you. I find it 
convenient to remember where the minus signs go in the final expression.  

Notice that  x,y,z,tJ  returns a vector field, and that this new vector field contains the “off-
diagonal” terms, which were not included in the divergence. 

To begin to get an appreciation for when to use the divergence and when to use the curl, note two 
rules of thumb: 

1. Use the divergence when you want the first derivative to match a scalar quantity. Use the curl 
when you want the first derivative to match a vector property. (Beware, though, that zero 
may be either a vector or a scalar). 

2. Use the divergence when the parallel, diagonal terms are important to the problem. Use the 
curl when the orthogonal, off-diagonal terms are important. 

A physically meaningful example of a curl’s significance can be borrowed from fluid mechanics. 

Consider an arbitrary flow of water; the velocities of the water particles form a velocity field,  tzyx ,,,v  

which is a vector field. If I throw into this flow a small twig, or drinking straw, there is a good chance 
that this twig will begin to rotate. The axis of this rotation is in the direction of v , and its speed of 
rotation will be proportional4 to the magnitude of v . It is a significant arrangement if the curl of a 

fluid’s velocity field is zero; if   0,,,  tzyxv , then the flow is called “irrotational.” 

Also in a fluid flow5, the conservation of mass law may be written as, 
t

v




  where 

 tzyx ,,,v  is once again the velocity field and   is the density. That the rate of change of density of the 

                                                 
4 To be rigorous, the “vorticity” vector w2  is given by v

2

1
w . The vorticity is twice the instantaneous rate of rigid 

body rotation in a flow field. 
 
5 which is incompressible 

zyx JJJ

zyx
det












zyx aaa
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flow at a point can be written in terms of a divergence suggests that, physically, the divergence 
represents a flux. We will obtain a clearer picture of this when we consider one of the integral theorems 
below. 

Second derivatives 
Second derivatives of fields are particularly important in electromagnetics because the propagation 

of electromagnetic energy, and therefore information, is governed by a wave equation, which, as we will 
see, is a partial differential equation which includes a second derivative with respect to time and a 
second derivative with respect to space. So, given the gradient, the divergence and the curl, let us list our 
choices for second derivatives with respect to space. 

If I start with a scalar field and take its gradient, I create a vector field. There are two ways to take 
the derivative with respect to this new vector field – the divergence and the curl. Thus there are exactly 
two ways to take a general second derivative of a scalar field with respect to space: 

 

 V                                                                         (24) 

 

and 

 

 V                                                                        (25) 

 

If I start with a vector field and take its divergence, I create a scalar field. There is one way to take 
the derivative of this new scalar field, the gradient. On the other hand, if I start with a vector field and 
take its curl, I create another vector field. There are two ways to take the derivative with respect to this 
new vector field – the divergence and the curl. Thus there are exactly three ways to take a general 
second derivative of a vector field with respect to space: 

 

 J                                                                        (26) 

 

 J                                                                      (27) 

  

and 

 

 J                                                                    (28) 

 

Let us explore each of these five new fields to see which quantities might be useful. Consider the 
first quantity, the div(gradV): 
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                                                              (29) 

 

V2  

 

which has an aesthetically nice intuitive form. Now consider the curl  Vgrad : 
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                                (30) 

 

= 0 

 

Since the order of differentiation never matters. For all scalar field, then   0 V . While this is a 

useful vector identity, it does not yield any new field or quantity which we can put to work for us. 
Therefore the unambiguous and highly useful choice for a second spatial derivative of a scalar field is 

  VV 2 , which we will call the Laplacian of a scalar field. 

That the div(curlJ) equals zero may be shown in a manner similar to Eq (30). 
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= 0                                                                           (32) 

 

It turns out that div(gradJ) is very messy and therefore of limited use, except in problems where a 
complicated material forces us to make use of it. Most of the time we try to dream up physical 
approximations which justify setting equal to zero. To be explicit: 
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What makes this expression complicated is the presence of yJ  and zJ  in the xa  term; the presence of 

xJ  and zJ  in the ya  term and the presence of xJ  and yJ  in the za  term. This “coupling” will limit our 

ability to analytically solve differential equations derived with  J . In this course we can usually 

find a reason to avoid it. 

Finally, let us write out the curl(curlJ): 
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What makes this expression complicated is the presence of yJ
 and zJ  in the xa  term; the presence 

of xJ  and zJ  in the ya
 term and the presence of xJ  and yJ

 in the za  term. These are the very same 
objectional terms as in Eq (33). We can combine Eqs (33) and (34) in a way which gets rid of these 
coupling terms, if we define the eminently useful Laplacian of a vector, 
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This vector quantity is often what we mean by a second spatial derivative of a vector field. 
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Two Integral Theorems  
Next to taking derivatives, it may be said that doing integrals is the most exciting pastime.  Here we 

will show, in Cartesian coordinates, the validity of two integral theorems of vector calculus, namely 
Stokes theorem and the divergence theorem.  Their demonstration will also provide review examples of 
how to perform multiple integrals, line integrals, and area integrals.   

Stokes Theorem 
A real estate mogul, who buys New York City property by the square block, wants to know how 

many square blocks there are in a region defined by the street corners, 33rd street, 4th avenue; 82nd 
street, 3rd avenue; 101st street, 7th avenue; 54th street, 6th avenue.  There is a surveyor’s formula which 
relies on the coordinates of the vertices that allows the quick calculation of this area without a lot of 
hassle:  
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                                               (37) 

                        82410135476335441016827333
2

1
  

=288 

 

The significance of this example is that it is natural to relate the area enclosed by a perimeter to the 
coordinates of the vertices of that perimeter.  

This formula is a distant relative to Stokes theorem, which equates a line integral evaluated around a 
closed path, to an integral over the area enclosed by that path:  

 

  dAn JdlJ ˆ                                                      (38) 

 

Let’s demonstrate this equality for a very small square of area   yx  whose center is at some 

point  yx,  as shown in Figure 1.  This square is sitting in some general vector field,  tzyx ,,,J .  Our 

path integral will begin at the point 
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x , the lower right hand corner of the square.  From there, the path goes up to the 

point 





 





2

,
2

y
y

x
x , then back over to 






 





2

,
2

y
y

x
x , before returning to the starting point.  The 

four line vectors for the four path segments are, yadl y  , respectively.  This counter-clockwise 
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route, by the right-hand-rule, gives 

us a surface normal vector, zan ˆ .  

The terms on the left hand side 
of Eq. (38) are, then, 
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. Note that we 

have made use of the small nature 

of  x  and  y to evaluate J 

along the midpoint of each line 
segment.  Upon completing the dot 
product and arranging terms, the left hand side of Eq. (38) becomes, 
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Turning our attention to the right hand side of Eq. (38),  
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 JnJ ˆ                                         (40) 

 

If  x  y  is sufficiently small, then the quantity, 
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 may be taken as a constant over the area 

and pulled through the integral signs.  The right hand side of Eq. (38) then becomes  
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  nJ ˆ                                    (41) 

 

 

Continuing our manipulations of Eq. (39), 

(x,y,z)

J(x,y,z)

(x+x/2,y‐y/2,z)(x‐x/2,y‐y/2,z)
x

(x+x/2,y+y/2,z)(x‐x/2,y+y/2,z)

y

 
Figure 1. Differential loop in J(x,y,z) to show Stokes’ 
Thereem. 
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If we take the limit as the lengths go to zero, we obtain  
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Which is now in the form of Eq. (41). 

Stokes theorem in Eq. (31) holds macroscopically – for a large closed curve and any (!) surface 
(flat, concave, convex, etc.) bounded by that perimeter curve.  Our demonstration is microscopic and, 
even if we restrict our discussion to Cartesian coordinates, is only a building block of the final proof.  To 
this end, consider two adjacent squares, as shown in Figure 2, each of which is similar to the one which 
starred in our above analysis.  If we write down all the line integrals, as we did in Eq. (42), we notice 
that the shared side is written twice, once for dl positive, the other for dl negative.  The contribution of 
this shared side thus vanishes due to the vector nature of our theorem.  Only the six exterior line 
segments match up to the (now doubled) area.  By extension we can keep adding on small squares until 
we have mapped out a large, not necessarily flat area.  All shared sides will cancel, and the line integral 
about the perimeter will yield area information about the enclosed surface.  

 

Example:Faraday’s law in differential form 

Faraday’s law of electromagnetics may be written “in integral form” as:  

 

 



 dA
t

nBdlE ˆ                                                          (44) 

 

The closed line integral on the left hand side of the equation defines the limits of integration of the right 
hand side.  Applying Stokes theorem to the left hand side we can convert the line integral to an area 
integral.  
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 dA
t

dA nBnEdlE ˆˆ                                             (45) 

 

The area in both surface integrals must be the same, so we may combine them under the same limits of 
integration,  
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Which will equal zero if 
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E                                                                       (47) 

This is Faraday’s law of electromagnetics “in differential form”.  

(x,y,z)

J(x,y,z)

(x+x/2,y‐y/2,z)

(x+x/2,y+y/2,z)

(x+x,y,z)

 
Figure 2. Two adjacent differential loops in J(x,y,z) to show Stokes’ Theorem. 
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Divergence Theorem 

Our second integral theorem is the Divergence theorem.  For an arbitrary vector field, 
 

dAdV nJJ ˆ                                                                   (48) 

 

The surface of the volume on the left hand side of Eq. (48) gives the area limits of integration on the 
right hand side of Eq. (48).  We will demonstrate this theorem in Cartesian coordinates in a manner 
analogous to our demonstration of Stokes theorem above.  Our building block is a small cube with sides 

zyx   and,, . The center of this cube is at the point  zyx ,, , and it is aligned nicely with the x-y-z 

axis.  This situation is shown in Figure 3.  

For this cube, the left hand side of the theorem may be written,  
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Figure 2. A small cube in J(x,y,z) to show the Divergence Theorem. 
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We have assumed that zyx   is small enough so that J  does not significantly change over the 

differential volume. 

There are six terms on the right hand side of Eq. (48), one for each face of the cube.  Evaluating J in 
the middle of each face, and grouping by the normal unit vector of each face, we have,  
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Multiplying each term appropriately by one, and taking the limits, gives  
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which is the same as Eq. (49).  

The Divergence theorem in Eq. (48) holds macroscopically – for a large closed surface and its 
enclosed volume. Our demonstration is microscopic and, even if we restrict our discussion to Cartesian 
coordinates, is only a building block of the final proof.  Our extension of our demonstration to the 
macroscopic world is analogous to the argument presented for Stokes theorem.  Consider two adjacent 
cubes sharing one side as shown in Figure 4.  If we write down all the surface integrals, as we did in Eq. 
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(51), we notice that the shared surface appears twice, once for n̂  positive, the other for negative n̂ .  The 
contribution of this shared surface thus vanishes due to the vector nature of our theorem.  Only the ten 
exterior surfaces match up to the (now doubled) volume.  By extension we can keep adding on small 
cubes until we have mapped out a large volume. All shared surfaces will cancel, and the surface integral 
about the exterior will yield volumetric information about the interior.  

 

Example: Gauss’ law in differential form 
Gauss’ law of magnetism may be written “in integral form” as:  

 

0ˆ  dAnB                                                                      (52) 

 

Applying the divergence theorem to the left hand side we can convert the area integral to an integral 
over the volume enclosed by the same area.  

 

0  dVB                                                                     (53) 

 

Evaluating this integral in a very small region around a point gives,  

 

y

x

z y

z

z (x+x/2,y+y/2,z‐z/2)

n=ayn=‐ay
^ ^ ^ ^

 
Figure 2. Two adjacent small cubes in J(x,y,z) to show the Divergence Theorem. 
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0 B                                                                     (54) 

 

at that point.  This is Gauss’ law for magnetism “in differential form.” 

From our discussion of the divergence theorem, it follows that the divergence of a vector field may 
be written as 

 

 


dA
V

nJJ ˆlim
0

                                                          (55) 

 

In fact this is often the way mathematicians define the divergence.  Physically we can say that J  is 
the “efflux” (outflow) of J  per unit volume at a point in space.  
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General vector identities 
Equations (30), (32), and (35) are examples of “vector identities,” truths which will be used in 

derivations throughout the electromagnetics course. You should become familiar with these expressions, 
but don’t spend hours memorizing them. They are listed here, as they are in your text, for easy reference. 
It may be helpful to demonstrate the identities in Cartesian coordinates. Here, f and g are scalar fields; A 
and B are vector fields. 
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BACACBCBA                                                   (69) 

 

   BACCABCBA                                                   (70) 

 

 

 



Example: Area of Circle Using Surveyor’s Formula.
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The enclosed area of a regular n-sided polygon is given by
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as (n → ∞)
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∴ A = πr2 (n → ∞)
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