EE6316 Fields and Waves

Homework Assignment \#1 Solutions

Due on:
Prepared by:
Approved by

Tue, Feb 21, 2006
Masa Asahara, TA
Dr. MacFarlane, Instructor

4. Balanis, Chapter 1, page 33, \#1.5

The instantaneous E-field is

$$
\begin{equation*}
\boldsymbol{\varepsilon}(x, y, z ; t)=\operatorname{Re}\left[\mathbf{E}(x, y, z) e^{j \omega t}\right] \tag{1.1}
\end{equation*}
$$

, where

$$
\begin{equation*}
\mathbf{E}(x, y, z)=\hat{\mathbf{a}}_{x} A(x+y)+\hat{\mathbf{a}}_{y} B(x-y) \tag{1.2}
\end{equation*}
$$

is a phasor. Since the medium is source-free,

$$
\begin{gather*}
\nabla \bullet \mathbf{D}=\rho=0 \tag{1.3}\\
\mathbf{D}=\varepsilon_{0} \mathbf{E} \tag{1.4}\\
\nabla \bullet \mathbf{D}=\varepsilon_{0} \nabla \bullet \mathbf{E}=\frac{\partial}{\partial x}[A(x+y)]+\frac{\partial}{\partial y}[B(x-y)] \tag{1.5}\\
=A-B=0
\end{gather*}
$$

5. Balanis, Chapter 1, page 35, \#1.14

The instantaneous E-field is

$$
\begin{equation*}
\boldsymbol{\varepsilon}(x, y, z ; t)=\operatorname{Re}\left[\mathbf{E}(x, y, z) e^{j \omega t}\right] \tag{1.6}
\end{equation*}
$$

, where

$$
\begin{equation*}
\mathbf{E}(x, y, z)=\hat{\mathbf{a}}_{y} E_{0} \sin \left(\frac{\pi x}{a}\right) e^{-j \beta_{z} z} \tag{1.7}
\end{equation*}
$$

is a phasor.

(a) Instantaneous \mathbf{H}-field

From Faraday's law,

$$
\begin{gather*}
\nabla \times \mathbf{E}=-j \omega \mu \mathbf{H} \tag{1.8}\\
\nabla \times \mathbf{E}=\left|\begin{array}{ccc}
\hat{\mathbf{a}}_{x} & \hat{\mathbf{a}}_{y} & \hat{\mathbf{a}}_{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
0 & E_{y} & 0
\end{array}\right|=\left(-\frac{\partial}{\partial z} E_{y}\right) \hat{\mathbf{a}}_{x}+\left(\frac{\partial}{\partial x} E_{y}\right) \hat{\mathbf{a}}_{z} \tag{1.9}\\
\\
=\left(j \beta_{z} E_{0} \sin \left(\frac{\pi x}{a}\right) e^{-j \beta_{z} z}\right) \hat{\mathbf{a}}_{x}+\left(E_{0}\left(\frac{\pi}{a}\right) \cos \left(\frac{\pi x}{a}\right) e^{-j \beta_{z} z}\right) \hat{\mathbf{a}}_{z} \tag{1.10}\\
\mathbf{H}=\left(\frac{-\beta_{z}}{\omega \mu} E_{0} \sin \left(\frac{\pi x}{a}\right) e^{-j \beta_{z} z}\right) \hat{\mathbf{a}}_{x}+\left(\frac{e^{j \pi / 2}}{\omega \mu} E_{0}\left(\frac{\pi}{a}\right) \cos \left(\frac{\pi x}{a}\right) e^{-j \beta_{z} z}\right) \hat{\mathbf{a}}_{z}
\end{gather*}
$$

The instantaneous H -field is

$$
\begin{align*}
\mathbf{h}(x, y, z ; t) & =\operatorname{Re}\left[\mathbf{H}(x, y, z) e^{j \omega t}\right] \\
& =\left(\frac{-\beta_{z}}{\omega \mu} E_{0} \sin \left(\frac{\pi x}{a}\right) \cos \left(\omega t-\beta_{z} z\right)\right) \hat{\mathbf{a}}_{x} \tag{1.11}\\
& +\left(\frac{1}{\omega \mu} E_{0}\left(\frac{\pi}{a}\right) \cos \left(\frac{\pi x}{a}\right) \cos \left(\omega t-\beta_{z} z+\frac{\pi}{2}\right)\right) \hat{\mathbf{a}}_{z}
\end{align*}
$$

The z -component of the H -field is ahead of the x -component by $\pi / 2$ in phase.

(b) Phase constant β_{z}

Referring ahead to Chapter 8 on page 354 of the book,

$$
\begin{equation*}
\beta_{x}^{2}+\beta_{y}^{2}+\beta_{z}^{2}=\beta^{2}=\omega^{2} \mu_{0} \varepsilon_{0} \tag{1.12}
\end{equation*}
$$

, where, in this particular case, $\beta_{y}=0$ and

$$
\begin{equation*}
\beta_{x}=\frac{\pi}{a} \tag{1.13}
\end{equation*}
$$

So,

$$
\begin{equation*}
\beta_{z}=\sqrt{\omega^{2} \mu_{0} \varepsilon_{0}-(\pi / a)^{2}} \tag{1.14}
\end{equation*}
$$

6. Balanis, Chapter 2, page 96, \#2.1

$$
\begin{gather*}
\mathbf{E}=\hat{\mathbf{a}}_{y} 2(\mathrm{~V} / \mathrm{m}) \tag{1.15}\\
\mathbf{P}=\hat{\mathbf{a}}_{y} 2.762 \times 10^{-11}\left(\mathrm{C} / \mathrm{m}^{2}\right) \tag{1.16}
\end{gather*}
$$

with the cross sectional area of

$$
\begin{equation*}
A=2.4 \times 10^{-3}\left(\mathrm{~m}^{2}\right) \tag{1.17}
\end{equation*}
$$

(a)

$$
\begin{equation*}
\sigma_{p o l}=|\mathbf{P}|=2.762 \times 10^{-11}\left(\mathrm{C} / \mathrm{m}^{2}\right) \tag{1.18}
\end{equation*}
$$

(b)

$$
\begin{equation*}
Q_{p o l}=\sigma_{p o l} A=6.63 \times 10^{-14} \text { (C) } \tag{1.19}
\end{equation*}
$$

(c)

$$
\begin{equation*}
q_{v p}=0\left(\mathrm{C} / \mathrm{m}^{3}\right) \tag{1.20}
\end{equation*}
$$

(d)

$$
\begin{equation*}
P=\chi \varepsilon_{0} E \tag{1.21}
\end{equation*}
$$

Solving this for χ

$$
\begin{equation*}
\chi=\frac{P}{\varepsilon_{0} E}=\frac{2.762 \times 10^{-11}\left(\mathrm{C} / \mathrm{m}^{2}\right)}{2(\mathrm{~V} / \mathrm{m}) \times 8.854 \times 10^{-12}(\mathrm{~F} / \mathrm{m})}=1.56 \tag{1.22}
\end{equation*}
$$

The dielectric constant comes out to be

$$
\begin{equation*}
\varepsilon_{r}=\chi+1=2.56 \tag{1.23}
\end{equation*}
$$

7. Balanis, Chapter 2, page 97, \#2.4

Figure 1: A parallel-plate capacitor partially filled with a dielectric

The parallel plates of an area

$$
\begin{equation*}
A=2 \times 10^{-2}\left[\mathrm{~m}^{2}\right] \tag{1.24}
\end{equation*}
$$

are $d_{1}+d_{2}$ in spacing, where

$$
\begin{align*}
d_{1} & =2.5 \times 10^{-4}[\mathrm{~m}] \tag{1.25}\\
d_{2} & =1 \times 10^{-3}[\mathrm{~m}] \tag{1.26}
\end{align*}
$$

Consider a case of free space with no dielectric in there. The capacitance of free space is

$$
\begin{equation*}
C_{0}=\varepsilon_{0} \frac{A}{d}=8.854 \times 10^{-12} \times \frac{2 \times 10^{-2}}{1.25 \times 10^{-3}}=1.42 \times 10^{-10}[\mathrm{~F}] \tag{1.27}
\end{equation*}
$$

and a static charge is

$$
\begin{equation*}
Q_{0}=C_{0} V_{0}=\left(1.42 \times 10^{-10}\right)(100)=1.42 \times 10^{-8}[\mathrm{C}] \tag{1.28}
\end{equation*}
$$

So, the electrostatic energy is

$$
\begin{equation*}
U_{0}=\frac{1}{2} C_{0} V_{0}^{2}=\frac{1}{2}\left(1.42 \times 10^{-10}\right)(100)^{2}=7.1 \times 10^{-7}[\mathrm{~J}] \tag{1.29}
\end{equation*}
$$

The E-field in free space is

$$
\begin{equation*}
E_{0}=\frac{V_{0}}{d}=\frac{100}{1.25 \times 10^{-3}}=8 \times 10^{4}[\mathrm{~V} / \mathrm{m}] \tag{1.30}
\end{equation*}
$$

So, the energy density comes out to be

$$
\begin{equation*}
\frac{1}{2} \varepsilon_{0}\left|E_{0}\right|^{2}=\frac{1}{2}\left(8.854 \times 10^{-12}\right)\left(8 \times 10^{4}\right)^{2}=2.83 \times 10^{-2}\left[\mathrm{~J} / \mathrm{m}^{3}\right] \tag{1.31}
\end{equation*}
$$

The total energy is therefore

$$
\begin{equation*}
U_{0}=\left(\frac{1}{2} \varepsilon_{0}\left|E_{0}\right|^{2}\right)(A d)=\left(2.83 \times 10^{-2}\right)\left(2.5 \times 10^{-5}\right)=7.1 \times 10^{-7}[\mathrm{~J}] \tag{1.32}
\end{equation*}
$$

, which agrees with (1.29) as expected.

Now let a dielectric slab slide in as shown in Figure 1. Applying the Gauss's law to the closed surface S 0

$$
\begin{equation*}
E_{0}=\sigma_{0} / \varepsilon_{0} \tag{1.33}
\end{equation*}
$$

and to the closed surface S

$$
\begin{equation*}
E-E_{0}=\sigma_{p o l} / \varepsilon_{0} \tag{1.34}
\end{equation*}
$$

From the KVL

$$
\begin{equation*}
E+E_{0}(0.25)=10^{5} \tag{1.35}
\end{equation*}
$$

The polarization vector

$$
\begin{gather*}
\varepsilon_{r}=\chi+1=5 \tag{1.36}\\
\chi=4 \tag{1.37}\\
|\mathbf{P}|=\chi \varepsilon_{0}|\mathbf{E}|=\left|\sigma_{p o l}\right|=-\sigma_{p o l} \tag{1.38}
\end{gather*}
$$

We have four equations with four unknowns:

$$
\left(\begin{array}{cccc}
\varepsilon_{0} & 0 & -1 & 0 \tag{1.39}\\
-\varepsilon_{0} & \varepsilon_{0} & 0 & -1 \\
0 & 4 \varepsilon_{0} & 0 & 1 \\
0.25 & 1 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
E_{0} \\
E \\
\sigma_{0} \\
\sigma_{p o l}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
0 \\
10^{5}
\end{array}\right)
$$

(a) (b) (c) (d)

Solving this for unknowns, we find

$$
\begin{gather*}
E_{0}=2.22 \times 10^{5}[\mathrm{~V} / \mathrm{m}] \tag{1.40}\\
E=4.44 \times 10^{4}[\mathrm{~V} / \mathrm{m}] \tag{1.41}\\
\sigma_{0}=1.97 \times 10^{-6}\left[\mathrm{C} / \mathrm{m}^{2}\right] \tag{1.42}\\
\sigma_{p o l}=-1.57 \times 10^{-6}\left[\mathrm{C} / \mathrm{m}^{2}\right] \tag{1.43}
\end{gather*}
$$

The electric flux density in the air gap

$$
\begin{equation*}
D_{0}=\varepsilon_{0} E_{0}=1.96 \times 10^{-6}\left[\mathrm{C} / \mathrm{m}^{2}\right] \tag{1.44}
\end{equation*}
$$

and the one in the dielectric

$$
\begin{equation*}
D=\varepsilon_{0} \varepsilon_{r} E=1.96 \times 10^{-6}\left[\mathrm{C} / \mathrm{m}^{2}\right] \tag{1.45}
\end{equation*}
$$

The normal component of the E-field flux density is continuous as expected. The charge stored on the plates

$$
\begin{equation*}
Q=A \sigma_{0}=3.94 \times 10^{-8}[\mathrm{C}] \tag{1.46}
\end{equation*}
$$

(e)

The capacitance

$$
\begin{equation*}
C=Q / V_{0}=3.94 \times 10^{-10} \quad[\mathrm{~F}] \tag{1.47}
\end{equation*}
$$

The voltage across the air gap

$$
\begin{equation*}
V_{1}=E_{0} d_{1}=5.55 \times 10^{1}[\mathrm{~V}] \tag{1.48}
\end{equation*}
$$

and the one running across the dielectric

$$
\begin{equation*}
V_{2}=E d_{2}=4.44 \times 10^{1}[\mathrm{~V}] \tag{1.49}
\end{equation*}
$$

The capacitance can be thought of as a series combination of C_{1} and C_{2}, where $C_{1}=$ capacitance across the air gap, and $C_{2}=$ capacitance across the dielectric

$$
\begin{align*}
& \frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}} \tag{1.50}\\
& C_{1} V_{1}=C_{2} V_{2}
\end{align*}
$$

Solving (1.50) for C_{1} and C_{2},

$$
\begin{align*}
& C_{1}=7.10 \times 10^{-10}[\mathrm{~F}] \\
& C_{2}=8.87 \times 10^{-10}[\mathrm{~F}] \tag{1.51}
\end{align*}
$$

(f)

The energy density in free space

$$
\begin{equation*}
\frac{1}{2} \varepsilon_{0}\left|E_{0}\right|^{2}=2.18 \times 10^{-1}\left[\mathrm{~J} / \mathrm{m}^{3}\right] \tag{1.52}
\end{equation*}
$$

and the one in a dielectric

$$
\begin{equation*}
\frac{1}{2} \varepsilon_{0} \varepsilon_{r}|E|^{2}=4.36 \times 10^{-2}\left[\mathrm{~J} / \mathrm{m}^{3}\right] \tag{1.53}
\end{equation*}
$$

The energy in free space

$$
\begin{equation*}
\frac{1}{2} \varepsilon_{0}\left|E_{0}\right|^{2}\left(A d_{1}\right)=1.09 \times 10^{-6}[\mathrm{~J}] \tag{1.54}
\end{equation*}
$$

and the one in a dielectric

$$
\begin{equation*}
\frac{1}{2} \varepsilon_{0} \varepsilon_{r}|E|^{2}\left(A d_{2}\right)=8.72 \times 10^{-7}[\mathrm{~J}] \tag{1.55}
\end{equation*}
$$

The total energy is therefore

$$
\begin{equation*}
U=\left(\frac{1}{2} \varepsilon_{0}\left|E_{0}\right|^{2}\right)\left(A d_{1}\right)+\left(\frac{1}{2} \varepsilon_{0} \varepsilon_{r}|E|^{2}\right)\left(A d_{2}\right)=1.96 \times 10^{-6}[\mathrm{~J}] \tag{1.56}
\end{equation*}
$$

