Problem 5.1.2 Solution

Whether a pizza has topping i is a Bernoulli trial with success probability $p_i = 2^{-i}$. Given that n pizzas were sold, the number of pizzas sold with topping i has the binomial PMF

$$P_{N_i}(n_i) = \begin{cases} \binom{n}{n_i} p_i^{n_i} (1 - p_i)^{n_i} & n_i = 0, 1, \dots, n \\ 0 & \text{otherwise} \end{cases}$$
 (1)

Since a pizza has topping i with probability p_i independent of whether any other topping is on the pizza, the number N_i of pizzas with topping i is independent of the number of pizzas with any other toppings. That is, N_1, \ldots, N_4 are mutually independent and have joint PMF

$$P_{N_1,\dots,N_4}(n_1,\dots,n_4) = P_{N_1}(n_1) P_{N_2}(n_2) P_{N_3}(n_3) P_{N_4}(n_4)$$
 (2)

Problem 5.3.2 Solution

Since J_1 , J_2 and J_3 are independent, we can write

$$P_{\mathbf{K}}(\mathbf{k}) = P_{J_1}(k_1) P_{J_2}(k_2 - k_1) P_{J_3}(k_3 - k_2)$$
 (1)

Since $P_{J_i}(j) > 0$ only for integers j > 0, we have that $P_{\mathbf{K}}(\mathbf{k}) > 0$ only for $0 < k_1 < k_2 < k_3$; otherwise $P_{\mathbf{K}}(\mathbf{k}) = 0$. Finally, for $0 < k_1 < k_2 < k_3$,

$$P_{\mathbf{K}}(\mathbf{k}) = (1-p)^{k_1-1}p(1-p)^{k_2-k_1-1}p(1-p)^{k_3-k_2-1}p = (1-p)^{k_3-3}p^3$$
 (2)

Problem 5.3.8 Solution

In Problem 5.3.2, we found that the joint PMF of $\mathbf{K} = \begin{bmatrix} K_1 & K_2 & K_3 \end{bmatrix}'$ is

$$P_{\mathbf{K}}(\mathbf{k}) = \begin{cases} p^{3}(1-p)^{k_{3}-3} & k_{1} < k_{2} < k_{3} \\ 0 & \text{otherwise} \end{cases}$$
 (1)

In this problem, we generalize the result to n messages.

(a) For $k_1 < k_2 < \cdots < k_n$, the joint event

$$\{K_1 = k_1, K_2 = k_2, \cdots, K_n = k_n\}$$
 (2)

occurs if and only if all of the following events occur

 A_1 $k_1 - 1$ failures, followed by a successful transmission

 A_2 $(k_2-1)-k_1$ failures followed by a successful transmission

 $A_3 \quad (k_3-1)-k_2$ failures followed by a successful transmission .

 A_n $(k_n - 1) - k_{n-1}$ failures followed by a successful transmission

Note that the events A_1, A_2, \ldots, A_n are independent and

$$P[A_j] = (1-p)^{k_j - k_{j-1} - 1} p. (3)$$

Thus

$$P_{K_1,\dots,K_n}(k_1,\dots,k_n) = P[A_1]P[A_2]\cdots P[A_n]$$
 (4)

$$= p^{n} (1-p)^{(k_{1}-1)+(k_{2}-k_{1}-1)+(k_{3}-k_{2}-1)+\dots+(k_{n}-k_{n-1}-1)}$$
(5)

$$= p^{n} (1 - p)^{k_{n} - n} \tag{6}$$

To clarify subsequent results, it is better to rename **K** as \mathbf{K}_n . That is, $\mathbf{K}_n = \begin{bmatrix} K_1 & K_2 & \cdots & K_n \end{bmatrix}'$, and we see that

$$P_{\mathbf{K}_n}(\mathbf{k}_n) = \begin{cases} p^n (1-p)^{k_n-n} & 1 \le k_1 < k_2 < \dots < k_n, \\ 0 & \text{otherwise.} \end{cases}$$
 (7)

(b) For j < n,

$$P_{K_1,K_2,...,K_j}(k_1,k_2,...,k_j) = P_{\mathbf{K}_j}(\mathbf{k}_j).$$
 (8)

Since \mathbf{K}_i is just \mathbf{K}_n with n = j, we have

$$P_{\mathbf{K}_{j}}(\mathbf{k}_{j}) = \begin{cases} p^{j} (1-p)^{k_{j}-j} & 1 \leq k_{1} < k_{2} < \dots < k_{j}, \\ 0 & \text{otherwise.} \end{cases}$$
 (9)

(c) Rather than try to deduce $P_{K_i}(k_i)$ from the joint PMF $P_{K_n}(k_n)$, it is simpler to return to first principles. In particular, K_i is the number of trials up to and including the ith success and has the Pascal (i, p) PMF

$$P_{K_i}(k_i) = {k_i - 1 \choose i - 1} p^i (1 - p)^{k_i - i}.$$
 (10)

Problem 5.5.4 Solution

Let X_i denote the finishing time of boat i. Since finishing times of all boats are iid Gaussian random variables with expected value 35 minutes and standard deviation 5 minutes, we know that each X_i has CDF

$$F_{X_i}(x) = P[X_i \le x] = P\left[\frac{X_i - 35}{5} \le \frac{x - 35}{5}\right] = \Phi\left(\frac{x - 35}{5}\right)$$
 (1)

(a) The time of the winning boat is

$$W = \min(X_1, X_2, \dots, X_{10}) \tag{2}$$

To find the probability that $W \leq 25$, we will find the CDF $F_W(w)$ since this will also be useful for part (c).

$$F_W(w) = P[\min(X_1, X_2, \dots, X_{10}) \le w]$$
 (3)

$$= 1 - P\left[\min(X_1, X_2, \dots, X_{10}) > w\right] \tag{4}$$

$$= 1 - P[X_1 > w, X_2 > w, \dots, X_{10} > w]$$
(5)

Since the X_i are iid,

$$F_{W}(w) = 1 - \prod_{i=1}^{10} P[X_{i} > w]$$

$$= 1 - (1 - F_{X_{i}}(w))^{10}$$
(6)

$$=1-(1-F_{X_i}(w))^{10} \tag{7}$$

$$=1-\left(1-\Phi\left(\frac{w-35}{5}\right)\right)^{10}\tag{8}$$

Thus,

$$P[W \le 25] = F_W(25) = 1 - (1 - \Phi(-2))^{10}. \tag{9}$$

Since $\Phi(-2) = 1 - \Phi(2)$, we have that

$$P[W \le 25] = 1 - [\Phi(2)]^{10} = 0.2056$$
 (10)

(b) The finishing time of the last boat is $L = \max(X_1, \dots, X_{10})$. The probability that the last boat finishes in more than 50 minutes is

$$P[L > 50] = 1 - P[L \le 50] \tag{11}$$

$$= 1 - P[X_1 \le 50, X_2 \le 50, \dots, X_{10} \le 50]$$
 (12)

Once again, we use the fact that the X_i are iid Gaussian (35, 5) random variables to write

$$P[L > 50] = 1 - \prod_{i=1}^{10} P[X_i \le 50]$$
 (13)

$$=1-(F_{X_i}(50))^{10} (14)$$

$$=1 - \left(\Phi\left(\frac{50 - 35}{5}\right)\right)^{10} \tag{15}$$

$$= 1 - (\Phi(3))^{10} = 0.0134 \tag{16}$$

(c) A boat will finish in negative time if and only iff the winning boat finishes in negative time, which has probability

$$F_W(0) = 1 - \left(1 - \Phi\left(\frac{0 - 35}{5}\right)\right)^{10} = 1 - (1 - \Phi(-7))^{10} = 1 - (\Phi(7))^{10}$$
 (17)

Unfortunately, the table in the text has neother $\Phi(7)$ nor Q(7). However, for those with access to MATLAB, or a programmable calculator, can find out that

$$Q(7) = 1 - \Phi(7) = 1.28 \times 10^{-12}$$
(18)

This implies that a boat finishes in negative time with probability

$$F_W(0) = 1 - (1 - 1.28 \times 10^{-12})^{10} = 1.28 \times 10^{-11}$$
 (19)

Problem 5.7.6 Solution

(a) From Theorem 5.13, Y has covariance matrix

$$C_{Y} = QC_{X}Q' \tag{1}$$

$$= \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix} \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$
(2)

$$= \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix} \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$
(2)
$$= \begin{bmatrix} \sigma_1^2 \cos^2 \theta + \sigma_2^2 \sin^2 \theta & (\sigma_1^2 - \sigma_2^2) \sin \theta \cos \theta \\ (\sigma_1^2 - \sigma_2^2) \sin \theta \cos \theta & \sigma_1^2 \sin^2 \theta + \sigma_2^2 \cos^2 \theta \end{bmatrix}.$$
(3)

We conclude that Y_1 and Y_2 have covariance

$$Cov[Y_1, Y_2] = C_Y(1, 2) = (\sigma_1^2 - \sigma_2^2) \sin \theta \cos \theta.$$
 (4)

Since Y_1 and Y_2 are jointly Gaussian, they are independent if and only if $Cov[Y_1, Y_2] = 0$. Thus, Y_1 and Y_2 are independent for all θ if and only if $\sigma_1^2 = \sigma_2^2$. In this case, when the joint PDF $f_X(\mathbf{x})$ is symmetric in x_1 and x_2 . In terms of polar coordinates, the PDF $f_{\mathbf{X}}(\mathbf{x}) = f_{X_1,X_2}(x_1,x_2)$ depends on $r = \sqrt{x_1^2 + x_2^2}$ but for a given r, is constant for all $\phi = \tan^{-1}(x_2/x_1)$. The transformation of **X** to **Y** is just a rotation of the coordinate system by θ preserves this circular symmetry.

- (b) If $\sigma_2^2 > \sigma_1^2$, then Y_1 and Y_2 are independent if and only if $\sin \theta \cos \theta = 0$. This occurs in the following cases:
 - $\theta = 0$: $Y_1 = X_1$ and $Y_2 = X_2$
 - $\theta = \pi/2$: $Y_1 = -X_2$ and $Y_2 = -X_1$
 - $\theta = \pi$: $Y_1 = -X_1$ and $Y_2 = -X_2$
 - $\theta = -\pi/2$: $Y_1 = X_2$ and $Y_2 = X_1$

In all four cases, Y_1 and Y_2 are just relabeled versions, possibly with sign changes, of X_1 and X_2 . In these cases, Y_1 and Y_2 are independent because X_1 and X_2 are independent. For other values of θ , each Y_i is a linear combination of both X_1 and X_2 . This mixing results in correlation between Y_1 and Y_2 .