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FINAL PROBLEM

The students each worked a problem of some
complexity during the last few weeks of the
semester; they were offered a choice of two
problems suggested by Dr. Keith Symon of
MURA. One concerned the phase stability con-
dition for a Fixed Field Alternating Gradient
Synchrotron ; the other approximated an electron
gas in one dimension as a collection of parallel
planes of charge in motion. In both of these con-
siderable thought on the part of the students was
necessary before the programming actually
began. Unfortunately, little time was available
on the computer during the last two weeks of
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the semester, so a complete checkout was not
possible.
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Wide generality for optical radiometry can be achieved by treating the basic radiometric
quantities as field quantities. The treatment is that of classical ray optics, with emphasis on the
geometrical relations involved. It is shown that radiance, defined as

%P

Ne= —n———
9L cosfaA

[W-cm™2.gr71],

the radiant flux or power per unit solid-angle-in-the-direction-of-a-ray per unit projected-
area-perpendicular-to-the-ray, has the same value at any point along this ray within an iso-
tropic medium, in the absence of losses by absorption, scattering, or reflection. More generally,
the quantity N/#? (where » is the index of refraction of the medium) in the direction of a ray
is shown to be invariant along that ray, even across a smooth boundary between different
lossless media. The usefulness of this invariant property of radiance is illustrated by examples

of practical applications.

INTRODUCTION

HY does a photographic exposure meter

give the same reading over a wide range

of distances from a uniformly illuminated blank
wall with a rough, weathered surface? Of course
the indication changes when it is held so close to
the wall that its shadow, or that of the supporting
arm and hand, reduces the illumination, or when
it is held so far away that radiation is also re-
ceived from the surrounding background beyond
the edges of the wall. But between these ex-
tremes, the indication will remain constant. Nor

* This work was supported by Signal Corps Contract
DA 36—039 SC-87499.

is it possible with an-external lens, however large
or ‘“fast,” to focus more radiant power from the
wall onto the exposure meter to obtain a higher
reading.

Why does a spectroscopist obtain maximum
energy with the following procedure? Focus an
image of the source onto the entrance slit of the
spectroscope. Arrange the source and focusing
optics so that the image is just large enough to
fill the slit completely (if the source is not uni-
form, the slit must be filled by the brightest
uniform region of the image), and so that the
rays which cross to form the image diverge
widely enough after passing through the slit that
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they completely fill the collimating optics of the
spectroscope. Once this condition has been
achieved, it is useless to attempt to focus more
radiant power through the instrument from the
same source.

If it is given that the earth’s surface radiates a
total (in all directions) of w W/cm?, how can we
quickly estimate the irradiance H, in W/cm? due
to this source alone without atmospheric attenu-
ation, at a horizontal receiving surface carried on
an earth satellite vehicle? For simplicity, assume
that the earth is a perfectly diffuse radiator.

These situations all involve extended sources
of radiation. It has been my experience that most
people find it peculiarly difficult to master the
fundamental concepts and relations of radiom-
etry (or photometry) as they apply to extended
sources. And I have come to believe that the key
to this difficulty lies in the interrelated concepts
of an elementary beam of radiation and its
radiance (or luminance).

A brief definition of radiance is given in the
abstract and is discussed in more detail directly.
It is helpful to note here that radiance is analo-
gous to the familiar property of visual brightness,
or more exactly to the photometric quantity
luminance. Also for convenience, Table I lists the
radiometric quantities, symbols, and units used
in this paper.

Sometimes radiance is defined as applying only
to sources of radiation."® Frequently it is applied
also to images of a source, and it is shown that,
in the absence of attenuation, the radiance (or
luminance) of an image is equal to that of the
source in the direction of any ray reaching it
from the source.?

The wusefulness of defining radiance more
broadly as a field quantity which can be evalu-

t“Report of WGIRB (Working Group on Infrared
Backgrounds)—Infrared Target and Background Radio-
metric Measurements—Concepts, Units, and Techniques,”
Report 2389-64-T, NAVEXOS P-2406 (IRIA, Institute of
Science and Technology, University of Michigan, Ann
Arbor, Michigan, January 1962), pp. 34 Contract No.
NOnr-1224(12).

E. E. Bell, Proc. Inst. Radio Engrs. 47, 1432 (1959).
Essentially the same material also appears as ‘“Report of
the Working Group on Infrared Backgrounds; Part II:
Concepts and Units for the Presentation of Infrared Back-
ground Information,” Report No. 2389-3-S (Engineering
Research Institute, University of Michigan, Ann Arbor,
Michigan, November 1956}, Contract No. NOnr-1224(12).

3F. A, Jenkins and H. E. White, Fundamentals of Optics

{(McGraw-Hill Book Company, Inc., New York, 1950),
2nd ed., pp. 104-108,
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ated at any point along a ray is also pointed out,
particularly with reference to diffuse sources such
as a volume of emitting gas.! It is established
that radiance has the same value everywhere and
in all directions, within an isotropic region in
thermal equilibrium.*% However, I have not
found anywhere a completely general treatment
of the invariant property of radiance, defined as a
field quantity, although such a treatment can
greatly simplify the understanding of many
radiometric situations, as well as the computa-
tion or estimation of the amount of radiant power
or flux incident on a receiver or detector, or
passing through some aperture of interest, in a
wide wvariety of circumstances. None of the
material presented here is entirely new, rather it
is implicit in many publications, but it is not
explicit in any that I am aware of.

For generality, we define radiance as a field
quantity which can be evaluated at any point on
any surface through which radiant power or flux
is passing. This includes, but is not restricted to,
the surfaces of a source, a receiver, or any inter-
mediate optical element such as a mirror, lens, or
stop (aperture limiting a beam of radiation). On
this basis, radiance is defined as the radiant flux
or power per unit solid-angle-in-the-direction-of-
a-ray per unit projected-area-perpendicular-to-
the-ray. More precisely, in a given direction from
a point on a surface through which radiant
energy is passing,

N=02P/0% cospdA [W-cm2-sr7], (1)

where N =the radiance at that peint in the given
direction, P =the radiant flux or power flowing
through the surface (within the solid angle Q and
the area 4) [W], Q=the solid angle filled by the
rays along which the radiation is propagated
(including, of course, the ray extending in the
given direction through the given point of the
surface) [sr], 4 =the area of the surface (in-
cluding, of course, the given point) [cm?], and
6 =the angle between the given direction and the
normal to the surface at the given point [dimen-
sionless |. We return to this definition later as the

¢ M. Planck, Theory of Heat, translated by H. L. Brose
(Macmillan Company, New York, 1957), Vol. 5, Chap. 11,
pp. 183-196.

5F. K. Richtmyer and E. H. Kennard, Introduction to
Modern Physics (McGraw-Hill Book Company, Inc., New
York, 1947), 4th ed., p. 145.
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TasLE I2. Radiometric quantities, symbols, definitions, and units.

Quantity ’ Symbol Defining relations Units
Radiant energy U T
) au
Radiant energy density % = J-em™3
2%
. au
Radiant power P =— watt (W)
at
. P
Radiant intensity J J=—o Wsrt
Q2
Radiant emittance w Wy oP
; = W-cm™2
Irradiance H H) 94
. 2P
Radiance N Ne— W.em™2.sr!
cosfd 498
Wavelength A micron {x)
apP
Spectral radiant power Py Py=-— Wyt
2N
aJ
Spectral radiant intensity I Jr=— Wesr 1.yt
)8
ow
Spectral radiant emittance W Wy=—vo W-em™2-pt
28
dH
Spectral irradiance H, Hy=—o W.cm 2.yt
28
aN
Spectral radiance Ny Ny=— W-cm2.sr7t- 1
on
Radiant emissivity € Ratio of “emitted” radiant power to that
from an ideal blackbody at the same tem-
perature.
Radiant absorptance « Ratio of “absorbed” radiant power to incident
) radiant power.
Radiant reflectance P Ratio of “reflected” radiant power to incident
radiant power.
Radiant transmittance T Ratio of “transmitted” radiant power to

Note:

incident radiant power.

The spectral radiant emissivity e(\)=W5/W),s8%d€e/dA. Hence, the subscript notation e, which
could be confused with @e/d}, is not recommended, although it is of ten used. Similarly, it is recommended
that the spectral absorptance, spectral reflectance, and spectral transmittance be written as a(A), p(A),

and 7(\), respectively.

a See footnotes 1 and 2.

basic radiometric quantities are presented in a
logical sequence leading up to the proof of the
invariance property. It is shown that the value
of N in the direction of any ray has the same
value at all points along that ray within an

isotropic medium, in the absence of losses by
absorption, scattering, or reflection. More gen-
erally, the quantity N/»? (where # is the index of
refraction of the medium) in the direction of a
ray is shown to be invariant along that ray, even
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across a smooth nonreflecting boundary between
different lossless media. The treatment of real
situations, where absorption, scattering, and
reflection can not be neglected, is also discussed.

ANALYSIS

We define a radiation field as a region in which
radiant power is propagated, at a velocity char-
acteristic of the region or medium and indepen-
dent of direction, along straight noninterfering
rays which may pass in any direction through
any point within the region. The radiant power
or flux may vary with position and direction, but
only in a continuous manner, so that a finite
amount of power can flow only through a finite
area and a finite solid angle. Thus, here and in
actuality, there is no such thing as a point source,
with all of the power traveling along rays which
intersect at a single mathematical point; nor is
there such a thing as a perfectly collimated beam
with all of the power traveling along rays which
are perfectly parallel.®

In order to analyze this situation, let us first
consider only the distribution of power flow as a
function of direction. We define an elementary
pencil of rays through a point Q as including all
of the rays which pass from Q through an element
of area dA at a distance D from Q which is very
large in relation to the linear dimensions of d4
(see Fig. 1). The solid angle subtended at ¢ by
dA is given by

dQ=cos0d4/D* [sr],

where 6 is the angle between the normal to d4
and the pencil of rays, i.e., cosf-d4, is the pro-
jected area of d4 normal to this pencil. If we
next consider Q not as a mathematical point, but
as having dimensions which, however, are very
small compared to the dimensions of dA4 (and,
hence, extremely small compared to D), the
power which flows along the rays in this pencil
from Q to d4 can be expressed as

dP=JdQ=TJ-cosodAd /D> [W],

6 The assumptions involved here are discussed with
greater rigor by Planck. It can be shown that his analysis
does not conflict with the results presented here, although
there are apparent differences due to the very different
terminology and symbols used. See reference 4, Secs. 94 and
95, pp. 173-177.
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F16. 1. An elementary pencil of radiation.

where
J=4P/02 [W sr ] 2)

is defined as the radiant infensity (see Table 1) of
Q as a ‘‘point’’ source of radiation (e.g., a virtual
source, such as the image of an illuminated pin
hole) in the direction of the pencil (the direction of
dA4 from Q). Note that J may vary with direction
and is a constant only for an isotropic source. In
general, the power received from a distant
“point" source is given by

P=/Jd£2 [W], 3)

where the integration is carried out over the
entire solid angle subtended at the source by the
receiver.

For completeness, we also look briefly at the
purely spatial variation, although this quantity
is more easily understood and is not so often a
source of difficulty or misunderstanding, If we
consider an element of surface d4, situated any-
where in a radiation field, the total amount of
radiant power passing through it (either into it
from a hemisphere, or out of it into a hemisphere)
can be expressed as

dP=HdA or dP=Wd4d [W],

where

H=3P/34 [W-cm—] (4)

is the srradiance (see Table 1), the surface density
of radiant power flowing into the surface at a
point from a complete hemisphere (or, some-
times, from a stated solid angle which is less than
a hemisphere), and where

W=8P/04 [W-cm™%] (5)
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is the radiant emittance (see Table 1), the surface
density of radiant power flowing out of the sur-
face at a point into a complete hemisphere. Both
of these quantities may vary from point to point
over an extended surface, so that the total
radiant power flowing into the surface of a
receiver is given by

P= / HdA [W], (6)

and that flowing out of the surface of a source is
given by

P= / WdA [W], )

where the integration is carried out over the
entire surface of interest in each case.

We now consider the simultaneous distribution
of radiant flux in both space and direction by
examining an elementary beam of radiation. The
elementary beam of radiation between two ele-
ments of area d4 , and dA4.,, situated anywhere in
a radiation field where they are separated by a
distance D which is very large compared to the
linear dimensions of either element of area, is
defined as including all of the rays which pass
from dA4;to dAs (or from dA, to dA4,, since either
may be the source and the other the receiver).
By inspection of Fig. 2, it can be seen that the
cross section of the beam at either end is deter-
mined by the projected area of the element at
that end, i.e., by cos:dA4; and cosf,d4 s, respec-
tively. Also, the solid angle subtended at the
opposite end by each element is equal to this
projected area divided by D? in each case, giving

dQy = cosbdA,/D?

F1G. 2. An elementary beam of radiation between
two surface elements d4, and dA,.
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and

dQs=cosbdA,/D? [sr]. (8)

If we compute the projected-area-solid-angle-
product (which has also been referred to as the
“throughput”?) at each end we have

cosf gdA 2
d T1 = COSG],dA 1d92 = C0501dA | i ——

D2

COSOldA 1 r (9)

D2

dTg = COSngA gdﬂl = COSszA 92°

But
dT1=dT:=dT [cm?-sr].

4

Next, let us recall the definition of radiance, the
power per unit projected area per unit solid angle
at a point and in a particular direction, as

9*P

Ne=¥—— -
99 cosboA

[W-cm™2-sr~'].

If the radiance at d411is V1 and that at dd,is N,
the power flowing through each surface element
is given, respectively, by

dPl = Nlcos()ldA 1d92 = Nld T,
and

dP2=N2C0502dA2d91=N2dT. (10)

But the same power is flowing through both of
the surface elements that define the beam, since
all rays through one also pass through the other
and energy is conserved (we have postulated no
loss), so

and N;=N,=N. (11

Since the choice of d4; and d4, is quite arbi-
trary, and they can define a beam between any
widely separated points along a particular ray,
it follows that the value of N in the divection of a
ray must be invariant along that vay within an
isotropic medium. The value of V at any point
will vary with direction, and the value of N for
rays from a particular direction (parallel rays)
will vary with position on any surface which they
intersect. Hence, in general, the flux passing
through a given surface and within a given solid

dPlzdP2

" The term ‘‘throughput” appears in the instruction
manual issued by Block Associates, Inc., for an interfer-
ometer spectrometer. It is not known who originated the
term or the precise way in which he would define it, but it
appears to agree with the way in which it is used here.
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angle is given by

P=/fN cosfdAds [W], (12)

where the integration is carried out over the
entire surface (with respect to the projected area
perpendicular to any given direction) and over
all directions included within the given solid
angle.

In order to generalize still further, we examine
the situation where a beam of radiation passes
through a smooth surface separating two media
with different refractive indices (see Fig. 3). The
power incident on any surface element dA4
through any element of solid angle dQ in the first
medium and that from the same beam emerging
from the same surface element into a solid angle
dY in the second medium must be the same, if
there are no losses by reflection, absorption, or
scattering (we are still concerned purely with ray
geometry and defer questions of Fresnel reflection
fosses, etc., until later). This power is given by

dP = NcosfdAd2= N'cos¢#’'dAd@ [W7] (13)

By Snell’s law .of refraction, we write

nsing = n'sing’ (14)
<. mcosfdd = n'cosf’de’. (15)

Also,
dQ=sinfdfd¢ and dQ' =sind'df’'d¢ (16)

F16. 3. Refraction at a smooth boundary between media of
different refractive indices (z and #»').
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(the azimuth angle ¢ of a ray is not changed by
refraction). Hence,

NdA cosbd$ N cosf sinfdfde  Nn™

N'dA cost'dQ Y cosf’ sind’'d8’de B N'n? o

A N/mt=N'/n"? [W-cm™2-sr-1]. (17)
Thus, the quantity N/n* in the divection of a ray is
invariant along thet ray, even as it passes through
a smooth boundary surface between media of
different refractive indices, if there are no losses
by reflection, absorption, or scattering.® It is also
apparent from Eq. (17) that the value of N in
the direction of a ray will be the same at any
point along such a ray which lies in a medium
with the same index, regardiess of passage
through other media, such as refractive lenses, at
intermediate points. Total reflection from a
smooth surface merely changes the direction of a
beam and does not alter V. This can be verified
in detail by an analysis similar to that just given
for refraction at a smooth boundary.

A “‘smooth” surface, as the term is used here,
is defined to include any surface where it is
possible everywhere to construct a tangent plane,
i.e., where every surface element dA4 can be
treated as common to the surface and to a plane
tangent to the surface at that point.

It should be recognized, of course, that all real
situations involve some losses by absorption,
scattering, or reflection, although it is frequently
possible to keep the losses to negligible amounts
by careful design. Also, in real situations we are
concerned with sources and receivers, not hypo-
thetical elements of surface.

In the foregoing analysis, we have attempted
to achieve as much generality as possible by
considering radiation fields and surface elements
placed in those fields with as few restrictions as
possible. In this way, the results of the analysis
can be extended widely to describe the radio-
metric quantities at the surfaces of almost any
receiver of radiation in terms of those quantities
at any source, or at any intermediate location
where it may be convenient to specify or measure

8. C. Martin, Technical Optics (Sir Isaac Pitman &
Sons, Ltd., London, 1960), 2nd ed., Vol. 2, pp. 266-268.
Martin's proof is given only for the luminance B of an

image, but with only slight modification it, too, is easily
generalized to apply to any point along a ray.
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them. This has been done purely in terms of ray
geometry, neglecting losses by absorption, scat-
tering, and reflection. Such losses, where they are
not negligible, can be accounted for by multiply-
ing the radiometric quantities, determined from
ray geometry only, by the appropriate factors.
For example, if the radiance along a particular
ray at a source is N;, and the radiant transmit-
tance (see Table 1) along its path (taking into
account the source spectrum and the spectral
transmittance (see Table 1) of the intervening
medium) from source to receiver is 7, and source
and receiver both lie in the same medium (same
index of refraction), then the radiance at the
receiver in the direction of this same ray is given
by N,=+N,. If, in addition, this same ray has
also been imperfectly reflected by a mirror at
some point along its path to the receiver, the
radiance at the receiver becomes N,=prN,,
where p is the radiant reflectance (see Table I) of
the mirror.

A situation of even more importance, perhaps,
is the effect of reflection loss on the radiance
along a ray which is refracted at a boundary
between two media of different refractive indices.
Fresnel's equations require that there be some
reflectance at any simple boundary between two
such media. Here, if the radiance along the in-
cident ray is N, and if the radiant reflectance for
the particular angle of incidence is p, the radiance
along the refracted ray in the second medium
will be given by

N'=N®n?*n)(1—-p) [W-cm2.sr?1]. (18)
Note, however, that it may be possible to reduce
p to a negligible value, at least for a limited range
of wavelengths and angles of incidence, by the
use of so-called antireflection coatings, thus
approaching the condition described by Eq. (17).
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PRACTICAL APPLICATIONS

Before describing some situations which illus-
trate the usefulness of the invariant property of
radiance, we consider briefly the limitations
governing the application of the concepts of
radiance and radiant intensity to real sources.
To look first at the extremes, it is obviously
meaningless, with respect to a receiver at the
earth’s surface, to speak of the radiance of a star
or the radiant intensity of a clear sky. Even the
nearest star, in spite of its huge size, subtends
such a small solid angle at the earth that it
defines a pencil, rather than a beam, of radiation.
Hence it is characterized by its radiant intensity.
Conversely, the sky subtends so large a solid
angle that, for most purposes it is necessary to
recognize the variations in its radiance in differ-
ent directions from a receiver at the ground.

Most sources fall into an intermediate category
where they may be characterized by their radi-
ance or their radiant intensity, depending on the
distance of the receiver and the size of the smal-
lest solid angle or resolution element which is
considered significant. Thus a planet, like a star,
will ordinarily define a pencil of radiation, i.e.,
its radiant intensity is the quantity of importance
in determining the total radiant power reaching
the aperture of a telescope on earth from the
entire planet. However, the amount of radiant
power in various portions of a highly magnified
image of the planet Mars, for example, is a func-
tion of the radiance of the corresponding portions
of the planet’s surface in the direction of the
earth. Similarly, the plume of a large missile in
powered flight is clearly an extended source, with
a complicated spatial distribution of varying
radiance, with respect to a receiver at a distance
of a few hundred feet. However, from high alti-
tudes such a plume may be treated as a point
source, characterized by its radiant intensity in

F16G. 4. A simple radiom-
eter. A sensitive receiv-
er (detector) of area a
is located at one end of
an opaque tube of length
£ with an aperture of area
A in the opposite end of
the tube to limit the beam
of rays incident upon the
receiver.

Y
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the direction of a detection device on the ground
in most instances where the field of view of the
device is large enough to permit acquisition and
tracking of the moving target without unusually
complex and expensive equipment.

The usefulness of the invariant property of
radiance can be illustrated in connection with a
very simple radiometer consisting of a detector
with a flat sensitive surface of area a, such as a
common lead sulphide cell, mounted in a tube of
length £, with a limiting aperture of area 4 at the
far end to define the beam of radiation incident
on the detector (see Fig. 4). It is assumed that
the ratio of f to the linear dimensions of the
detector is large enough so that, to the desired
degree of accuracy, the detector subtends the
same solid angle Q@=a/f at all points of the
entrance aperture. If such an instrument is
placed close enough to an extended source of
uniform radiance N, the total radiant power
incident on the cell (measured by its electrical
response) can be written immediately as

P=:NAQ=rNda/&2 [W],

where 7 is the total radiant transmittance over
the path from source to cell. This is possible
because we know that, in the absence of loss, the
radiance along each ray at the entrance aperture
is N, the same as at the source along the same
rays. And at this position the rays fill an area 4
and a solid angle @=¢/{* at each point within
that area. In practice, by measuring P from the
response of the cell, and knowing 7, 4, a, and £,
we can compute the radiance of an unknown
uniform source as

P
rda

(19)

N =

[W-cm2-sr1]. (20)

If + is unknown, as is frequently the case for
atmospheric transmittance, we will measure in-
stead the apparent radiance (at the radiometer):

P
j\]’ - 7'1\7 =

[W-cm™2-sr1].
Aa .

(21)

Probably, in a practical situation, the values of
A, a, and ¢, will not be determined individually.
Instead, the factor

T=4Q=Aa/C=P/N'=P/7N [cm?sr] (22)
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FIELD STOP
e (IN FOCAL

—
e LENS AND PLANE)

APERTURE STOP

F16. 5. Near-small-source (Jones method) calibration.
Source completely within region bounded by XZ and ¥Z,
which make an angle 8 with the optical axis. § =half-field
angle. P=arbitrary point of source. Rays from any such
point P within a cone of half-angle 8 will uniformly irradiate
the field stop as shown.

which has been called the ‘‘throughput,” will be
determined by a calibration measurement of a
source of known radiance at a distance where =
is known or is practically unity (negligible
attenuation).

Another illustration of useful application of
the general property of invariance, at points
where rays do not cross to form an image of the
source, is in connection with the so-called Jones
Method?® ¥ {for calibrating a radiometer. As shown
in Fig. 5, a small source (area small compared
with the area of the radiometer aperture) is
placed close to the radiometer where it will uni-
formly irradiate the field stop of the instrument.
In order to do this, the source must be small
enough and close enough so that the radiometer
aperture subtends, at every point of the source,
an angle greater than the field angle of the in-
strument. As can be seen in Fig. 5, this means
that the source must lie entirely within the region
enclosed by the cone represented by the lines
XZ and YZ, which meet at Z to form an angle
equal to the field angle of the radiometer, as
shown.

In the following approximate treatment, it is
assumed that the optics are ideal, so that a
parallel bundle of rays incident on the aperture
stop of the instrument is sharply focused at a

¢ This method was first used by Dr. R. C. Jones in the
fall of 1951 on Navy Contract NObsr 42179. The method
became known by word of mouth, and was first described
in writing in “An Unusual Method for Calibrating an
Infrared Radiometer'” (Polaroid Corporation, 19 Septem-
ber 1955, Memorandum 614) under Navy Contract
NObsr 63175.

1 “The Jones Method of Radiometer Calibration' Tech-
nigues (Barnes Engineering Company, winter, 1957).

Reprints of this article have also been issued as Barnes
Engineering Infrared Bulletin 030.
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APERTURE FIELD
sror STOP

P
. SOURCE
\_

FIG. 6. Alternative illustration of Jones method of calibra-
tion. P’ is an arbitrary point within the field stop.

single point lying in the field stop. Also, it is
assumed that the field angle is small so that for
the angle 0 shown in Fig. 5, cosf=~1.

Consider any point P on the radiating surface
of the source. It is apparent in Fig. 5 that the
rays emitted from P within a solid angle © equal
to the field angle of the radiometer will uniformly
irradiate the field stop. If the radiance of the
source is N, and its projected area (normal to
the optic axis) is 4, the total radiant power thus
radiated from all points of the source through the
field stop (in the absence of absorption, reflection,
and scattering losses) is given by

P=N.4.0 [WI. (23)

Alternatively, as illustrated in Fig. 6, we may
consider any point P’ within the field stop. All
rays reaching P’ from the source must travel
parallel to each other in a single direction from
the source to the radiometer aperture. There they
will fill an area of the aperture equal to 4, the
projected area of the source. They are then
focused onto P’. The effective aperture area A4,
subtends a solid angle at P’ given by

[sr],

where F is the focal length of the radiometer
optics. Since the radiance at the field stop in the
direction of any of the rays from the source is
equal to the source radiance N, we can write

(Wl (25

where A4 r is the area of the field stop. Since the
field solid angle is given by

w~A,/F? (24)

P=N,Apo=N,ApA,)F

Q=Ap/Ft [sr], (26)
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it can be seen that

_P:N544.SA F/F2:NS*4SQ [ij (27)

in agreement with Eq. (23). Note that in this
case the source is not imaged at the field stop
where the value of radiant power P is being
evaluated.

DISCUSSION OF INTRODUCTORY EXAMPLES

In the Introduction we described three situ-
ations involving extended sources. It should be
clear from Eq. (13) that the exposure meter must
give the same response, regardless of distance or
orientation, as long as all of the radiation enter-
ing it has the same value of radiance. If the wall
is perfectly diffuse, all of the rays from it will
have the same radiance. An external lens cannot
change either the area or angle through which the
meter accepts radiation, whether it cormes
directly from the wall or after it passes through
the lens, and the value of radiance also cannot be
changed (except by attenuation, which is as-
sumed negligible). In the same way, once the full
receiving area (entrance slit) and solid angle
(subtended at the slit by the collimating optics)
of the spectrometer are filled with rays of the
maximum available radiance, there remains no
way to increase any of these quantities with
additional lenses. In the last example, we must
first determine the radiance N of the earth’s
surface. From Eq. (1) and Eq. (5) we can write
for a uniform plane diffuse radiator for which
both N and W are constants:

P= /WdAz//Ncosf)dAdQ (W3,

W=N/C0s0d£l [W-cm™2], (28)

If we choose spherical coordinates with the z axis
perpendicular to the radiating surface,

dQ =sinbdbd¢ [sr]
and

27 /2
W=N / f sinf cosfdfd¢
0 0

=N [W-cm™2]. (29)

NI: :lz sin0 T2
= @ lo" [ il

0
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Similarly, from Eq. (1) and Eq. (4), the irradi-
ance at a plane surface due to uniform radiation
of radiance N, arriving within a cone of hali-
angle 8, is given by

H=N /cosﬁd&l= wN sin? [W-cm™]. (30)

This gives the desired result for an earth of
uniform radiance NV = W/x which subtends a cone
of half-angle 6 at the receiver (H =W sin%).

SUMMARY

It has been established that in any radiation
field radiance is invariant along a ray, in the
direction of the ray, within an isotropic medium,
and that the quantity N/#? is invariant along a
ray, in the direction of the ray, across smooth
boundaries between media with different refrac-
tive indices, so that IV has the same value at all
points along the ray lying in media of the same
index, regardless of passage through other media
at intermediate points. Practical applications of
the usefulness of this invariant property have
been presented. They show that it facilitates the
evaluation of the radiant power flowing through
any surface where it is possible to determine the
cross section of a beam (the projected area of its
intersection with the surface) and the solid angle
from which rays are flowing through each point
of that surface, if the value of radiance is known
at any point along each of the rays. In practical
optical systems, such surfaces are usually found
at the stops (aperture stop and field stop) and
their images (e.g., the entrance and exit pupils
and windows), and at the surfaces of sources and
receivers, and their images.

Evaluation of radiant power becomes a very
simple matter for a beam passing through a well-
defined plane surface (6 is not a function of posi-
tion) of area 4 and within a well-defined solid
angle O that is the same at all points of the surface
{no vignetting) whenever it is possible to assume
a uniform value of radiance N throughout the
beam. The general expression in Eq. (12) can
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then be simplified as follows:

P= / / N costdAdQ

=NA[/cosﬁd&2=NAQ’ (W] (31

The expression Q'=./ f cos6dQ has been called
the “‘weighted solid angle” or “‘projected solid
angle”.'! The area-solid-angle-product, “optical
invariant,”? “throughput,”’” or “étendue’® can
be given for the unvignetted beam through a
plane surface or aperture of area 4 as

T=A0'=4 //cos@dﬂ [cm?-sr].  (32)

Furthermore, in most cases the solid angle is a
circular cone of half-vertex-angle 8, with its axis
perpendicular to the plane. Then, using spherical
coordinates with the 2z axis perpendicular to the
plane, the integration can be carried out thus:

21 &
T=A4 / / sinfd cosfdbde
0 0

=74 sin¥ [cm?-sr],

(33)

and

P=NT=xNAsin% [W]. (34)
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