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Laser  Beams  and  Resonators 

H. KOGELNIK AND T. LI 

Abstract-This paper is a  review of the  theory of laser beams and 
resonators. It is meant to be tutorial in nature  and  useful in scope. No 
attempt is made to be exhaustive in the  treatment.  Rather,  emphasis is 
placed on  formulations  and  derivations  which  lead to basic understand- 
ing and on  results which bear practical  significance. 

T 
1. INTRODUCTION 

HE COHERENT radiation generated by lasers or 
masers operating in the optical or infrared wave- 
length regions  usually appears as  a beam whose 

transverse extent is large compared to the wavelength. 
The resonant properties of such a beam  in the resonator 
structure, its propagation characteristics in  free  space, and 
its interaction behavior  with various optical elements and 
devices  have been studied extensively in recent  years. 
This paper is a review of the theory of laser beams and 
resonators. Emphasis is placed on formulations and 
derivations which  lead to basic understanding and on 
results which are of practical value. 

Historically, the subject of laser resonators had its 
origin when  Dicke [ 1 1, Prokhorov [2], and Schawlow and 
Townes [3] independently proposed to use the Fabry- 
Perot interferometer as a laser resonator. The modes in 
such a structure, as determined by diffraction effects, 
were first calculated by Fox and Li [4]. Boyd and Gordon 
[ 5 ] ,  and Boyd and Kogelnik  [6]  developed a theory for 
resonators with spherical mirrors and approximated the 
modes by  wave beams. The concept of electromagnetic 
wave  beams  was also introduced by Goubau and Schwe- 
ring [7], who  investigated the properties of sequences of 
lenses for the guided transmission of electromagnetic 
waves. Another treatment of  wave beams  was  given by 
Pierce [8]. The behavior of Gaussian laser  beams as they 
interact with various optical structures has been  analyzed 
by Goubau [9], Kogelnik [lo], [l 1 1, and others. 

The present paper summarizes the various theories and 
is  divided into three parts. The first part treats the passage 
of paraxial rays through optical structures and is  based 
on geometrical optics. The second part is an analysis of 
laser beams and resonators, taking into account the wave 
nature of the beams but ignoring diffraction effects due 
to the finite size  of the apertures. The third part  treats the 
resonator modes, taking into account aperture diffrac- 
tion effects.  Whenever applicable, useful results are pre- 
sented in the forms of formulas, tables, charts, and 
graphs. 
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2. PARAXIAL RAY ANALYSIS 
A study of the passage of paraxial rays through optical 

resonators, transmission lines, and similar structures can 
reveal  many important properties of these  systems.  One 
such “geometrical” property is the stability of the struc- 
ture [6], another is the loss of unstable resonators [12]. 
The propagation of paraxial rays through various optical 
structures can be  described by ray transfer matrices. 
Knowledge of these matrices is particularly useful as they 
also describe the propagation of Gaussian beams through 
these structures; this will  be  discussed  in  Section  3. The 
present section describes  briefly  some ray concepts which 
are useful  in understanding laser  beams and resonators, 
and lists the ray matrices of several optical systems of 
interest. A more detailed treatment of ray propagation 
can be found in textbooks [13] and in the literature on 
laser resonators [ 141. 
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Fig. 1. Reference planes of an optical system. 
A typical ray path is indicated. 

2.1 Ray Transfer Matrix 
A paraxial ray in  a given cross section (z=const) of an 

optical system  is characterized by its distance x from the 
optic ( z )  axis and by its angle or slope x’ with  respect to 
that axis. A typical ray path  through an optical structure 
is shown in Fig.  1. The slope x’ of paraxial rays is  assumed 
to be small. The ray path through a given structure de- 
pends on the optical properties of the structure and on the 
input conditions, i.e., the position x 1  and the  slope x; of 
the ray in the input plane of the system. For paraxial rays 
the corresponding output quantities xz and x i  are linearly 
dependent on the input quantities. This is conveniently 
written in the matrix form 
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TABLE I 
RAY  TRANSFER MATRICES OF SIX ELEMENTARY OPTICAL  STRUCTURES 

OPTICAL  SYSTEM 

I f 1  

1 2  

I 2 

1 2 

RAY  TRANSFER  MATRIX 

1 d 

0 I 

I 0 

I --  1 
f 

1 d 

-- d r ' -T  

I I +z d 1 - 1  d dz dl +L d,d, 
fl f 2  fl f, f, f2  f2 flf2 

I d/n 

0 1 

where the slopes are measured  positive as indicated in the 
figure. The ABCD matrix is called the ray transfer matrix. 
Its determinant is  generally unity 

A D  - B C  = 1. (2) 

The matrix elements are related tb the focal length f of 
the system and to the location of the principal planes by 

1 
f = --  

C 

D - 1  
hl = ___ 

C 

A - 1  
hz = ___ 

C 

(3) 

where hl and hz are the distances of the principal planes 
from the input and output planes as shown in Fig. 1. 

In Table I there are listed the ray transfer matrices of 
six elementary optical structures. The matrix of No. 1 
describes the ray transfer over a distance d. No. 2 de- 
scribes the transfer of rays through a thin lens of focal 
lengthf. Here the input and output planes are immediately 
to the left and right of the lens. No. 3 is a combination 
of the fist two. It governs rays passing  first  over a dis- 
tance d and then through a thin lens. If the sequence is 
reversed the diagonal elements are interchanged. The 
matrix of No. 4 describes the rays passing through two 
structures of the No. 3 type. It is obtained by matrix 
multiplication. The ray transfer matrix for a lenslike 
medium of length d is  given in No. 5.  In this medium the 
refractive  index  varies quadratically with the distance r 
from the optic axis. 

n = no - +n2r2. (4) 

An index variation of this kind can occur in laser crystals 
and in gas  lenses. The matrix of a dielectric material of 
index n and length d is  given in No. 6. The matrix is 
referred to the surrounding medium of index 1 and is 
computed by means of  Snell's law. Comparison with No. 
1 shows that for paraxial rays the effective distance is 
shortened  by the optically denser material, while, as is 
well known, the "optical distance" is lengthened. 

2.2 Periodic Sequences 
Light rays that bounce back and forth between the 

spherical mirrors of a laser resonator experience a periodic 
focusing action. The effect on the rays is the same as in a 
periodic sequence of lenses  [15]  which can be used as an 
optical transmission line. A periodic sequence of identical 
optical systems is schematically  indicated in Fig. 2. A 
single  element of the sequence  is characterized by its 
ABCD matrix. The ray transfer through n consecutive 
elements of the sequence is described  by the nth power 
of this matrix. This can be evaluated by means of Sylves- 
ter's theorem 

A B *  1 

IC Dl - s in@ 
-- 

(5 )  

A sin nO - sin(n - l)@ B sin n@ 
C sin& D sin nO - sin(n - l)@ 
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where 

cos 0 = + ( A  + 0). 
Periodic  sequences can be classified 

unstable. Sequences are stable when 
obeys the inequality 

as either stable or 
the trace (A+D)  

-1 < $ ( A  + 0) < 1. (7) 

Inspection of ( 5 )  shows that rays passing through a stable 
sequence are periodically  refocused. For unstable sys- 
tems, the trigonometric functions in that  equation be- 
come  hyperbolic functions, which indicates that  the rays 
become more and more dispersed  the further they pass 
through the sequence. 

I I 

Fig. 2. Periodic  sequence of identical  systems, 
each  characterized  by its ABCD matrix. 

2.3 Stability of Laser Resonators 
A laser resonator with spherical mirrors of unequal 

curvature is a typical example of a periodic  sequence that 
can be either stable or unstable [6 ] .  In Fig. 3 such a 
resonator is  shown together with its dual, which  is a 
sequence of lenses. The ray paths through the two struc- 
tures are the same,  except that the ray pattern is folded in 
the resonator and unfolded in the lens  sequence. The focal 
lengths fl and f 2  of the lenses are the same as the focal 
lengths of the mirrors, i.e.,  they are determined by the 
radii of curvature R1 and R2 of the mirrors cfi= R, /2 ,  
f 2 =  R2/2) .  The lens spacings are the same as the mirror 
spacing d. One can choose, as an element of the peri- 
odic sequence, a spacing  followed  by one lens plus another 
spacing  followed  by the second  lens. The ABCD matrix 
of such an element  is  given in No. 4 of Table I. From this 
one can obtain the trace, and write the stability condition 
(7) in the form 

o <  1--  ( 
To show  graphically  which  type of resonator is stable 

and which is unstable, it is useful to plot a stability dia- 
gram on which each resonator type is  represented  by a 
point. This is shown in Fig. 4 where the parameters d / R l  
and d / R 2  are drawn as the coordinate axes; unstable 
systems are represented  by points in the shaded areas. 
Various resonator types, as characterized by the relative 
positions of the centers of curvature of the mirrors, are 
indicated in the appropriate regions of the diagram. Also 
entered as alternate coordinate axes are the parameters gl 
and g2 which  play an important role in the diffraction 
theory of resonators (see Section 4). 

f2 f2 

R t  = 2 f j  , R ~ = 2 f 2  

Fig. 3. Spherical-mirror  resonator  and the 
equivalent  sequence of lenses. 

Fig. 4. Stability  diagram.  Unstable  resonator 
systems  lie in shaded regions. 

3. WAVE ANALYSIS OF BEAMS AND RESONATORS 

In this section the wave nature of laser  beams is taken 
into account, but diffraction effects due to the finite size 
of apertures are neglected. The latter will be  discussed in 
Section 4. The results derived here are applicable to 
optical systems  with “large apertures,” i.e.,  with apertures 
that intercept only a negligible portion of the beam power. 
A theory of light beams or “beam waves” of this kind was 
first  given  by  Boyd and Gordon [ 5 ]  and by Goubau and 
Schwering [7]. The present discussion  follows an analysis 
given in [ 1 1 1. 
3.1 Approximate Solution of the Wave Equation 

Laser beams are similar in many respects to plane 
waves;  however, their intensity distributions are not uni- 
form, but  are concentrated near the axis of propagation 
and their phase fronts are slightly curved. A field com- 
ponent or potential u of the coherent light satisfies the 
scalar wave equation 

V2u + k2u = 0 (9) 

where k = 2r/X is the propagation constant in the medium. 



1966 KOGELNIK AND LI: LASER BEAMS AND RESONATORS 1315 

For light traveling in the z direction one writes 

u = $b, Y, 2) e x P ( - M  ( 10) 

where $ is a slowly  varying  complex function which 
represents the differences  between a laser  beam and a 
plane wave,  namely: a nonuniform intensity distribu- 
tion, expansion of the beam  with  distance of propagation, 
curvature of the phase front, and other differences dis- 
cussed  below. By inserting  (10) into (9) one obtains 

where  it has been  assumed that $ varies so slowly  with z 
that its  second  derivative &/az2 can be  neglected. 

The differential equation (1 1) for $ has a form  similar 
to the time dependent Schriidinger equation. It is  easy to 
see that 

is a solution of (1 l), where 

T2 = x2 + y2. ( 13) 

The  parameter P(z) represents a complex  phase  shift  which 
is  associated  with the propagation of the light  beam, and 
q(z) is a complex  beam parameter which  describes the 
Gaussian variation in beam  intensity  with the distance r 
from the optic axis, as well as the curvature of the phase 
front which  is  spherical  near the axis.  After insertion of 
(12) into (1 1) and  comparing  terms of equal powers  in r 
one obtains the relations 

q’ = 1 ( 14) 

and 

j p ’ =  -- 
(2 

(15) 

where the prime indicates differentiation with  respect to z .  
The integration of  (14)  yields 

q 2  = q1 + z (16) 

which relates the beam parameter q2 in  one plane (output 
plane) to the parameter q1 in a second  plane (input plane) 
separated from the first  by a distance z.  

3.2  Propagation  Laws for the Fundamental  Mode 
A coherent light  beam  with a Gaussian intensity pro- 

file as obtained above  is not the only solution of (1 l), 
but is perhaps the most important one. This beam  is  often 
called the “fundamental mode” as compared to  the higher 
order modes to be  discussed later. Because  of its impor- 
tance it is  discussed  here in greater detail. 

For convenience one introduces two real beam param- 
eters R and w related to the complex parameter q by 

I‘ 

I r 

Fig. 5. Amplitude distribution of the fundamental beam. 

When (17)  is  inserted in (12) the physical  meaning of these 
two parameters becomes  clear.  One  sees that R(z) is the 
radius of curvature of the wavefront that intersects the 
axis at z ,  and ~ ( z )  is a measure of the decrease of the 
field amplitude E with the distance from the axis. This 
decrease  is Gaussian in form, as indicated in Fig. 5 ,  and 
w is the distance at which the amplitude is l/e times that 
on the axis. Note  that the intensity distribution is Gaus- 
sian in every  beam cross section,  and that the width of 
that  Gaussian intensity  profile  changes along the axis. 
The  parameter w is often called the beam radius or “spot 
size,”  and 2w, the beam diameter. 

The  Gaussian beam contracts to a minimum diameter 
2w0 at the beam  waist  where the phase front is  plane. If 
one  measures z from this waist, the expansion  laws  for 
the beam  assume a simple form. The complex  beam 
parameter at the waist  is  purely  imaginary 

. r n o 2  
q o  =.I- x 

and a distance z away from the waist the parameter is 

After  combining  (19) and (17) one equates the real  and 
imaginary parts to obtain 

and 

R(z) = z [ 1 + ( 3 2 ] .  

Figure 6 shows the expansion of the beam  according to 
(20). The beam contour ufz )  is a hyperbola  with  asymp- 
totes inclined to the axis at  an angle 

x 
r n o  

e = - .  (22) 

This is the far-field diffraction angle of the fundamental 
mode. 

Dividing  (21)  by  (20), one obtains the useful relation 
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/PHASE FRONT 

Fig. 6. Contour of a Gaussian beam. 

which can be  used to express wo and z in  terms of w and R : 

wo2 = w2 1 [ 1 + (;?‘I 
z = R /  [l +($)‘I. 

To calculate the complex  phase  shift a distance z away 
from the waist, one inserts (19) into (15) to get 

P ’ = - - -  j j _ -  (26) 
Q + j (WO2/V 

Integration of (26) yields the result 

~ P ( z )  = ln[l - ~ ( X Z / W ~ Z ) ]  

= I n d l  + ( X Z / W O ~ ) ~  - j arc tan(hz/xwo2). (27) 

The real part of P represents a phase  shift  difference CP be- 
tween the Gaussian beam and an ideal plane wave,  while 
the imaginary part  produces an amplitude factor WO/W 

which  gives the expected  intensity  decrease on the axis due 
to the expansion of the beam. With these results for the 
fundamental  Gaussian beam, (10) can be written in the 
fonn 

U(T,  2 )  = - 
wo 
W 

where 

9 = arc tan(Xz/mo2). (29) 

It will  be  seen in Section 3.5 that  Gaussian beams  of  this 
kind are produced by many  lasers that oscillate in the 
fundamental mode. 

3.3 Higher Order  Modes 
In the preceding  section  only one solution of (1 1) was 

discussed,  i.e., a light  beam  with the property that its 
intensity  profile in every  beam cross section  is  given  by 
the same function, namely, a Gaussian. The width of this 
Gaussian distribution changes as the beam propagates 
along its axis. There are other solutions of (1  1) with sim- 

ilar properties, and they are discussed in this section. 
These solutions form a complete and  orthogonal set  of 
functions and are called the “modes of propagation.” 
Every arbitrary distribution of monochromatic light can 
be expanded in  terms of these  modes.  Because  of  space 
limitations the derivation of these  modes can only  be 
sketched  here. 

a) Modes in Cartesian  Coordinates: For a system  with 
a rectangular (x,  y ,  z)  geometry one can try a solution for 
(1 1) of the  form 

where g is a function of x and z, and h is a function of y 
and z. For real g and h this postulates mode  beams  whose 
intensity patterns scale according to the width 2w(z) of a 
Gaussian beam. After inserting this trial solution into 
(1 1) one arrives at differential equations for g and h of the 
form 

d2Hm dHm 
dx2 dx 
-- 2x - + 2mH, = 0. (31) 

This is the differential equation for the Hermite poly- 
nomial Hm(x) of order m. Equation (1 1) is  satisfied if 

where m and n are the (transverse)  mode  numbers. Note 
that  the same pattern scaling parameter w(z) applies to 
modes of all orders. 

Some Hermite polynomials of  low order are 

H , ( x )  = 1 

H , ( x )  = x 
H,(x)  = 4x2 - 2 
H ~ ( z )  = 8x3 - 122. (33) 

Expression (28) can be  used as a mathematical descrip- 
tion of higher order light  beams, if one inserts the product 
g . h  as a factor on the right-hand side. The intensity pat- 
tern in a cross section of a higher order beam  is, thus, de- 
scribed  by the product of Hermite  and  Gaussian functions. 
Photographs of such  mode patterns are shown in Fig. 7. 
They  were  produced as modes of oscillation in a gas  laser 
oscillator [16]. Note  that the number of zeros in a mode 
pattern is equal to  the  corresponding mode number,  and 
that  the area occupied  by a mode  increases  with the mode 
number. 

The  parameter R(z) in (28) is the same for all modes, 
implying that the phase-front curvature is the same and 
changes in  the same  way  for  modes of all orders. The 
phase  shift a, however,  is a function of the mode  numbers. 
One obtains 

@(m, n; z )  = (m + n + 1) arc tan(k/mo2).  (34) 
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TEM- TEMx, 

Fig. 7. Mode  patterns of a gas laser oscil- 
lator  (rectangular  symmetry). 

This means that the phase velocity  increases  with increas- 
ing mode number. In resonators this leads to differences 
in the resonant frequencies of the various modes of oscil- 
lation. 

b) Modes in Cylindrical  Coordinates: For a system  with 
a cylindrical (r, 4, z)  geometry one uses a trial solution 
for (1 1) of the form 

After some calculation one finds 

g = (1/2 ;)'..: (2 2) 
where 15,' is a generalized Laguerre polynomial, and p 
and 1 are the radial and angular mode numbers. LpL(x) 
obeys the differential equation 

d2L,' dL,' 
dx2  dx 

X -  + (2 + 1 - 2) - + pL,' = 0. (37) 

Some polynomials of low order are 

Lo'(x) = 1 

Ll'(2) = I + 1 - 2 
Ls'(2) $(I? + 1)(Z + 2) - (1 + 2 ) ~  + 4 ~ ~ .  (38) 

As in the case of beams  with a rectangular geometry, the 
beam parameters w(z) and R(z) are the  same for all cylin- 
drical modes. The phase shift  is, again, dependent on the 
mode numbers and is  given  by 

@ ( p ,  I ;  z )  = ( 2 p  + I + 1) arc tan(Az/mo2). (39) 

3.4 Beam Transformation by a  Lens 
A lens can be  used to focus a laser  beam to a small spot, 

or  to produce a beam of suitable diameter and phase- 
front curvature for injection into a given optical structure. 
An ideal lens leaves the transverse field distribution of a 
beam mode unchanged, i.e., an incoming fundamental 
Gaussian beam will  emerge from the lens as a funda- 
mental beam, and a higher order mode remains a mode 
of the same order after passing through the lens. However, 
a lens does change the beam parameters R(z) and 4 2 ) .  

As these  two parameters are the same for modes of all 
orders, the following  discussion is  valid for all orders; 
the relationship between the parameters of an incoming 
beam (labeled  here  with the index 1) and the parameters 
of the corresponding outgoing beam (index 2) is  studied in 
detail. 

An ideal thin lens of focal lengthftransforms an incom- 
ing spherical .wave  with a radius R1 immediately to the 
left of the lens into a spherical wave  with the radius R2 
immediately to the right of it, where 

1 1 1  

R2 R1 f 

Figure 8 illustrates this situation. The radius of curvature 
is taken to be positive if the wavefront  is  convex as 
viewed from z= co . The lens transforms the phase fronts 
of laser  beams in eactly the same way as those of spherical 
waves. As the diameter of a beam is the same  immediately 
to the left and to the right of a thin lens, the q-parameters 
of the incoming and outgoing beams are related by 

- = - - - .  (40) 

1 1 1  
- = - - - >  (41) 
Q2 91 f 

where the q's are measured at the lens. If q1 and q2 are 
measured at distances dl and d2 from the lens as indicated 
in Fig. 9, the relation between them becomes 

(1 - d2/.f)q1+  (dl  + dz - d d e / f )  

- (q1/! f )  + (1 - d l / f )  
(22 = . (42) 

This formula is  derived  using  (16) and (41). 
More complicated optical structures, such as gas lenses, 

combinations of lenses, or thick lenses, can be thought of 
as composed of a series of thin lenses at various spacings. 
Repeated application of (16) and (41) is, therefore, suffi- 
cient to calculate the effect  of complicated structures on 
the propagation of laser  beams. If the ABCD matrix for 
the transfer of paraxial rays through the structure is 
known, the q parameter of the output beam can be cal- 
culated from 
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f 
Fig. 8. Transformation of wavefronts by a thin lens. 

I 

9, 
f I 

9 2  

Fig. 9. Distances and parameters for a 
beam  transformed by a thin lens. 

(43) 

This is a generalized form of (42) and has been  called the 
ABCD law [lo]. The matrices of several  optical structures 
are given in Section 11. The ABCD law  follows from the 
analogy  between the laws for laser  beams and  the laws 
obeyed  by the spherical  waves in geometrical  optics. The 
radius of the spherical  waves R obeys  laws  of the same 
form as (16) and (41) for the complex beam  parameter q. 
A more detailed  discussion of this analogy  is  given in [ 1 1 1. 
3.5 Laser Resonators (Infinite Aperture) 

The most  commonly used laser resonators are com- 
posed  of two spherical (or flat) mirrors facing  each other. 
The stability of such “open” resonators has been discussed 
in  Section 2 in  terms of paraxial rays. To study the modes 
of laser resonators one  has to  take account of their wave 
nature, and this is done here  by  studying  wave  beams of 
the kind  discussed  above as they propagate back and  forth 
between the mirrors. As aperture diffraction  effects are 
neglected throughout this section, the present  discussion 
applies  only to stable resonators with mirror apertures 
that  are large  compared to the spot size  of the beams. 

A mode of a resonator is  defined as a self-consistent 
field  configuragion.  If a mode can be  represented  by a 
wave beam propagating back and forth between the 
mirrors, the beam parameters must  be the same after one 
complete return trip of the beam. This condition is  used 
to calculate the mode parameters. As the beam that repre- 
sents a mode  travels in both directions between the mirrors 
it forms the axial  standing-wave pattern that is  expected 
for a resonator mode. 

A laser resonator with mirrors of equal curvature is 
shown in Fig. 10 together  with the equivalent  unfolded 
system, a sequence of lenses. For this symmetrical struc- 
ture it  is  sufficient to postulate self-consistency for one 
transit of the resonator (which  is  equivalent to one full 
period of the lens  sequence),  instead  of a complete return 

trip. If the complex  beam parameter is  given  by ql, im- 
mediately to the right of a particular lens, the beam 
parameter q2, immediately to the right of the next  lens, 
can  be calculated  by  means of (1 6) and (41) as 

Self-consistency  requires that ql=q2=q, which leads to 
a quadratic equation for the beam parameter q at the lenses 
(or at  the mirrors of the resonator): 

1 1 1  - + - + - = o o .  
q2 fq fd  

(45) 

The roots of this equation  are 

1 1 -   1 1  _ -  - - - (+) j (- - - 
fd 4f2 P 2f 

(46) 

where  only the root  that yields a real beamwidth  is used, 
(Note  that one  gets a real beamwidth for stable resonators 

From (46) one obtains immediately the real beam 
parameters defined in (17).  One  sees that R is equal to the 
radius of curvature of the mirrors, which  means that  the 
mirror surfaces are coincident  with the phase fronts of 
the resonator modes. The width 2w of the fundamental 
mode  is  given by 

only J 

To calculate the beam radius wo in the center of the reso- 
nator where the phase front is  plane,  one uses (23) with 
z=d/2 and gets 

x -- 
2a 

wo2 = - dd(2R - d). (48) 

The beam parameters R and w describe the modes of 
all orders. But the phase  velocities are different for the 
different orders, so that the resonant conditions depend on 
the mode  numbers.  Resonance  occurs  when the phase 
shift from  one mirror to  the other is a multiple of a. 
Using (28) and (34) this condition can be written as 

kd - 2(m + n + 1) arc tan(Xd/2rwo2) = r(q + 1) (49) 

where q is the number of nodes of the axial  standing-wave 
pattern (the number of half  wavelengths  is q+l),l and m 
and n are the rectangular  mode  numbers  defined in Sec- 
tion 3.3. For the modes of circular  geometry  one obtains 
a similar condition where (2p+Z+ 1) replaces (m+n+ 1). 

The  fundamental beat frequency yo ,  i.e., the frequency 
spacing  between  successive longitudinal resonances, is 
given  by 

Y O  = ~ / 2 d  (50) 

1 This q is not to be confused with  the  complex  beam  parameter. 
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f f l  f /  f 
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9, 92 

Fig. 10. Symmetrical  laser  resonator and the  equivalent  sequence 
of lenses. The beam parameters, 41 and q2,  are indicated. 

Fig. 11, Mode parameters of interest for a resonator  with 
mirrors of unequal  curvature. 

where c is the velocity of light. After  some  algebraic 
manipulations  one obtains from (49) the following for- 
mula for the resonant frequency Y of a mode 

1 
~ / v , = ( q + l ) + -  (m+n+l) arccos(1-d/R). (51) 

For the special  case of the confocal resonator (d = R = b), 

U 

the above relations become 

W' = Xb/r, wO' = X b / 2 ~ ;  

VIVO = (q  + 1) + 3(m + n + 1). (52) 

The  parameter b is known as the confocal parameter. 
Resonators with mirrors of unequal curvature can be 

treated in a similar manner.  The geometry  of such 
resonator where the radii of curvature of the mirrors are 
R1 and R z  is  shown in Fig. 11. The diameters of the beam 
at the mirrors of a stable resonator, 2w1 and 2w2, are 
given  by 

R1- d d 
R 2 - d   R 1 f R z - d  

wZ4 = (XRZ/~)~-  . (53) 

The diameter of the beam  waist 2w0, which  is formed 
either inside or outside the resonator, is  given  by 

wo4 = (;) ~ ( R I  - d>(Rz - d)(R1+ Rz - d )  
(R I  + RP - 24' 

* (54) 

The distances il and f p  between the waist and the mirrors, 
measured  positive as shown in the figure, are 

The resonant condition is 

(55) 

arc c o s d (  1 - d/R1) ( 1  - d / R s )  (56) 

where the square root should be given the sign  of (1 -d/Rl), 
which  is equal to the sign of (1 - d/R2) for a stable resona- 
tor. 

There are more complicated resonator structures than 
the ones  discussed  above. In particular, one  can insert a 
lens or several  lenses  between the mirrors. But in every 
case, the unfolded resonator is  equivalent to a periodic 
sequence  of  identical optical systems as shown in Fig. 2. 
The elements of the ABCD matrix of this system can be 
used to calculate the mode parameters of the resonator. 
One uses the ABCD law (43) and postulates self-con- 
sistency by putting ql=q2=q.  The roots of the resulting 
quadratic equation are 

3.6 Mode Matching 
It was  shown in the preceding  section that the modes of 

laser resonators can be  characterized  by light beams with 
certain properties and  parameters which are defined  by 
the resonator geometry.  These  beams are often injected 
into other optical structures with  different  sets of beam 
parameters. These optical structures can assume various 
physical forms, such as resonators used in scanning 
Fabry-Perot interferometers or regenerative  amplifiers, 
sequences  of  dielectric or gas  lenses  used as optical trans- 
mission  lines,  or  crystals  of nonlinear dielectric material 
employed in parametric optics experiments. To match 
the modes of one structure to those of another one must 
transform a given Gaussian  beam (or  higher order mode) 
into another beam  with  prescribed properties. This trans- 
formation is  usually  accomplished  with a thin lens, but 
other more complex optical systems can be used. Although 
the present  discussion  is  devoted to the simple  case of the 
thin lens,  it  is also applicable to more complex  systems, 
provided one measures the distances from  the principal 
planes  and uses the combined  focal  length f of the more 
complex  system. 

The location of the waists of the two beams to be 
transformed into each other and the beam diameters at 
the waists are usually known or can  be  computed. To 
match the beams one  has to choose a lens of a focal length 
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f that  is larger than a characteristic lengthfo defined by 
the two beams, and  one has to adjust  the  distancesbe- 
tween the lens and  the two beam waists according to rules 
derived  below. 
In Fig. 9 the two beam waists are assumed to be 

located at distances dl and dz from  the lens. The complex 
beam parameters at the waists are purely imaginary; they 
are 

q1 = j w l 2 / X ,  q2 = j a w z 2 / X  (59) 

where 2wl and 2w2 are  the  diameters of the two beams at 
their waists. If one inserts these expressions for q1 and qn 
into (42) and  equates  the imaginary parts,  one  obtains 

Equating  the  real  parts results in 

(dl - f)(d2 - f)  = f” - fo’ (61) 

where 

f o  = m 1 w 2 / x .  (62) 

Note  that  the characteristic lengthfo is dehed  by the waist 
diameters of the beams to be matched. Except for  the 
term fo2, which  goes to zero for infinitely small wave- 
lengths, (61) resembles  Newton’s  imaging formula of 
geometrical optics. 

Any lens with a focal length f > fo can be used to  per- 
form  the matching transformation. Once f is chosen, the 
distances dl and d2 have to be adjusted to satisfy the 
matching formulas [IO] 

The% relations  are derived  by combining (60) and (61). 
In (63) one  can choose either  both plus signs or  both 
minus signs for matching. 

It is often useful to introduce  the confocal parameters 
bl and b2 into  the matching formulas. They are defined 
by the waist diameters of the two systems to be matched 

b1 = 2wl2/X, bz = 2?r~r2~/X. (64) 
Using these parameters  one gets for the characteristic 
length fo 

fo2 = tb lb2,  (65) 
and  for  the matching distances 

dl = f k dp/fo2) - 1, 

dz = f k +bz ~ ‘ p / f o ’ )  - 1. (66) 

Note  that  in  this form of the matching formulas, the 
wavelength does not  appear explicitly. 

Table I1 lists, for quick reference, formulas for the two 
important parameters of beams that emerge from  various 

TABLE I1 

BEAM WAIST FOR VARIOUS OPTICAL STRUCTURES 
FORMULAS FOR THE CONFOCAL PARAMFTER A N D  THE h C A l l O N  OF 

I 

I n  

/d(RI-d)(R2-dXRI+R2-d) 
RI +R2  -2d 

R J d m  

L d  
2 

- d 
2n 

nd R 

zR+d[n2-l) 

4 d  

$ d  

- d 
2n 

dR 
m2R-d(n2-l 

optical  structures commonly encountered. They are  the 
confocal parameter b and  the distance t which  gives the 
waist location of the emerging beam. System No. 1 is a 
resonator formed by a flat mirror  and a spherical mirror 
of radius R. System No. 2 is a resonator formed by two 
equal spherical mirrors. System No. 3 is a resonator 
formed by mirrors of unequal curvature. System No. 4 
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d , / f  - 
Fig. 12. The  confocal  parameter bp as a func- 

tion  of the  lens-waist  spacing dl .  
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d, / f  
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Fig. 13. The  waist  spacing d2 as a function of 
the  lens-waist  spacing dl. 
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Fig. 13. The  waist  spacing d2 as a function of 
the  lens-waist  spacing dl. 

is, again, a resonator formed  by two equal spherical  mir- 
rors, but with the reflecting  surfaces  deposited on plano- 
concave  optical  plates of index n. These  plates act as 
negative  lenses and change the characteristics of the 
emerging  beam.  This  lens  effect is assumed not present in 
Systems Nos. 2 and 3. System No. 5 is a sequence of 
thin lenses of equal focal  lengths f. System No. 6 is a 
system of two  irises  with equal apertures spaced at a 
distance d. Shown are the parameters of a beam that 
will pass through both irises  with the least  possible  beam 
diameter.  This  is a beam  which is “confocal”  over the 
distance d. This  beam  will  also  pass through a tube of 
length d with the optimum clearance.  (The tube is  also 
indicated in  the figure.) A similar situation is  shown in 
System No. 7, which corresponds to a beam that is 
confocal  over the length d of optical  material of index n. 
System No. 8 is a spherical  mirror resonator filled  with 
material of index n, or  an optical material  with  curved 
end  surfaces  where the beam  passing through it  is as- 
sumed to have  phase fronts that coincide  with  these  sur- 
faces. 

When one designs a matching  system,  it  is  useful to 
know the accuracy  required of the distance  adjustments. 
The discussion  below  indicates  how the parameters b2 and 
d2 change  when h and f are fixed and  the lens  spacing dl 
to the waist of the input beam is  varied. Equations (60) 
and (61) can be solved for b2 with the result [9] 

bllf 
(1 - dl/f)2 + (b1/2f)2 b2/f = (67) 

This means that the parameter b2 of the beam  emerging 
from the lens  changes  with dl according to a Lorentzian 
functional form as shown in Fig. 12. The Lorentzian  is 
centered at dl=f and has a width of bl. The  maximum 
value of b2 is 4f /bl. 

If one inserts (67) into (60) one gets 

which  shows the change  of d2 with dl. The change  is 
reminiscent  of a dispersion  curve  associated  with a 
Lorentzian as shown in Fig. 13. The extrema of this  curve 
occur at the halfpower points of the Lorentzian. The slope 
of the curve at  dl=fis (2f/b1)2. The dashed  curves in  the 
figure  correspond to the geometrical  optics  imaging  re- 
lation between dl, d2, and f [20]. 

3.7 Circle Diagrams 
The propagation of Gaussian laser  beams can be  repre- 

sented  graphically on a circle diagram. On such a diagram 
one can follow a beam as it propagates in  free  space or 
passes through lenses,  thereby  affording a graphic  solu- 
tion of the mode  matching  problem. The circle diagrams 
for beams are similar to the impedance charts, such as  the 
Smith chart. In fact  there  is a close  analogy  between 
transmission-line and laser-beam  problems, and there are 
analog electric  networks for every optical system  [17]. 

The first  circle diagram for beams  was  proposed  by 
Collins  [18]. A dual  chart was  discussed in [19] . The 
basis for the derivation of  these charts  are the  beam prop- 
agation laws  discussed in Section 3.2. One  combines 
(17) and (19) and eliminates q to obtain 

This relation contains the four quantities w, R ,  wo, and z 
which  were  used to describe the propagation of Gaussian 
beams in Section 3.2. Each pair of these quantities can be 
expressed  in  complex  variables Wand 2: 

x 1 
TV = - + j -  

1rw2 R 

where b is the confocal parameter of the beam. For these 
variables (69) defines a conformal transformation 

w = 1/z. (71) 

The two dual circle diagrams are plotted in  the complex 
planes  of  W and Z,  respectively. The W-plane diagram 
[18] is  shown in Fig.  14  where the variables X/rwz  and 
1/R are plotted as axes. In this plane the lines of constant 
b/2=mo2/X and  the lines of constant z of the 2 plane 
appear as circles through  the origin. A beam  is  represented 
by a circle  of constant b, and  the beam  parameters w and 
R at a distance z from the beam  waist can be  easily  read 
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Fig. 14. Geometry for the W-plane  circle diagram. 

Fig. 15. The Gaussian beam chart. Both W-plane and Z-plane 
circle diagram are combined into one. 

from  the diagram. When the beam  passes through a lens 
the phase front is  changed according to (40) and a new 
beam is formed, which  implies that the incoming and 
outgoing beams are connected in the diagram by a 
vertical line of length l/J The angle  shown in the figure 
is equal to the phase  shift  experienced by the beam as 
given  by (29); this is  easily  shown  using (23). 

The  dual  diagram [19]  is  plotted  in the Z plane. The 
sets of circles  in both  diagrams have the same form, and 
only the labeling of the axes and circles  is  different. In 
Fig. 15 both  diagrams are unified in one chart.  The 
labels in parentheses correspond to the 2-plane  diagram, 
and 6 is a normalizing parameter which can be arbitrarily 
chosen for convenience. 

One can plot various other circle diagrams which are 
related to the above by conformal transformations. One 

such transformation makes it possible to use the Smith 
chart for determining complex  mismatch  coefficients for 
Gaussian beams [20]. Other circle diagrams include  those 
for optical resonators [21] which  allow the graphic deter- 
mination  of certain parameters of the resonator modes. 

4. LASER RESONATORS (FINITE APERTURE) 
4.1 General Mathematical Formulation 

In this section aperture diffraction effects due  to the 
finite  size of the mirrors are  taken  into  account; these 
effects  were  neglected in the preceding  sections. There, 
it was  mentioned that resonators used in laser oscillators 
usually take the form of an open structure consisting of a 
pair of mirrors facing each other. Such a structure with 
finite mirror apertures is  intrinsically  lossy and, unless 
energy  is  supplied to it continuously, .the electromagnetic 
field in it will decay. In this case a mode of the resonator 
is a slowly decaying field configuration whose relative 
distribution does not change  with  time [4]. In a laser 
oscillator the active  medium  supplies  enough  energy to 
overcome the losses so that a steady-state field can exist. 
However,  because of nonlinear gain saturation the me- 
dium will  exhibit  less gain in those regions  where the 
field  is  high than  in those where the field  is  low, and so the 
oscillating  modes of an active resonator are expected to 
be  somewhat  different from  the decaying  modes of the 
passive resonator. The  problem of an active resonator 
filled  with a saturable-gain medium has been  solved re- 
cently [22], [23], and the computed results  show that if 
the gain  is not  too large the resonator modes are essen- 
tially unperturbed by saturation effects. This is fortunate 
as the results  which  have  been obtained for the passive 
resonator can also  be  used to describe the active  modes of 
laser oscillators. 

The problem of the open resonator is a difficult  one 
and a rigorous solution is  yet to be found. However,  if 
certain simplifying assumptions are made, the problem 
becomes tractable and physically  meaningful  results can 
be obtained. The simplifying assumptions involve  essen- 
tially the quasi-optic nature of the problem; specifically, 
they are 1) that the dimensions of the resonator are large 
compared to the  wavelength and 2) that the field in the 
resonator is substantially transverse  electromagnetic 
(TEM). So long as those assumptions are valid, the 
Fresnel-Kirchhoff formulation of Huygens'  principle can 
be  invoked to obtain a pair of integral equations which 
relate the fields of the two opposing mirrors. Further- 
more, if the mirror separation is large compared to mirror 
dimensions and if the mirrors are only  slightly  curved, 
the two orthogonal Cartesian components of the vector 
field are essentially uncoupled, so that separate scalar 
equations can be written for each  component.  The solu- 
tions of these  scalar equations yield resonator modes 
which are uniformly  polarized in  one direction. Other 
polarization configurations can be constructed from the 
uniformly  polarized  modes  by h e a r  superposition. 
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OPAQUE ABSORBING SCREENS 

Fig. 16. Geometry of a spherical-mirror  resonator  with  finite 
mirror apertures and  the  equivalent  sequence of lenses set in 
opaque  absorbing screens. 

In deriving the integral equations, it is  assumed that a 
traveling TEM wave  is  reflected  back and forth between 
the mirrors. The resonator is thus analogous to a trans- 
mission  medium  consisting of apertures or lenses  set  in 
opaque  absorbing screens (see Fig. 16). The fields at the 
two mirrors are related by the equations [24] 

y(l)E(l)(sl) = K(”(s1, sz)E(”(sz)dS2 
JS, 

JS, 
y ‘ 2 ’ E ‘ 2 ’ ( ~ ~ )  = K ( ’ ) ( s ~ ,  s1)E(’)(sl)dS1  (72) 

where the integrations are taken over the mirror surfaces 
Sz and S1, respectively. In the above equations the sub- 
scripts and superscripts  one and two denote mirrors one 
and two; s1 and sz are symbolic notations for transverse 
coordinates on the mirror surface,  e.g., sl=(xl, yl) and 
sz=(xz,  y z )  or s l= ( r l ,  qjl) and sz=(r2,  qjz); E(’) and E@) 
are the relative  field distribution functions over the mir- 
rors; y(l) and y@) give the attenuation and phase  shift 
suffered  by the wave in transit from  one mirror to the 
other; the kernels K(l) and K@) are functions of the dis- 
tance between s1 and sz and, therefore, depend on the 
mirror geometry; they are equal [K(l)(sz, S ~ ) = K ( ~ ) ( S ~ ,  sz)] 
but, in general, are not symmetric [K(l)(sZ, sl)#K(l)(sl, sZ), 

The integral equations given  by  (72)  express the field 
at each mirror in  terms of the reflected  field at the other; 
that is,  they are single-transit equations. By substituting 
one into the other, one obtains the double-transit or 
round-trip equations, which state that the field at each 
mirror must reproduce itself after a round trip. Since the 
kernel for each of the double-transit equations is sym- 
metric [24], it  follows  [25] that the field distribution 
functions corresponding to the different  mode orders are 
orthogonal over their respective mirror surfaces; that is 

K(Z’(s1, sz)#K(2)(sz, Sl)]. 

where m and n denote different  mode orders. It is to be 
noted that the orthogonality relation is non-Hermitian 
and is the  one  that is generally applicable to lossy  sys- 
tems. 

4.2 Existence of Solutions 
The question of the existence of solutions to  the 

resonator integral equations has been the subject of 
investigation  by  several authors [26]-[28].  They  have 
given rigorous proofs of the existence of eigenvalues and 
eigenfunctions for kernels  which  belong to resonator 
geometries  commonly encountered, such as those with 
parallel-plane and spherically  curved mirrors. 

4.3 Integral Equations for 
Resonators with Spherical Mirrors 

When the mirrors are spherical and have rectangular or 
circular apertures, the twodimensional integral equations 
can be separated and reduced to  onedimensional  equa- 
tions which are amenable to solution by either analytical 
or numerical methods.  Thus, in the case of rectangular 
mirrors [4]-[6], [24], [29], [30], the onedimensional 
equations in Cartesian coordinates are the same as those 
for infinite-strip mirrors; for the x coordinate, they are 

yz(l)u(l)(zl) = J l b ( x 1 ,  m)u(2)(Z2)dxz 

s:: yz‘2’u‘2’(22) = K(Z1, ZZ)U(1)(Zl)dZl (74) 

where the kernel K is  given  by 

Similar equations can be written for the y coordinate, so 
that E(x, y)= u(x)v(y) and 7 =yZyy. In the above equa- 
tion al and az are the half-widths of the mirrors in the x 
direction, d is the mirror spacing, k is 2n/X, and X is the 
wavelength. The radii of curvature of the mirrors Rl and 
Rz are contained in the factors 

d 
g 1 = 1 - -  

R1 

For the case of circular mirrors [4], [31], [32] the equa- 
tions are reduced to the onedimensional  form by  using 
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cylindrical coordinates and by assuming a sinusoidal 
azimuthal variation of the field ; that is, E(r, $) = Rdr)e+4. 
The radial distribution functions R P  and RP) satisfy the 
onedimensional integral equations: 

yz(l)Rz(l)(r1)&= J=z Kz(r1, r z ) R P ) ( r z ) d Z d r t  

yz(Z)R*(2)(rz)diT= Kz(r1, r z ) R p ( r l ) d < d r l  (77) S,“ 
where the kernel Kt is given  by 

and Jz is a Bessel function of the first  kind and Hh order. 
In (77), a,  and a2 are the radii of the mirror apertures and 
d is the mirror spacing; the factors gl and g2 are given  by 

Except for the special  case of the confocal resonator 
[5] (gl=g2= 0), no exact analytical solution has been 
found for either (74) or (77), but  approximate  methods 
and numerical  techniques  have  been  employed  with  suc- 
cess for their solutions.  Before  presenting  results,  it  is 
appropriate to discuss  two important properties which 
apply in general to resonators with  spherical mirrors; 
these are the properties of “equivalence” and “stability.” 

4.4 Equivalent Resonator Systems 
The equivalence properties [24], [33] of spherical- 

mirror resonators are obtained by simple  algebraic manip- 
ulations of the integral equations. First, it is  obvious that 
the mirrors can be  interchanged without affecting the 
results; that is, the subscripts and  superscripts one  and 
two can be interchanged. Second, the diffraction loss and 
the intensity pattern of the mode remain invariant if both 
gl and g2 are reversed  in sign; the eigenfunctions E and 
the eigenvalues y merely take on complex conjugate 
values. An example of such  equivalent  systems  is that of 
parallel-plane (8, = gz = 1)  and  concentric (8, = gz= - 1) 
resonator systems. 

The third equivalence property involves the Fresnel 
number N and the stability factors G1 and G2, where 

(76). 

ala2 N = - 
Xd 

Gz = 92- * 
a2 

a1 
(79) 

If these three parameters are the same for any two resona- 
tors, then they  would  have the same diffraction loss, the 

same resonant frequency, and mode patterns that  are 
scaled  versions of each other. Thus, the equivalence rela- 
tions reduce  greatly the  number of calculations which are 
necessary for obtaining the solutions for the various 
resonator geometries. 

4.5 Stability Condition and Diagram 
Stability of optical resonators has been discussed in 

Section 2 in terms of geometrical  optics. The stability 
condition is  given by (8). In terms of the stability factors 
GI and Gz, it is 

0 < GlG2 < 1 

or 

Resonators are stable if this condition is  satisfied and 
unstable otherwise. 

A stability diagram [6], [24] for the various resonator 
geometries  is  shown in Fig. 4 where gl and g z  are the co- 
ordinate axes and each point on the diagram represents a 
particular resonator geometry. The  boundaries between 
stable and unstable (shaded) regions are determined  by 
(BO), which  is  based on geometrical  optics. The fields of 
the modes in stable resonators are more concentrated 
near the resonator axes than those in unstable resonators 
and, therefore, the diffraction losses of unstable resona- 
tors are much  higher than those of stable resonators. The 
transition, which occurs near the boundaries, is gradual 
for resonators with  small Fresnel numbers  and more 
abrupt for those with large Fresnel numbers. The origin 
of the diagram represents the confocal system  with mirrors 
of equal curvature (R, = Rz = d) and is a point of lowest 
diffraction loss for a given Fresnel number. The fact that 
a system  with minor deviations from  the ideal confocal 
system  may  become unstable should be borne in mind 
when  designing  laser resonators. 

4.6 Modes of the Resonator 
The transverse  field distributions of the resonator 

modes are given  by the eigenfunctions of the integral 
equations. As yet, no exact analytical solution has been 
found for the general  case of arbitrary G1 and G2, but 
approximate analytical expressions  have been obtained to 
describe the fields in stable spherical-mirror resonators 
[SI, [6]. These approximate eigenfunctions are the same 
as those of the optical beam modes  which are discussed in 
Section 2; that is, the field distributions are given approxi- 
mately by Hermite-Gaussian functions for rectangular 
mirrors [5],  [6],  [34], and by Laguerre-Gaussian func- 
tions for circular mirrors [6] ,  [7]. The designation of the 
resonator modes  is  given in Section 3.5. (The modes are 
designated as TEM,, for rectangular mirrors and 
TEMp2, for circular mirrors.) Figure 7 shows photo- 
graphs of some of the rectangular mode patterns of a 
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SQUARE MIRRORS CIRCULAR MIRRORS 

Fig. 17. Linearly  polarized  resonator  mode  configurations 
for square and  circular  mirrors. 

Fig. 18. Synthesis of different  polarization  configurations 
from the  linearly  polarized TEMol mode. 

laser.  Linearly  polarized  mode configurations for square 
mirrors and for circular mirrors are shown in Fig. 17. 
By combining  two orthogonally polarized  modes of the 
same order, it  is  possible to synthesize other polarization 
configurations; this is  shown in Fig. 18 for the TEMol 
mode. 

Field distributions of the resonator modes for any 
value of G could be obtained numerically  by  solving the 
integral equations either by the method of  successive ap- 
proximations [4],  [24], [3 1 ] or by the method of kernel 
expansion [30],  [32]. The  former method of solution is 
equivalent to calculating the transient behavior of the 
resonator when  it  is  excited  initially  with a wave  of arbi- 
trary distribution. This wave  is  assumed to travel back 
and forth between the mirrors of the resonator, under- 
going  changes from transit to transit and losing  energy  by 
diffraction. After  many transits a quasi steady-state con- 
dition is attained where the fields for successive transits 

differ  only  by a constant multiplicative factor. This steady- 
state relative field distribution is then an eigenfunction of 
the integral equations and is, in fact, the field distribu- 
tion of the mode that has the lowest diffraction loss  for 
the symmetry  assumed  (e.g., for even or odd symmetry in 
the case of infinite-strip mirrors, or for a given azimuthal 
mode  index  number 1 in the case of circular mirrors); the 
constant multiplicative factor is the eigenvalue  associated 
with the eigenfunction and gives the diffraction loss  and 
the phase  shift of the mode. Although this  simple  form 
of the iterative method  gives  only the lower order solu- 
tions, it can, nevertheless,  be  modified to yield  higher 
order ones [24], [35]. The method of kernel  expansion, 
however,  is capable of yielding both low-order and high- 
order solutions. 

Figures 19 and 20 show the relative  field distributions 
of the TEMoo and  TEMol modes for a resonator with a 
pair of identical,  circular mirrors ( N =  1, ul=az,  gl=g, 
=g) as obtained by the numerical iterative method. 
Several  curves are shown for different  values of g, ranging 
from zero  (confocal) through  one (parallel-plane) to 1.2 
(convex,  unstable). By virtue of the equivalence property 
discussed in Section 4.4, the curves are also  applicable to 
resonators with  their g values  reversed in sign,  provided 
the sign of the ordinate for the phase distribution is also 
reversed. It is Seen that the field  is  most concentrated 
near the resonator axis for g=O and tends to spread out 
as lgl increases. Therefore, the diffraction loss  is  ex- 
pected to be the least for confocal resonators. 

Figure 21 shows the relative  field distributions of some 
of the low order modes of a Fabry-Perot resonator with 
(parallel-plane) circular mirrors ( N =  10, a, = a,, g, = g,= 1) 
as obtained by a modified  numerical iterative method 
[35]. It is  interesting to note that these  curves are not 
very smooth but have  small  wiggles on them, the number 
of which are related to the Fresnel number.  These  wiggles 
are entirely absent for the confocal resonator and  appear 
when the resonator geometry  is unstable or nearly un- 
stable. Approximate expressions for the field distribu- 
tions of the Fabry-Perot resonator modes  have  also  been 
obtained by various analytical techniques [36],  [37]. They 
are represented to first order, by  sine and cosine func- 
tions for  infinite-strip mirrors and by  Bessel functions for 
circular mirrors. 

For the special  case of the confocal resonator (gl=gz 
= O ) ,  the eigenfunctions are self-reciprocal  under the 

finite Fourier (infinite-strip mirrors) or Hankel (circular 
mirrors) transformation and  exact analytical solutions 
exist [5], [38]-[40]. The eigenfunctions for infinite-strip 
mirrors are given  by the prolate spheroidal wave func- 
tions and, for circular mirrors, by the generalized prolate 
spheroidal or hyperspheroidal wave functions. For large 
Fresnel numbers these functions can be  closely approxi- 
mated by Hermite-Gaussian and Laguerre-Gaussian 
functions which are the eigenfunctions for the beam 
modes. 
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Fig.  19.  Relative  field  distributions of the TEMoo mode for 
a  resonator  with  circular  mirrors ( N =  1). 
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Fig. 20.  Relative  field  distributions of the TEMol mode for 
a resonator  with  circular mirrors ( N =  1). 
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Fig.  21.  Relative  field  distributions of four of the low order modes 
of a  Fabry-Perot  resonator  with  (parallel-plane)  circular  mirrors 
( N =  10). 

4.7 Diffraction Losses and Phase Shifts 
The diffraction loss a and  the  phase shift p for a par- 

ticular mode are important quantities in that they deter- 
mine the Q and the resonant frequency  of the resonator 
for that mode. The diffraction loss is  given  by 

(Y = 1 - J y p  (81) 

which  is the fractional energy lost per transit due to dif- 
fraction effects at the mirrors. The phase  shift  is  given by 

p = angle of y (82) 

which  is the phase  shift  suffered (or enjoyed)  by the wave 
in transit from  one mirror to the other, in addition to  the 
geometrical  phase  shift  which is given  by 2?rd/X. The 
eigenvalue y in (81) and (82) is the appropriate y for the 
mode under consideration. If the  total resonator loss is 
small, the Q of the resonator can be approximated  by 

2 r d  

X(YI 
Q = -  

where at, the total resonator loss,  includes  losses due  to 
diffraction, output coupling, absorption, scattering, and 
other effects. The resonant frequency Y is  given  by 

V I V O  = (q + 1) + 8/?r (84) 

where q, the longitudinal mode order, and yo ,  the funda- 
mental beat frequency, are defined in Section 3.5. 
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N =  a2JX.d 

Fig. 22. Diffraction loss per transit  (in  decibels) for the TEMoo 
mode of a  stable  resonator  with  circular mirrors. 

10 A I 

N = a'/h d 

Fig. 23. Diffraction loss per transit  (in  decibels) for the  TEMol 
mode of a  stable  resonator  with  circular mirrors. 

The diffraction losses for the two  lowest order (TEMoo 
and TEMol) modes of a stable resonator with a pair of 
identical, circular mirrors (al= az, gl=gz=g) are given 
in Figs. 22 and 23 as functions of the Fresnel number N 
and for various values  of g. The curves are obtained by 
solving (77) numerically  using the method of  successive 
approximations [31]. Corresponding curves for the phase 
shifts are shown in Figs. 24 and 25. The horizontal por- 
tions of the phase shift  curves can be calculated from the 
formula 

B = ( 2 p  + 1 + 1) arc cos 4s 
= ( 2 p  + I + 1) arc cos g, for g1 = g2 (85) 

which  is equal to the phase shift for the beam  modes 
derived in Section 3.5. It is to be noted that the loss  curves 
are applicable to  both positive and negative  values  of g 

60 

40 

0.21 

0.1 , 8 8   8 8  1.1 ~I 
0.1 0.2 0.4 0.6 1.0 2 4 6 10 20 40 60 

N=  a2Jh d 

Fig. 24. Phase  shift per transit  for  the  TEMol  mode of a 
stable  resonator with  circular  mirrors. 
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Fig. 25. Phase  shift per transit for the  TEMol  mode of a 
stable  resonator  with  circular mirrors. 

while the phase-shift  curves are for positive g only; the 
phase  shift for negative g is equal to 180 degrees  minus 
that for positive g. 

Analytical  expressions for the diffraction loss and the 
phase  shift  have been obtained for the special  cases of 
parallel-plane (g = 1 .O) and confocal (g = 0) geometries 
when the Fresnel number is either very  large  (small dif- 
fraction loss) or very  small  (large diffraction loss) [36], 
[38], [39], [41], [42]. In the case of the parallel-plane 
resonator with circular mirrors, the approximate expres- 
sions  valid for large N,  as derived by Vainshtein [36], are 

B = (E)ff 
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where 6=0.824, M =  and K=Z is the (p+l)th zero 
of the Bessel function of order 1. For the confocal resona- 
tor with  circular mirrors, the corresponding expressions 
are [39] 

2?r(8?rN)2P+2+1e4rN 
a =  

PKP + I + 111 

Simiiar  expressions  exist for resonators with  infinite-strip 
or rectangular mirrors [36],  [39]. The agreement  be- 
tween the values obtained from the above formulas  and 
those from numerical methods is  excellent. 

The loss of the lowest order (TEMoo) mode of an 
unstable resonator is,  to  first order, independent of the 
mirror size or shape. The  formula for the loss,  which  is 
based on geometrical optics, is [12] 

where the plus  sign in  front of the fraction applies for g 
values  lying in the first and third quadrants of the stability 
diagram, and the minus  sign  applies in the other two quad- 
rants. Loss curves (plotted vs. N) obtained by solving the 
integral equations numerically  have a ripply  behavior 
which  is attributable to diffraction effects [24],  [43]. How- 
ever, the average  values  agree well  with those obtained 
from (90). 

5.  CONCLUDING REMARKS 

Space limitations made it necessary to concentrate the 
discussion  of this article on the basic  aspects of  laser 
beams and resonators. It was not possible to include  such 
interesting  topics as perturbations of resonators, resona- 
tors with  tilted mirrors, or to consider in detail the effect 
of nonlinear, saturating host media.  Also  omitted  was a 
discussion of various resonator structures other than 
those formed of spherical mirrors, e.g., resonators with 
corner cube  reflectors, resonators with output holes, or 
fiber resonators. Another important, but omitted, field  is 
that of mode  selection  where  much  research  work  is cur- 
rently in progress. A brief  survey  of  some  of  these topics 
is  given in [u]. 
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Modes,  Phase  Shifts,  and  Losses of Flat-Roof 
Open  Resonators 

P. F. CHECCACCI,  ANNA CONSORTINI, AND ANNAMARIA SCHEGGI 

Abstract-TIE integral equation of a “tlat-roof  resonator” is 
solved by the Fox and Li method  of  iteration io a number of particular cases. 

Mode patterns, phase shifts, and power losses are  derived. A good 
overall  agreement is found with the  approximate  theory  previously 
developed  by  Toraldo di Francia. 

Some experimental tests carried out on a microwave  model  give a 
further  confirmation  of  the  theoretical  predictions. 

A 
I. INTRODUCTION 

PARTICULAR type of open resonator terminated 
by  roof  reflectors  with  very  small  angles, the so- 
called  “flat-roof resonator” (Fig. l) was  recently 

described  by Toraldo  di  Francia [l]. 
The  mathematical  approach consisted in considering 

the solutions of the wave equation (for the electric or 
magnetic  field)  in the two  halves of a complete “diamond 
cavity”  whose normal cross  section  is  shown  in  Fig. 2, 
ignoring the fact that the reflectors are finite. 

The two halfcavities were  referred to cylindrical co- 
ordinates centered at G and H, respectively,  and solutions 
were  given in terms of high-order  cylindrical  waves. The 
field  in the two halfcavities was  matched  over the median 
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Fig. 1. The flat-roof resonator. 

Fig. 2. The diamond cavity. 

plane BE by  simply requiring that this plane  coincide 
with a node  or an antinode. Obviously the CY angle of the 
roof  must be so small that the curvature of the nodal or 
antinodal surfaces can be  neglected. Due to the high order 
of the cylindrical  waves, the field in the central region of 
the cavity approaches the form of a standing wave be- 
tween the two roof  reflectors,  while  it  decays so rapidly 
from the central region  toward the vertices G and H, 
that the absence of the complete metal walls  of the dia- 
mond  outside the resonator will  have  very little impor- 
tance. This treatment, although approximate, allowed the 
author  to  understand how the resonator actually  worked 




