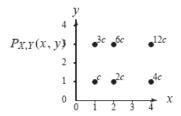
Problem 4.1.1 Solution

(a) The probability $P[X \le 2, Y \le 3]$ can be found be evaluating the joint CDF $F_{X,Y}(x, y)$ at x = 2 and y = 3. This yields

$$P[X \le 2, Y \le 3] = F_{X,Y}(2,3) = (1 - e^{-2})(1 - e^{-3})$$
(1)

(b) To find the marginal CDF of X, $F_X(x)$, we simply evaluate the joint CDF at $y = \infty$.


$$F_{X}(x) = F_{X,Y}(x,\infty) = \begin{cases} 1 - e^{-x} & x \ge 0\\ 0 & \text{otherwise} \end{cases}$$
 (2)

(c) Likewise for the marginal CDF of Y, we evaluate the joint CDF at $X = \infty$.

$$F_{Y}(y) = F_{X,Y}(\infty, y) = \begin{cases} 1 - e^{-y} & y \ge 0\\ 0 & \text{otherwise} \end{cases}$$
 (3)

Problem 4.2.1 Solution

In this problem, it is helpful to label points with nonzero probability on the X, Y plane:

(a) We must choose c so the PMF sums to one:

$$\sum_{x=1,2,4} \sum_{y=1,3} P_{X,Y}(x,y) = c \sum_{x=1,2,4} x \sum_{y=1,3} y = c[1(1+3) + 2(1+3) + 4(1+3)] = 28c (1)$$

Thus c = 1/28.

(b) The event $\{Y < X\}$ has probability

$$P[Y < X] = \sum_{x=1,2,4} \sum_{y < x} P_{X,Y}(x,y) = \frac{1(0) + 2(1) + 4(1+3)}{28} = \frac{18}{28}$$
 (2)

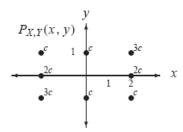
(c) The event $\{Y > X\}$ has probability

$$P[Y > X] = \sum_{x=1,2,4} \sum_{y>x} P_{X,Y}(x,y) = \frac{1(3) + 2(3) + 4(0)}{28} = \frac{9}{28}$$
 (3)

(d) There are two ways to solve this part. The direct way is to calculate

$$P[Y = X] = \sum_{x=1,2,4} \sum_{y=x} P_{X,Y}(x,y) = \frac{1(1) + 2(0)}{28} = \frac{1}{28}$$
 (4)

The indirect way is to use the previous results and the observation that


$$P[Y = X] = 1 - P[Y < X] - P[Y > X] = (1 - 18/28 - 9/28) = 1/28$$
 (5)

(e)

$$P[Y=3] = \sum_{x=1,2,4} P_{X,Y}(x,3) = \frac{(1)(3) + (2)(3) + (4)(3)}{28} = \frac{21}{28} = \frac{3}{4}$$
 (6)

Problem 4.2.2 Solution

On the X, Y plane, the joint PMF is

(a) To find c, we sum the PMF over all possible values of X and Y. We choose c so the sum equals one.

$$\sum_{x} \sum_{y} P_{X,Y}(x,y) = \sum_{x=-2,0,2} \sum_{y=-1,0,1} c|x+y| = 6c + 2c + 6c = 14c$$
 (1)

Thus c = 1/14.

(b)

$$P[Y < X] = P_{X,Y}(0, -1) + P_{X,Y}(2, -1) + P_{X,Y}(2, 0) + P_{X,Y}(2, 1)$$
(2)

$$= c + c + 2c + 3c = 7c = 1/2$$
(3)

(c)

$$P[Y > X] = P_{X,Y}(-2, -1) + P_{X,Y}(-2, 0) + P_{X,Y}(-2, 1) + P_{X,Y}(0, 1)$$
(4)

$$= 3c + 2c + c + c = 7c = 1/2$$
 (5)

(d) From the sketch of $P_{X,Y}(x, y)$ given above, P[X = Y] = 0.

(e)

$$P[X < 1] = P_{X,Y}(-2, -1) + P_{X,Y}(-2, 0) + P_{X,Y}(-2, 1) + P_{X,Y}(0, -1) + P_{X,Y}(0, 1)$$
(6)

$$= 8c = 8/14$$
 (7)

Problem 4.2.6 Solution

As the problem statement indicates, Y = y < n if and only if

A: the first y tests are acceptable, and

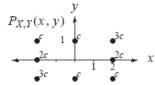
B: test y + 1 is a rejection.

Thus P[Y = y] = P[AB]. Note that $Y \le X$ since the number of acceptable tests before the first failure cannot exceed the number of acceptable circuits. Moreover, given the occurrence of AB, the event X = x < n occurs if and only if there are x - y acceptable circuits in the remaining n - y - 1 tests. Since events A, B and C depend on disjoint sets of tests, they are independent events. Thus, for $0 \le y \le x < n$,

$$P_{X,Y}(x, y) = P[X = x, Y = y]$$
 (1)

$$= P[ABC] \tag{2}$$

$$= P[A]P[B]P[C]$$
(3)


$$= \underbrace{p^{y}}_{P[A]} \underbrace{(1-p)}_{P[B]} \underbrace{\binom{n-y-1}{x-y}} p^{x-y} (1-p)^{n-y-1-(x-y)}$$
(4)

$$= \binom{n-y-1}{x-y} p^{x} (1-p)^{n-x}$$
 (5)

Note that the remaining case, y = x = n occurs when all n tests are acceptable and thus $P_{X,Y}(n,n) = p^n$.

Problem 4.3.2 Solution

On the X, Y plane, the joint PMF is

The PMF sums to one when c = 1/14

(a) The marginal PMFs of X and Y are

$$P_X(x) = \sum_{y=-1,0,1} P_{X,Y}(x,y) = \begin{cases} 6/14 & x = -2, 2\\ 2/14 & x = 0\\ 0 & \text{otherwise} \end{cases}$$
 (1)

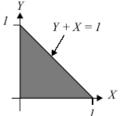
$$P_{Y}(y) = \sum_{x=-2,0,2} P_{X,Y}(x,y) = \begin{cases} 5/14 & y = -1, 1\\ 4/14 & y = 0\\ 0 & \text{otherwise} \end{cases}$$
 (2)

(b) The expected values of X and Y are

$$E[X] = \sum_{x=-2.0.2} x P_X(x) = -2(6/14) + 2(6/14) = 0$$
 (3)

$$E[Y] = \sum_{y=-1,0,1} y P_Y(y) = -1(5/14) + 1(5/14) = 0$$
 (4)

(c) Since X and Y both have zero mean, the variances are

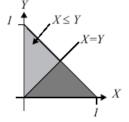

$$Var[X] = E[X^2] = \sum_{x=-2,0,2} x^2 P_X(x) = (-2)^2 (6/14) + 2^2 (6/14) = 24/7$$
 (5)

$$Var[Y] = E[Y^2] = \sum_{y=-1,0,1} y^2 P_Y(y) = (-1)^2 (5/14) + 1^2 (5/14) = 5/7$$
 (6)

The standard deviations are $\sigma_X = \sqrt{24/7}$ and $\sigma_Y = \sqrt{5/7}$.

Problem 4.4.1 Solution

(a) The joint PDF of X and Y is

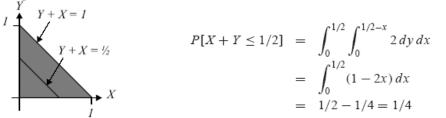

$$f_{X,Y}(x,y) = \begin{cases} c & x+y \le 1, x, y \ge 0\\ 0 & \text{otherwise} \end{cases}$$
 (1)

To find the constant c we integrate over the region shown. This gives

$$\int_0^1 \int_0^{1-x} c \, dy \, dx = cx - \frac{cx}{2} \Big|_0^1 = \frac{c}{2} = 1 \tag{2}$$

Therefore c = 2.

(b) To find the $P[X \leq Y]$ we look to integrate over the area indicated by the graph

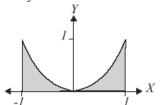


$$P[X \le Y] = \int_0^{1/2} \int_x^{1-x} dy \, dx \tag{3}$$
$$= \int_0^{1/2} (2 - 4x) \, dx \tag{4}$$

$$= \int_0^{1/2} (2 - 4x) \, dx \tag{4}$$

$$=1/2$$
 (5)

(c) The probability $P[X+Y \le 1/2]$ can be seen in the figure. Here we can set up the following

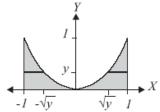

$$P[X + Y \le 1/2] = \int_0^{1/2} \int_0^{1/2 - x} 2 \, dy \, dx \tag{6}$$

$$= \int_{0}^{1/2} (1 - 2x) dx \tag{7}$$

$$= 1/2 - 1/4 = 1/4$$
 (8)

Problem 4.5.4 Solution

The joint PDF of X and Y and the region of nonzero probability are


$$f_{X,Y}(x,y) = \begin{cases} 5x^2/2 & -1 \le x \le 1, 0 \le y \le x^2 \\ 0 & \text{otherwise} \end{cases}$$
 (1)

We can find the appropriate marginal PDFs by integrating the joint PDF.

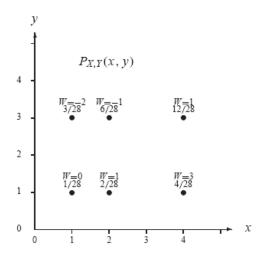
(a) The marginal PDF of X is

$$f_X(x) = \int_0^{x^2} \frac{5x^2}{2} \, dy = \begin{cases} 5x^4/2 & -1 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$
 (2)

(b) Note that $f_{Y}(y) = 0$ for y > 1 or y < 0. For $0 \le y \le 1$,

$$f_{Y}(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dx \tag{3}$$

$$= \int_{-1}^{-\sqrt{y}} \frac{5x^2}{2} dx + \int_{\sqrt{y}}^{1} \frac{5x^2}{2} dx \tag{4}$$


$$=5(1-y^{3/2})/3\tag{5}$$

The complete expression for the marginal CDF of Y is $= 5(1 - y^{3/2})/3$

$$f_{Y}(y) = \begin{cases} 5(1 - y^{3/2})/3 & 0 \le y \le 1\\ 0 & \text{otherwise} \end{cases}$$
 (6)

Problem 4.6.1 Solution

In this problem, it is helpful to label points X, Y with nonzero probability along with the corresponding values of W = X - Y. From the statement of Problem 4.6.1, we have

(a) To find the PMF of W, we simply add the probabilities associated with each possible value of W:

$$P_W(-2) = P_{X,Y}(1,3) = 3/28$$
 $P_W(-1) = P_{X,Y}(2,3) = 6/28$ $P_W(0) = P_{X,Y}(1,1) = 1/28$ $P_W(1) = P_{X,Y}(2,1) + P_{X,Y}(4,3) = 14/28$ $P_W(3) = P_{X,Y}(4,1) = 4/28$

For all other values of w, $P_W(w) = 0$.

(b) The expected value of W is

$$E[W] = \sum_{w} w P_{W}(w) = -2(3/28) + -1(6/28) + 0(1/28) + 1(14/28) + 3(4/28) = 1/2$$
(1)

(c)
$$P[W > 0] = P_W(1) + P_W(3) = 18/28$$
 (2)

Problem 4.6.10 Solution

The position of the mobile phone is equally likely to be anywhere in the area of a circle with radius 16 km. Let X and Y denote the position of the mobile. Since we are given that the cell has a radius of 4 km, we will measure X and Y in kilometers. Assuming the base station is at the origin of the X, Y plane, the joint PDF of X and Y is

$$f_{X,Y}(x,y) = \begin{cases} \frac{1}{16\pi} & x^2 + y^2 \le 16\\ 0 & \text{otherwise} \end{cases}$$
 (1)

Since the radial distance of the mobile from the base station is $R = \sqrt{X^2 + Y^2}$, the CDF of R is

$$F_R(r) = P[R \le r] = P[X^2 + Y^2 \le r]$$
 (2)

By changing to polar coordinates, we see that for $0 \le r \le 4$ km,

$$F_R(r) = \int_0^{2\pi} \int_0^r \frac{r'}{16\pi} dr' d\theta' = r^2/16$$
 (3)

So

$$F_R(r) = \begin{cases} 0 & r < 0 \\ r^2/16 & 0 \le r < 4 \\ 1 & r \ge 4 \end{cases}$$
 (4)

Then by taking the derivative with respect to r we arrive at the PDF

$$f_{R}(r) = \begin{cases} r/8 & 0 \le r \le 4\\ 0 & \text{otherwise} \end{cases}$$
 (5)

Problem 4.7.8 Solution

The joint PDF of X and Y is

$$f_{X,Y}(x,y) = \begin{cases} (x+y)/3 & 0 \le x \le 1, 0 \le y \le 2\\ 0 & \text{otherwise} \end{cases}$$
 (1)

Before calculating moments, we first find the marginal PDFs of X and Y. For $0 \le x \le 1$,

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy = \int_0^2 \frac{x+y}{3} \, dy = \frac{xy}{3} + \frac{y^2}{6} \Big|_{y=0}^{y=2} = \frac{2x+2}{3}$$
 (2)

For $0 \le y \le 2$,

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dx = \int_0^1 \left(\frac{x}{3} + \frac{y}{3}\right) dx = \left.\frac{x^2}{6} + \frac{xy}{3}\right|_{x=0}^{x=1} = \frac{2y+1}{6} \tag{3}$$

Complete expressions for the marginal PDFs are

$$f_X(x) = \begin{cases} \frac{2x+2}{3} & 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases} \qquad f_Y(y) = \begin{cases} \frac{2y+1}{6} & 0 \le y \le 2\\ 0 & \text{otherwise} \end{cases} \tag{4}$$

(a) The expected value of X is

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) \ dx = \int_0^1 x \frac{2x+2}{3} \ dx = \frac{2x^3}{9} + \frac{x^2}{3} \Big|_0^1 = \frac{5}{9}$$
 (5)

The second moment of X is

$$E\left[X^{2}\right] = \int_{-\infty}^{\infty} x^{2} f_{X}(x) \ dx = \int_{0}^{1} x^{2} \frac{2x+2}{3} dx = \frac{x^{4}}{6} + \frac{2x^{3}}{9} \Big|_{0}^{1} = \frac{7}{18}$$
 (6)

The variance of X is $Var[X] = E[X^2] - (E[X])^2 = 7/18 - (5/9)^2 = 13/162$

(b) The expected value of Y is

$$E[Y] = \int_{-\infty}^{\infty} y f_Y(y) \ dy = \int_0^2 y \frac{2y+1}{6} dy = \frac{y^2}{12} + \frac{y^3}{9} \Big|_0^2 = \frac{11}{9}$$
 (7)

The second moment of Y is

$$E[Y^2] = \int_{-\infty}^{\infty} y^2 f_Y(y) \, dy = \int_0^2 y^2 \frac{2y+1}{6} \, dy = \frac{y^3}{18} + \frac{y^4}{12} \Big|_0^2 = \frac{16}{9}$$
 (8)

The variance of Y is $Var[Y] = E[Y^2] - (E[Y])^2 = 23/81$.

(c) The correlation of X and Y is

$$E[XY] = \iint xy f_{X,Y}(x, y) \, dx \, dy \tag{9}$$

$$= \int_0^1 \int_0^2 xy(\frac{x+y}{3}) \, dy \, dx \tag{10}$$

$$= \int_0^1 \left(\frac{x^2 y^2}{6} + \frac{x y^3}{9}\right|_{y=0}^{y=2}) dx \tag{11}$$

$$= \int_0^1 \left(\frac{2x^2}{3} + \frac{8x}{9}\right) dx = \frac{2x^3}{9} + \frac{4x^2}{9} \Big|_0^1 = \frac{2}{3}$$
 (12)

The covariance is Cov[X, Y] = E[XY] - E[X]E[Y] = -1/81.

(d) The expected value of X and Y is

$$E[X + Y] = E[X] + E[Y] = 5/9 + 11/9 = 16/9$$
 (13)

(e) By Theorem 4.15,

$$Var[X + Y] = Var[X] + Var[Y] + 2 Cov[X, Y] = \frac{13}{162} + \frac{23}{81} - \frac{2}{81} = \frac{55}{162}$$
 (14)

Problem 4.8.3 Solution

Given the event $A = \{X + Y \le 1\}$, we wish to find $f_{X,Y|A}(x, y)$. First we find

$$P[A] = \int_0^1 \int_0^{1-x} 6e^{-(2x+3y)} \, dy \, dx = 1 - 3e^{-2} + 2e^{-3} \tag{1}$$

So then

$$f_{X,Y|A}(x,y) = \begin{cases} \frac{6e^{-(2x+3y)}}{1-3e^{-2}+2e^{-3}} & x+y \le 1, x \ge 0, y \ge 0\\ 0 & \text{otherwise} \end{cases}$$
 (2)

Problem 4.9.13 Solution

The key to solving this problem is to find the joint PMF of M and N. Note that $N \ge M$. For n > m, the joint event $\{M = m, N = n\}$ has probability

begindmath0.3cm]

$$P[M = m, N = n] = P[\overrightarrow{dd \cdots d} v \overrightarrow{dd \cdots d} v]$$
(1)

$$= (1-p)^{m-1}p(1-p)^{n-m-1}p$$
 (2)

$$= (1-p)^{n-2}p^2 (3)$$

A complete expression for the joint PMF of M and N is

$$P_{M,N}(m,n) = \begin{cases} (1-p)^{n-2}p^2 & m = 1, 2, \dots, n-1; \ n = m+1, m+2, \dots \\ 0 & \text{otherwise} \end{cases}$$
 (4)

For n = 2, 3, ..., the marginal PMF of N satisfies

$$P_N(n) = \sum_{m=1}^{n-1} (1-p)^{n-2} p^2 = (n-1)(1-p)^{n-2} p^2$$
 (5)

Similarly, for m = 1, 2, ..., the marginal PMF of M satisfies

$$P_M(m) = \sum_{n=m+1}^{\infty} (1-p)^{n-2} p^2$$
 (6)

$$= p^{2}[(1-p)^{m-1} + (1-p)^{m} + \cdots]$$
 (7)

$$= (1 - p)^{m-1} p (8)$$

The complete expressions for the marginal PMF's are

$$P_M(m) = \begin{cases} (1-p)^{m-1}p & m = 1, 2, \dots \\ 0 & \text{otherwise} \end{cases}$$
 (9)

$$P_N(n) = \begin{cases} (n-1)(1-p)^{n-2}p^2 & n = 2, 3, \dots \\ 0 & \text{otherwise} \end{cases}$$
 (10)

Not surprisingly, if we view each voice call as a successful Bernoulli trial, *M* has a geometric PMF since it is the number of trials up to and including the first success. Also, *N* has a Pascal PMF since it is the number of trials required to see 2 successes. The conditional PMF's are now easy to find.

$$P_{N|M}(n|m) = \frac{P_{M,N}(m,n)}{P_{M}(m)} = \begin{cases} (1-p)^{n-m-1}p & n=m+1, m+2, \dots \\ 0 & \text{otherwise} \end{cases}$$
(11)

The interpretation of the conditional PMF of N given M is that given M = m, N = m + N' where N' has a geometric PMF with mean 1/p. The conditional PMF of M given N is

$$P_{M|N}(m|n) = \frac{P_{M,N}(m,n)}{P_{N}(n)} = \begin{cases} 1/(n-1) & m = 1, \dots, n-1 \\ 0 & \text{otherwise} \end{cases}$$
(12)

Given that call N = n was the second voice call, the first voice call is equally likely to occur in any of the previous n - 1 calls.